CP: Genomics; CP: Plants; I. polycarpa; IpSTP5; evolution; fatty acids; genome; oil biosynthesis; Phylogeny; Plant Breeding; Base Sequence; Genome-Wide Association Study; Salicaceae/genetics; Salicaceae; Biochemistry, Genetics and Molecular Biology (all)
Abstract :
[en] The deciduous tree Idesia polycarpa can provide premium edible oil with high polyunsaturated fatty acid contents. Here, we generate its high-quality reference genome, which is ∼1.21 Gb, comprising 21 pseudochromosomes and 42,086 protein-coding genes. Phylogenetic and genomic synteny analyses show that it diverged with Populus trichocarpa about 16.28 million years ago. Notably, most fatty acid biosynthesis genes are not only increased in number in its genome but are also highly expressed in the fruits. Moreover, we identify, through genome-wide association analysis and RNA sequencing, the I. polycarpa SUGAR TRANSPORTER 5 (IpSTP5) gene as a positive regulator of high oil accumulation in the fruits. Silencing of IpSTP5 by virus-induced gene silencing causes a significant reduction of oil content in the fruits, suggesting it has the potential to be used as a molecular marker to breed the high-oil-content cultivars. Our results collectively lay the foundation for breeding the elite cultivars of I. polycarpa.
Disciplines :
Agriculture & agronomy
Author, co-author :
Zuo, Yi ✱; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China, China National Botanical Garden, Beijing 100093, China
Liu, Hongbing ✱; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
Li, Bin ✱; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China, China National Botanical Garden, Beijing 100093, China
Zhao, Hang ; Université de Liège - ULiège > TERRA Research Centre ; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
Li, Xiuli; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
Chen, Jiating; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China, University of Chinese Academy of Sciences, Beijing 100049, China
Wang, Lu; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
Zheng, Qingbo; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China, China National Botanical Garden, Beijing 100093, China
He, Yuqing; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China, Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China
Zhang, Jiashuo; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China, University of Chinese Academy of Sciences, Beijing 100049, China
Wang, Minxian; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
Liang, Chengzhi; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
Wang, Lei ✱; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China, Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China, China National Botanical Garden, Beijing 100093, China, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: wanglei@ibcas.ac.cn
We thank Dr. Suhua Yang and Dr. Bin Han from the Public Technology Center of the Institute of Botany, Chinese Academy of Sciences, for excellent technical assistance on flow cytometry determination, respectively. We also thank Dr. Chenxu Liu from China Agriculture University for his excellent technical assistance on oil content by low-field nuclear magnetic resonance. This work was supported by Science & Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta (2022SZX13), the Rural Revitalization Projects of the CAS (KFJ-XCZX-202301), and the National Natural Science Foundation of China (nos. 32002066 and 32370307). Y.Z. and H.L. analyzed the data and wrote the article. B.L. performed material collection and RNA sequencing. H.Z. and X.L. analyzed the data. J.C. performed VIGS assay. Lu Wang performed fatty acid determination. Q.Z. Y.H. and J.Z. performed DNA extraction. M.W. C.L. and Lei Wang revised the manuscript. Lei Wang agrees to serve as the author responsible for contact and ensures communication. The authors declare no competing interests.We thank Dr. Suhua Yang and Dr. Bin Han from the Public Technology Center of the Institute of Botany, Chinese Academy of Sciences, for excellent technical assistance on flow cytometry determination, respectively. We also thank Dr. Chenxu Liu from China Agriculture University for his excellent technical assistance on oil content by low-field nuclear magnetic resonance. This work was supported by Science & Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta ( 2022SZX13 ), the Rural Revitalization Projects of the CAS ( KFJ-XCZX-202301 ), and the National Natural Science Foundation of China (nos. 32002066 and 32370307 ).
Modolo, L.V., da-Silva, C.J., Brandão, D.S., Chaves, I.S., A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J. Adv. Res. 13 (2018), 29–37.
Zhou, Y., Zhao, W., Lai, Y., Zhang, B., Zhang, D., Edible plant oil: global status, health issues, and perspectives. Front. Plant Sci., 11, 2020, 1315.
Srinivasan, U., Velho, N., Lee, J.S.H., Chiarelli, D.D., Davis, K.F., Wilcove, D.S., Oil palm cultivation can be expanded while sparing biodiversity in India. Nat. Food 2 (2021), 442–447.
Lin, Y.C., Wang, J., Delhomme, N., Schiffthaler, B., Sundström, G., Zuccolo, A., Nystedt, B., Hvidsten, T.R., de la Torre, A., Cossu, R.M., et al. Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen. Proc. Natl. Acad. Sci. USA 115 (2018), E10970–E10978.
Chen, J.H., Huang, Y., Brachi, B., Yun, Q.Z., Zhang, W., Lu, W., Li, H.N., Li, W.Q., Sun, X.D., Wang, G.Y., et al. Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nat. Commun., 10, 2019, 5230.
Li, N., Li, Y., Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 33 (2016), 23–32.
Yang, F.X., Su, Y.Q., Li, X.H., Zhang, Q., Sun, R.C., Preparation of biodiesel from Idesia polycarpa var. vestita fruit oil. Ind. Crops Prod. 29 (2009), 622–628.
Zhou, R., Macaya Sanz, D., Carlson, C.H., Schmutz, J., Jenkins, J.W., Kudrna, D., Sharma, A., Sandor, L., Shu, S., Barry, K., et al. A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biol., 21, 2020, 38.
Katan, M.B., Zock, P.L., Mensink, R.P., Effects of fats and fatty acids on blood lipids in humans: an overview. Am. J. Clin. Nutr. 60 (1994), 1017s–1022s.
Klok, A.J., Lamers, P.P., Martens, D.E., Draaisma, R.B., Wijffels, R.H., Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol. 32 (2014), 521–528.
Imamura, F., Micha, R., Wu, J.H.Y., de Oliveira Otto, M.C., Otite, F.O., Abioye, A.I., Mozaffarian, D., Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials. PLoS Med., 13, 2016, e1002087.
Marklund, M., Wu, J.H.Y., Imamura, F., Del Gobbo, L.C., Fretts, A., de Goede, J., Shi, P., Tintle, N., Wennberg, M., Aslibekyan, S., et al. Biomarkers of dietary Omega-6 fatty acids and incident cardiovascular disease and mortality. Circulation 139 (2019), 2422–2436.
Wei, X., Liu, K., Zhang, Y., Feng, Q., Wang, L., Zhao, Y., Li, D., Zhao, Q., Zhu, X., Zhu, X., et al. Genetic discovery for oil production and quality in sesame. Nat. Commun., 6, 2015, 8609.
Chen, X., Li, H., Pandey, M.K., Yang, Q., Wang, X., Garg, V., Li, H., Chi, X., Doddamani, D., Hong, Y., et al. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc. Natl. Acad. Sci. USA 113 (2016), 6785–6790.
Song, J.M., Guan, Z., Hu, J., Guo, C., Yang, Z., Wang, S., Liu, D., Wang, B., Lu, S., Zhou, R., et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6 (2020), 34–45.
Unver, T., Wu, Z., Sterck, L., Turktas, M., Lohaus, R., Li, Z., Yang, M., He, L., Deng, T., Escalante, F.J., et al. Genome of wild olive and the evolution of oil biosynthesis. Proc. Natl. Acad. Sci. USA 114 (2017), E9413–E9422.
Lin, P., Wang, K., Wang, Y., Hu, Z., Yan, C., Huang, H., Ma, X., Cao, Y., Long, W., Liu, W., et al. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biol., 23, 2022, 14.
Yang, X., Ma, H., Zhang, P., Yan, J., Guo, Y., Song, T., Li, J., Characterization of QTL for oil content in maize kernel. Theor. Appl. Genet. 125 (2012), 1169–1179.
Mauxion, J.P., Chevalier, C., Gonzalez, N., Complex cellular and molecular events determining fruit size. Trends Plant Sci. 26 (2021), 1023–1038.
Long, S.P., Taylor, S.H., Burgess, S.J., Carmo-Silva, E., Lawson, T., De Souza, A.P., Leonelli, L., Wang, Y., Into the shadows and back into sunlight: photosynthesis in fluctuating light. Annu. Rev. Plant Biol. 73 (2022), 617–648.
Wen, S., Neuhaus, H.E., Cheng, J., Bie, Z., Contributions of sugar transporters to crop yield and fruit quality. J. Exp. Bot. 73 (2022), 2275–2289.
Wang, S., Liu, S., Wang, J., Yokosho, K., Zhou, B., Yu, Y.C., Liu, Z., Frommer, W.B., Ma, J.F., Chen, L.Q., et al. Simultaneous changes in seed size, oil content and protein content driven by selection of homologues during soybean domestication. Natl. Sci. Rev. 7 (2020), 1776–1786.
Duan, Z., Zhang, M., Zhang, Z., Liang, S., Fan, L., Yang, X., Yuan, Y., Pan, Y., Zhou, G., Liu, S., Tian, Z., Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol. J. 20 (2022), 1807–1818.
Sun, C., Wang, Y., Yang, X., Tang, L., Wan, C., Liu, J., Chen, C., Zhang, H., He, C., Liu, C., et al. MATE transporter GFD1 cooperates with sugar transporters, mediates carbohydrate partitioning and controls grain-filling duration, grain size and number in rice. Plant Biotechnol. J. 21 (2023), 621–634.
Manni, M., Berkeley, M.R., Seppey, M., Simão, F.A., Zdobnov, E.M., BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral Genomes. Mol. Biol. Evol. 38 (2021), 4647–4654.
Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., Aiden, E.L., De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356 (2017), 92–95.
Zhang, Z.S., Zeng, Q.Y., Liu, Y.J., Frequent ploidy changes in Salicaceae indicates widespread sharing of the salicoid whole genome duplication by the relatives of Populus L. and Salix L. BMC Plant Biol., 21, 2021, 535.
Tuskan, G.A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313 (2006), 1596–1604.
Liu, Y.J., Wang, X.R., Zeng, Q.Y., De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River basin in China. Sci. China Life Sci. 62 (2019), 609–618.
Wei, S., Yang, Y., Yin, T., The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution. Hortic. Res., 7, 2020, 45.
Wheeler, T.J., Clements, J., Eddy, S.R., Hubley, R., Jones, T.A., Jurka, J., Smit, A.F.A., Finn, R.D., Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 41 (2013), D70–D82.
Ou, S., Su, W., Liao, Y., Chougule, K., Agda, J.R.A., Hellinga, A.J., Lugo, C.S.B., Elliott, T.A., Ware, D., Peterson, T., et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol., 20, 2019, 275.
Xue, L., Wu, H., Chen, Y., Li, X., Hou, J., Lu, J., Wei, S., Dai, X., Olson, M.S., Liu, J., et al. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nat. Commun., 11, 2020, 5893.
Cantarel, B.L., Korf, I., Robb, S.M.C., Parra, G., Ross, E., Moore, B., Holt, C., Sánchez Alvarado, A., Yandell, M., MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18 (2008), 188–196.
Babb, V.M., Haigler, C.H., Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems. Plant Physiol. 127 (2001), 1234–1242.
Ramirez-Parra, E., Gutierrez, C., The many faces of chromatin assembly factor 1. Trends Plant Sci. 12 (2007), 570–576.
Dai, X., Hu, Q., Cai, Q., Feng, K., Ye, N., Tuskan, G.A., Milne, R., Chen, Y., Wan, Z., Wang, Z., et al. The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res. 24 (2014), 1274–1277.
Žanetić, M., Jukić Špika, M., Ožić, M.M., Brkić Bubola, K., Comparative study of volatile compounds and sensory characteristics of dalmatian monovarietal virgin olive oils. Plants, 10, 2021, 1995.
Ishimaru, K., Hirotsu, N., Madoka, Y., Murakami, N., Hara, N., Onodera, H., Kashiwagi, T., Ujiie, K., Shimizu, B.I., Onishi, A., et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45 (2013), 707–711.
Shen, H., Zhong, X., Zhao, F., Wang, Y., Yan, B., Li, Q., Chen, G., Mao, B., Wang, J., Li, Y., et al. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat. Biotechnol. 33 (2015), 996–1003.
Leng, Y.J., Yao, Y.S., Yang, K.Z., Wu, P.X., Xia, Y.X., Zuo, C.R., Luo, J.H., Wang, P., Liu, Y.Y., Zhang, X.Q., et al. Arabidopsis ERdj3B coordinates with ERECTA-family receptor kinases to regulate ovule development and the heat stress response. Plant Cell 34 (2022), 3665–3684.
Liao, X., Li, M., Liu, B., Yan, M., Yu, X., Zi, H., Liu, R., Yamamuro, C., Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proc. Natl. Acad. Sci. USA 115 (2018), E11542–E11550.
Wang, L., Lee, M., Sun, F., Song, Z., Yang, Z., Yue, G.H., A chromosome-level genome assembly of chia provides insights into high omega-3 content and coat color variation of its seeds. Plant Commun., 3, 2022, 100326.
Yang, Y., Kong, Q., Lim, A.R.Q., Lu, S., Zhao, H., Guo, L., Yuan, L., Ma, W., Transcriptional regulation of oil biosynthesis in seed plants: current understanding, applications, and perspectives. Plant Commun., 3, 2022, 100328.
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al. The variant call format and VCFtools. Bioinformatics 27 (2011), 2156–2158.
Li, H., Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv 1301.3997, 2013, 10.48550/arXiv.1303.3997.
Mendes, F.K., Vanderpool, D., Fulton, B., Hahn, M.W., CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36 (2021), 5516–5518.
Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M., Canu: scalable and accurate long-read assembly via adaptive -mer weighting and repeat separation. Genome Res. 27 (2017), 722–736.
Buchfink, B., Xie, C., Huson, D.H., Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12 (2015), 59–60.
Robinson, M.D., McCarthy, D.J., Smyth, G.K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 (2010), 139–140.
Wang, J., Zhang, Z., GAPIT version 3: boosting power and accuracy for genomic association and prediction. Dev. Reprod. Biol. 19 (2021), 629–640.
Zhang, R., Jia, G., Diao, X., geneHapR: an R package for gene haplotypic statistics and visualization. BMC Bioinf., 24, 2023, 199.
Feng, C., Wang, X., Wu, S., Ning, W., Song, B., Yan, J., Cheng, S., HAPPE: a tool for population haplotype analysis and visualization in editable excel tables. Front. Plant Sci., 13, 2022, 927407.
Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., Salzberg, S.L., Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11 (2016), 1650–1667.
Zdobnov, E.M., Apweiler, R., InterProScan an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17 (2001), 847–848.
Campbell, M.S., Holt, C., Moore, B., Yandell, M., Genome annotation and curation using MAKER and MAKER-P. Curr. Protoc. Bioinformatics 48 (2014), 4.11.1–4.11.39.
Wang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X., Lee, T.H., Jin, H., Marler, B., Guo, H., et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res., 40, 2012, e49.
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (2018), 1547–1549.
He, W., Yang, J., Jing, Y., Xu, L., Yu, K., Fang, X., NGenomeSyn: an easy-to-use and flexible tool for publication-ready visualization of syntenic relationships across multiple genomes. Bioinformatics, 39, 2023 btad.121.
Liu, Y., Schiff, M., Marathe, R., Dinesh-Kumar, S.P., Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30 (2002), 415–429.
Liu, C., Li, J., Chen, M., Li, W., Zhong, Y., Dong, X., Xu, X., Chen, C., Tian, X., Chen, S., Development of high-oil maize haploid inducer with a novel phenotyping strategy. Crop J. 10 (2022), 524–531.