[en] STAR is a glycaemic control (GC) framework using a unique model-based and risk-based dosing approach. STAR modulates both insulin and nutrition inputs to mitigate the risk of hypo- and hyper-glycaemia. This protocol, accounting for both inter- and intra- patient variability successfully manages to provide safe, effective control to all patients, regardless of their condition. In a recent clinical trial in Belgium, workload was pointed as a potential barrier for clinical adoption despite clear benefit for patients. Clinical burden is a key factor in compliance and uptake. This study assesses the impact on GC outcomes when increasing measurement intervals from 1-3 hourly to 1-6 hourly in the STAR GC framework. Retrospective data from 606 critically ill patients totalling over 59,000 hours of control are used to create virtual patients. Insulin sensitivity is identified for each patient using a validated physiological model, and new stochastic predictive models are built to forecast variability up to 6-hourly. Five-fold cross validation is used to build the models on 80% of data and simulate virtual trials on the remaining 20%. Safety, performance, nutrition intake and workload are compared and analysed. Results showed similar, very high safety and performance regardless of the measurement intervals, showing STAR GC framework robustness in controlling patients. However, there was a clear risk and reward tradeoff between the increased risk of hypoglycaemic event (from 12 to 23 patients between 1-3 hourly and 1-6 hourly protocols) and reduced nutrition intake (from 100 [85 - 100] to 85 [70 - 95] % GF) for the benefit of significant lower workload (from 12.1 to 8.3 measurement per day), closer to clinical practice. These promising results should be confirmed in clinical trials but offer possibilities to adapt measurement strategy based on local ICU practice and clinical burden.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others Human health sciences: Multidisciplinary, general & others Anesthesia & intensive care
Author, co-author :
Seret, Marie ; Université de Liège - ULiège > GIGA > GIGA Molecular & Computational Biology - Model-based therapeutics
Uyttendaele, Vincent ; Université de Liège - ULiège > GIGA > GIGA Molecular & Computational Biology - Model-based therapeutics
Desaive, Thomas ; Université de Liège - ULiège > GIGA > GIGA Molecular & Computational Biology - Model-based therapeutics
Chase, J. Geoffrey; Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
Language :
English
Title :
Safe and Effective Glycaemic Control for Minimal Workload in Critically Ill Patients: Virtual trials analysis on performance and safety
Publication date :
September 2024
Event name :
12th IFAC Symposium on Biological and Medical Systems BMS 2024
F.R.S.-FNRS - Fund for Scientific Research EU - European Union SPF BOSA - Service Public Fédéral Stratégie et Appui
Funding number :
872488 – DCPM; DIGITWIN4PH
Funding text :
The authors acknowledge the support of the FRS-FNRS – Fund for Scientific Research, the EU H2020 R&I programme (MSCA-RISE-2019 call) agreement #872488 – DCPM, and the Service Public Fédéral Stratégie et Appui (BOSA) – Project DIGITWIN4PH
A. Abu-Samah, J.L. Knopp, Abdul Razak, N. N., A.A. Razak, U.K. Jamaludin, Mohamad Suhaimi, Md Ralib F., Mat Nor A., B. M., J.G. Chase, and C.G Pretty Model-based glycemic control in a Malaysian intensive care unit: performance and safety study Med Devices (Auckl) 12 2019 215 226
N.A. Ali, J.M. O'brien, K. Dungan, G. Phillips, C.B. Marsh, S. Lemeshow, A.F. Connors, and J.C. Preiser Glucose variability and mortality in patients with sepsis Crit Care Med 36 2008 2316 2321
S.M. Bagshaw, R. Bellomo, M.J. Jacka, M. Egi, G.K. Hart, and C. George The impact of early hypoglycemia and blood glucose variability on outcome in critical illness Crit Care 2009 13
F.M. Brunkhorst, C. Engel, F. Bloos, A. Meier-Hellmann, M. Ragaller, N. Weiler, O. Moerer, M. Gruendling, M. Oppert, S. Grond, D. Olthoff, U. Jaschinski, S. John, R. Rossaint, T. Welte, M. Schaefer, P. Kern, E. Kuhnt, M. Kiehntopf, C. Hartog, C. Natanson, M. Loeffler, K. Reinhart German Competence Network, S. Intensive insulin therapy and pentastarch resuscitation in severe sepsis N Engl J Med 358 2008 125 139
J.G. Chase, C.G. Pretty, L. Pfeifer, G.M. Shaw, J.C. Preiser, A.J. Le Compte, J. Lin, D. Hewett, K.T. Moorhead, and T. Desaive Organ failure and tight glycemic control in the SPRINT study Crit Care 14 2010 R154
J.G. Chase, F. Suhaimi, S. Penning, J.C. Preiser, A.J. Le Compte, J. Lin, C.G. Pretty, G.M. Shaw, K.T. Moorhead, and T. Desaive Validation of a model-based virtual trials method for tight glycemic control in intensive care Biomed Eng Online 9 2010 84
J.G. Chase, A.J. Le Compte, F. Suhaimi, G.M. Shaw, A. Lynn, J. Lin, C.G. Pretty, N. Razak, J.D. Parente, C.E. Hann, J.C. Preiser, and T. Desaive Tight glycemic control in critical care-the leading role of insulin sensitivity and patient variability: a review and model-based analysis Comput Methods Programs Biomed 102 2011 156 171
S. Davidson, C. Pretty, V. Uyttendaele, J.L. Knopp, T. Desaive, and J.G. Chase Multi-input stochastic prediction of insulin sensitivity for tight glycaemic control using insulin sensitivity and blood glucose data Comput Methods Programs Biomed 2019 182
S. Davidson, V. Uyttendaele, C. Pretty, J.L. Knopp, T. Desaive, and J.G. Chase Virtual patient trials of a multi-input stochastic model for tight glycaemic control using insulin sensitivity and blood glucose data Biomedical Signal Processing and Control 2020
M. Egi, and R. Bellomo Reducing glycemic variability in intensive care unit patients: a new therapeutic target? J Diabetes Sci Technol 3 2009 1302 1308
M. Egi, R. Bellomo, E. Stachowski, C.J. French, G.K. Hart, G. Taori, C. Hegarty, and M. Bailey Hypoglycemia and outcome in critically ill patients Mayo Clin Proc 85 2010 217 224
A. Evans, A. Le Compte, C.S. Tan, L. Ward, J. Steel, C.G. Pretty, S. Penning, F. Suhaimi, G.M. Shaw, T. Desaive, and J.G. Chase Stochastic targeted (STAR) glycemic control: design, safety, and performance J Diabetes Sci Technol 6 2012 102 115
S. Finfer, D.R. Chittock, S.Y. Su, D. Blair, D. Foster, V. Dhingra, R. Bellomo, D. Cook, P. Dodek, W.R. Henderson, P.C. Hebert, S. Heritier, D.K. Heyland, C. Mcarthur, E. Mcdonald, I. Mitchell, J.A. Myburgh, R. Norton, J. Potter, B.G. Robinson, and J.J. Ronco Intensive versus conventional glucose control in critically ill patients N Engl J Med 360 2009 1283 1297
S. Finfer, B. Liu, D.R. Chittock, R. Norton, J.A. Myburgh, C. Mcarthur, I. Mitchell, D. Foster, V. Dhingra, W.R. Henderson, J.J. Ronco, R. Bellomo, D. Cook, E. Mcdonald, P. Dodek, P.C. Hebert, D.K. Heyland, and B.G. Robinson Hypoglycemia and risk of death in critically ill patients N Engl J Med 367 2012 1108 1118
L.M. Fisk, A.J. Le Compte, G.M. Shaw, S. Penning, T. Desaive, and J.G. Chase STAR development and protocol comparison IEEE Trans Biomed Eng 59 2012 3357 3364
K. Honarmand, M. Sirimaturos, E.L. Hirshberg, N.G. Bircher, M.S.D. Agus, D.L. Carpenter, C.R. Downs, E.A. Farrington, A.X. Freire, A. Grow, S.Y. Irving, J.S. Krinsley, M.J. Lanspa, M.T. Long, D. Nagpal, J.C. Preiser, V. Srinivasan, G.E. Umpierrez, and J. Jacobi Society of Critical Care Medicine Guidelines on Glycemic Control for Critically Ill Children and Adults 2024 Crit Care Med. 2024
J.S. Krinsley Effect of an intensive glucose management protocol on the mortality of critically ill adult patients Mayo Clin Proc 79 2004 992 1000
J.S. Krinsley Glucose control reduces ICU stay and mortality Perform Improv Advis 9 1 2005 4 6
J.S. Krinsley, and A. Grover Severe hypoglycemia in critically ill patients: risk factors and outcomes Crit Care Med 35 2007 2262 2267
J.S. Krinsley, and J.C. Preiser Time in blood glucose range 70 to 140 mg/dl >80% is strongly associated with increased survival in non-diabetic critically ill adults Crit Care 19 2015 179
A.J. Le Compte, D.S. Lee, J.G. Chase, J. Lin, A. Lynn, and G.M. Shaw Blood glucose prediction using stochastic modeling in neonatal intensive care IEEE Trans Biomed Eng 57 2010 509 518
J. Lin, D. Lee, J.G. Chase, G.M. Shaw, A. Le Compte, T. Lotz, J. Wong, T. Lonergan, and C.E. Hann Stochastic modelling of insulin sensitivity and adaptive glycemic control for critical care Comput Methods Programs Biomed 89 2008 141 152
J.C. Preiser, P. Devos, S. Ruiz-Santana, C. Melot, D. Annane, J. Groeneveld, G. Iapichino, X. Leverve, G. Nitenberg, P. Singer, J. Wernerman, M. Joannidis, A. Stecher, and R. Chiolero A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study Intensive Care Med 35 2009 1738 1748
C.C. Reed, R.M. Stewart, M. Sherman, J.G. Myers, M.G. Corneille, N. Larson, S. Gerhardt, R. Beadle, C. Gamboa, D. Dent, S.M. Cohn, and B.A. Pruitt Jr. Intensive insulin protocol improves glucose control and is associated with a reduction in intensive care unit mortality J Am Coll Surg 204 2007 1048 1054 discussion 1054-5
K.W. Stewart, C.G. Pretty, H. Tomlinson, F.L. Thomas, J. Homlok, S.N. Noemi, A. Illyes, G.M. Shaw, B. Benyo, and J.G. Chase Safety, efficacy and clinical generalization of the STAR protocol: a retrospective analysis Ann Intensive Care 6 2016 24
V. Uyttendaele, J.L. Dickson, G.M. Shaw, T. Desaive, and J.G. Chase Untangling glycaemia and mortality in critical care Crit Care 21 2017 152
V. Uyttendaele, J. Dickson, K. Stewart, T. Desaive, B. Benyo, N. Szabo-Nemedi, A. Illyes, G. Shaw, and G. Chase A 3D insulin sensitivity prediction model enables more patient-specific prediction and model-based glycaemic control Biomed Signal Process Control 46 2018 192 200
V. Uyttendaele, J.L. Knopp, G.M. Shaw, T. Desaive, and J.G. Chase Is intensive insulin therapy the scapegoat for or cause of hypoglycaemia and poor outcome? IFAC Journal of Systems and Control 2019 9
V. Uyttendaele, J.L. Knopp, M. Pirotte, P. Morimont, B. Lambermont, G.M. Shaw, T. Desaive, and J.G. Chase STAR-Liège Clinical Trial Interim Results: Safe and Effective Glycemic Control for All 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019 IEEE Berlin, Germany
V. Uyttendaele, J.L. Knopp, S. Davidson, T. Desaive, B. Benyo, G.M. Shaw, and J.G. Chase 3D kernel-density stochastic model for more personalized glycaemic control: development and in-silico validation BioMedical Engineering OnLine 18 2019 102
V. Uyttendaele, J.L. Knopp, M. Pirotte, P. Morimont, B. Lambermont, G.M. Shaw, T. Desaive, and J.G. Chase Translating A Risk-Based Glycaemic Control Framework for Critically Ill Patients: STAR-Liège IFAC-PapersOnline 2020 6 pages
V. Uyttendaele, J.L. Knopp, G.M. Shaw, T. Desaive, and J.G. Chase Risk and Reward: Extending stochastic glycaemic control intervals to reduce workload Biomed Eng Online 2020
G. Van Den Berghe, P. Wouters, F. Weekers, C. Verwaest, F. Bruyninckx, M. Schetz, D. Vlasselaers, P. Ferdinande, P. Lauwers, and R. Bouillon Intensive insulin therapy in critically ill patients N Engl J Med 345 2001 1359 1367