Removal of refractory organic compounds from water by adsorption using carbon xerogel cylinders coupled with in situ regeneration using H2O2 electro-generation and UV radiation
Mahy, Julien; Arab, Hamed; Kiendrebeogo, Martheet al.
2025 • In Journal of hazardous materials advances, 18, p. 100742
Quaternary water treatment; 3D porous carbon; electro-photocatalysis; adsorption, sol-gel process; micropollutant degradation; Electrochemical regeneration
Abstract :
[en] The process developed in this study is based on the adsorption of refractory organic compounds (ROCs) onto carbon xerogels, coupled with in situ regeneration of the adsorbent by H2O2 electro-generation and enhanced ROC decomposition via OH radicals due to UV illumination. The in situ regeneration of the carbon materials aims to replace the usual thermal regeneration, which is costly and gradually degrades the adsorption properties. In this work, carbon xerogels are synthesized via a sol-gel process and molded as cylinders that are used as adsorbents for ROCs. The specific surface area of these cylinders varies between 30 and 680 m2/g when the resorcinol/sodium carbonate (R/C) ratio is modified between 100 and 1500 during the synthesis. Their excellent adsorption properties are highlighted for three model pollutants (i.e., p-nitrophenol, methylene blue, and ibuprofen), and it is determined that the optimal cylinders have an R/C ratio of 750. In parallel, the electro-generation of H2O2 within these cylinders is demonstrated, reaching an H2O2 concentration of 5 mg/L when using the most porous carbon cylinder (i.e., the optimal one). The use of UV light combined with the electro-generation of H2O2 enables the efficient production of hydroxyl radicals. Finally, in situ regeneration of the optimal saturated carbon cylinders for the model pollutants is successfully performed. Indeed, the results of carbon cylinder regeneration for the three pollutants show that the H2O2 electro-generation combined with the UV illumination completely mineralized the three pollutants previously absorbed on the carbon cylinders. These promising results open the way for a new method that regenerates adsorbent materials in situ without the use of thermal treatments.
Disciplines :
Materials science & engineering Chemical engineering
Author, co-author :
Mahy, Julien ; Université de Liège - ULiège > Chemical engineering ; Centre INRS -Eau, Environnement (INRS-ETE), Terre, Québec City, Canada
Arab, Hamed; Centre INRS -Eau, Environnement (INRS-ETE), Terre, Québec City, Canada
Kiendrebeogo, Marthe; Centre INRS -Eau, Environnement (INRS-ETE), Terre, Québec City, Canada
Farcy, Antoine ; Université de Liège - ULiège > Chemical engineering
Servais, Tom ; Université de Liège - ULiège > Chemical engineering
Removal of refractory organic compounds from water by adsorption using carbon xerogel cylinders coupled with in situ regeneration using H2O2 electro-generation and UV radiation
Adeleye, A.S., Xue, J., Zhao, Y., Taylor, A.A., Zenobio, J.E., Sun, Y., Han, Z., Salawu, O.A., Zhu, Y., Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J. Hazard. Mater., 424, 2022, 10.1016/j.jhazmat.2021.127284.
Ammar, A., «À peine de quoi boire »: Dans la bande de Gaza, les enfants sont privés de 90 % de leurs besoins en eau. 2023, Unicef.
Arias, M., L6pez, E., Nunez, A., Rubinos, D., Soto, B., Barral, M.T., Diaz-Fierros, F., Adsorption of methylene blue by red mud, an oxide-rich byproduct of bauxite refining. Berthelin, (eds.) Effect of Mineral-Organic-Microorganisms on Soil and Freshwater Environments, 1999, Kluwer Academic/Plenum, New York, 361–365.
Balseviciute, A., Patiño-Cantero, I., Carrillo-Abad, J., Giner-Sanz, J.J., García-Gabaldón, M., Pérez-Herranz, V., MC, Martí-Calatayud, Degradation of multicomponent pharmaceutical mixtures by electrochemical oxidation: insights about the process evolution at varying applied currents and concentrations of organics and supporting electrolyte. Sep. Purif. Technol., 362, 2025, 10.1016/j.seppur.2025.131697.
Bard, A.J., Faulkner, L.R., Electrochemical methods: fundamentals and applications. 2nd edition, 2001, John Wiley & Sons, Inc.
Bashir, N., Sawaira, T., Jamil, A., Awais, M., Habib, A., Afzal, A., Challenges and prospects of main-group metal-doped TiO2 photocatalysts for sustainable water remediation. Mater. (Basel) Today Sustainability, 27, 2024, 10.1016/j.mtsust.2024.100869.
Bokare, A.D., Choi, W., Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 275 (2014), 121–135, 10.1016/j.jhazmat.2014.04.054.
Brovini, E.M., Moreira, F.D., Martucci, M.E.P., de Aquino, S.F., Water treatment technologies for removing priority pesticides. J. Water (Basel) Process Eng., 53, 2023, 10.1016/j.jwpe.2023.103730.
Cao, D., Wang, Y., Zhao, X., Combination of photocatalytic and electrochemical degradation of organic pollutants from water. Curr. Opin. Green. Sustain. Chem. 6 (2017), 78–84, 10.1016/j.cogsc.2017.05.007.
Chistyakov, A.V., Liberman, E.Y., Pasevin, V.I., Bondarenko, G.N., Arapova, O.V., Tsodikov, M.V., Regeneration of a porous iron-containing carbon adsorbent under plasma-catalytic conditions assisted by microwave irradiation. Petroleum Chem. (Easton) 61:4 (2021), 498–503, 10.1134/S0965544121050078.
Corson-Dosch, H., Nell, C., Volentine, R.E., Archer, A.A., Bechtel, E., Bruce, J.L., Felts, N., Gross, T.A., Lopez-Trujillo, D., Riggs, C.E., Read, E.K., Survey, U.S.G., The water cycle. 2023 Reston, VA.
Deschamps, F.L., Mahy, J.G., Léonard, A.F., Job, N., Rotating disk electrode measurements on low and high loading catalyst layers: diffusion limitations and application to Pt catalysts supported on porous micrometric carbon xerogel particles designed for proton exchange membrane fuel cells. J. Electroanalytical Chem. (Easton), 933, 2023, 117279, 10.1016/j.jelechem.2023.117279.
Din, M.I., Khalid, R., Photocatalysis of pharmaceuticals and organic dyes in the presence of silver-doped TiO2 photocatalyst–A critical review. Int. J. Environ. Anal. Chem. 105:2 (2025), 276–300, 10.1080/03067319.2023.2258795.
Ding, H., Zhu, Y., Wu, Y., Zhang, J., Deng, H., Zheng, H., Liu, Z., Zhao, C., In situ regeneration of phenol-saturated activated carbon Fiber by an electro-peroxymonosulfate process. Environ. Sci. Technol. 54:17 (2020), 10944–10953, 10.1021/acs.est.0c03766.
Ersan, G., Cerrón-Calle, G.A., Ersan, M.S., Garcia-Segura, S., Opportunities for in situ electro-regeneration of organic contaminant-laden carbonaceous adsorbents. Water (Basel) Res, 232, 2023, 10.1016/j.watres.2023.119718.
Ersan, G., Ersan, M.S., Perreault, F., Garcia-Segura, S., Enabling in situ electro-regeneration systems for PFOA-laden spent activated carbon adsorbents reuse. J. Environ. Chem. Eng., 11(6), 2023, 10.1016/j.jece.2023.111369.
Ersan, G., Gaber, M.S., Perreault, F., Garcia-Segura, S., Comparative study on electro-regeneration of antibiotic-laden activated carbons in reverse osmosis concentrate. Water (Basel) Res., 255, 2024, 10.1016/j.watres.2024.121528.
Farcy, A., Mahy, J.G., Alié, C., Caucheteux, J., Poelman, D., Yang, Z., Eloy, P., Body, N., Hermans, S., Heinrichs, B., Lambert, S.D., Kinetic study of p-nitrophenol degradation with zinc oxide nanoparticles prepared by sol–gel methods. J. Photochem. Photobiol. a Chem., 456, 2024, 10.1016/j.jphotochem.2024.115804.
Ferrández-Gómez, B., Martínez-Sánchez, B., Cazorla-Amorós, D., Morallón, E., Effect of concentration and flow rate of electrolyte on electrochemical regeneration of activated carbon at pilot-plant scale. J. Electroanalytical Chem. (Easton), 946, 2023, 10.1016/j.jelechem.2023.117727.
Franz, S., Arab, H., Chiarello, G.L., Bestetti, M., Selli, E., Single-step preparation of large area TiO2 photoelectrodes for water splitting. Adv. Energy Mater., 10(23), 2020, 10.1002/aenm.202000652.
Gazigil, L., Er, E., Yonar, T., Determination of the optimum conditions for electrochemical regeneration of exhausted activated carbon. Diam. Relat. Mater., 133, 2023, 10.1016/j.diamond.2023.109741.
Guitaya, L., Drogui, P., Blais, J.F., In situ reactive oxygen species production for tertiary wastewater treatment. Environ. Sci. Pollution Res. 22:9 (2015), 7025–7036, 10.1007/s11356-014-3907-3.
Gutkoski, J.P., Schneider, E.E., Michels, C., How effective is biological activated carbon in removing micropollutants? A comprehensive review. J. Environ. Manage, 349, 2024, 119434.
Hu, Z., Cai, J., Song, G., Tian, Y., Zhou, M., Anodic oxidation of organic pollutants: anode fabrication, process hybrid and environmental applications. Curr. Opin. Electrochem., 26, 2021, 10.1016/j.coelec.2020.100659.
Hu, Z., Wang, J., Tie, M., Zhu, J., Sharaf, F., Enhanced adsorption of tylosin by ordered multistage porous carbon and efficient in-situ regeneration of saturated adsorbents by activated persulfate oxidation: performance, mechanism and multiple cycles. Environ. Pollution, 361, 2024, 10.1016/j.envpol.2024.124861.
Huang, X., An, D., Song, J., Gao, W., Shen, Y., Persulfate/electrochemical/FeCl2 system for the degradation of phenol adsorbed on granular activated carbon and adsorbent regeneration. J. Clean. Prod. 165 (2017), 637–644, 10.1016/j.jclepro.2017.07.171.
Ip, A.W.M., Barford, J.P., McKay, G., A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. Chem. Eng. J. 157:2–3 (2010), 434–442, 10.1016/j.cej.2009.12.003.
Issaka, E., AMU-Darko, J.N.O., Yakubu, S., Fapohunda, F.O., Ali, N., Bilal, M., Advanced catalytic ozonation for degradation of pharmaceutical pollutants―a review. Chemosphere, 289, 2022, 10.1016/j.chemosphere.2021.133208.
Job, N., Pirard, R., Marien, J., Pirard, J.P., Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon. N. Y. 42:3 (2004), 619–628, 10.1016/j.carbon.2003.12.072.
Job, N., Théry, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J.N., Béguin, F., Pirard, J.P., Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon. N. Y. 43:12 (2005), 2481–2494, 10.1016/j.carbon.2005.04.031.
Karaca, S., Gürses, A., Açikyildiz, M., Ejder (Korucu), M., Adsorption of cationic dye from aqueous solutions by activated carbon. Microporous Mesoporous Mater (Basel) 115:3 (2008), 376–382, 10.1016/j.micromeso.2008.02.008.
Karaman, B., Tonnoir, H., Huo, D., Carré, B., Léonard, A.F., Gutiérrez, J.C., Piedboeuf, M.L., Celzard, A., Fierro, V., Davoisne, C., Janot, R., Job, N., CVD-coated carbon xerogels for negative electrodes of Na-ion batteries. Carbon. N. Y., 225, 2024, 10.1016/j.carbon.2024.119077.
Kiendrebeogo, M., Karimi Estahbanati, M.R., Ouarda, Y., Drogui, P., Tyagi, R.D., Electrochemical degradation of nanoplastics in water: analysis of the role of reactive oxygen species. Sci. Total. Environ., 808, 2022, 151897, 10.1016/j.scitotenv.2021.151897.
Lecloux, A., Exploitation des isothermes d'adsorption et de désorption d'azote pour l’étude de la texture des solides poreux. 1971, Mémoires Société Royale des Sciences de Liège, 169–209.
Liu, Z., Ren, B., Ding, H., He, H., Deng, H., Zhao, C., Wang, P., Dionysiou, D.D., Simultaneous regeneration of cathodic activated carbon fiber and mineralization of desorbed contaminations by electro-peroxydisulfate process: advantages and limitations. Water (Basel) Res, 171, 2020, 10.1016/j.watres.2019.115456.
Mahy, J.G., Kiendrebeogo, M., Farcy, A., Drogui, P., Enhanced decomposition of H2O2 using metallic silver nanoparticles under UV/visible light for the removal of p-nitrophenol from water. Catalysts., 13(5), 2023, 842, 10.3390/catal13050842.
Mahy, J.G., Lambert, S.D., Léonard, G.L.M., Zubiaur, A., Olu, P.Y., Mahmoud, A., Boschini, F., Heinrichs, B., Towards a large scale aqueous sol-gel synthesis of doped TiO2: study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. J. Photochem. Photobiol. a Chem. 329 (2016), 189–202, 10.1016/j.jphotochem.2016.06.029.
Mahy, J.G., Tasseroul, L., Tromme, O., Lavigne, B., Lambert, S.D., Hydrodechlorination and complete degradation of chlorinated compounds with the coupled action of Pd/SiO2and Fe/SiO2catalysts: towards industrial catalyst synthesis conditions. J. Environ. Chem. Eng., 7(2), 2019, 103014, 10.1016/j.jece.2019.103014.
Mahy, J.G., Wolfs, C., Mertes, A., Vreuls, C., Drot, S., Smeets, S., Dircks, S., Boergers, A., Tuerk, J., Lambert, S.D., Advanced photocatalytic oxidation processes for micropollutant elimination from municipal and industrial water. J. Environ. Manage, 250, 2019, 10.1016/j.jenvman.2019.109561.
Marques, S.C.R., Marcuzzo, J.M., Baldan, M.R., Mestre, A.S., Carvalho, A.P., Pharmaceuticals removal by activated carbons: role of morphology on cyclic thermal regeneration. Chem. Eng. J. 321 (2017), 233–244, 10.1016/j.cej.2017.03.101.
Mestre, A.S., Pires, J., Nogueira, J.M.F., Carvalho, A.P., Activated carbons for the adsorption of ibuprofen. Carbon. N. Y. 45:10 (2007), 1979–1988, 10.1016/j.carbon.2007.06.005.
Oturan, M.A., Aaron, J.J., Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 44:23 (2014), 2577–2641, 10.1080/10643389.2013.829765.
Páez, C.A., Contreras, M.S., Léonard, A., Blacher, S., Olivera-Fuentes, C.G., Pirard, J.P., Job, N., Effect of CO 2 activation of carbon xerogels on the adsorption of methylene blue. Adsorption 18:3–4 (2012), 199–211, 10.1007/s10450-012-9394-2.
Paola A Di, Augugliaro V., Palmisano L., Pantaleo G., Savinov E. (2003) Heterogeneous photocatalytic degradation of nitrophenols. 155:207–214.
Pignatello, J.J., Oliveros, E., MacKay, A., Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36:1 (2006), 1–84, 10.1080/10643380500326564.
Pirard, R., Heinrichs, B., Van Cantfort, O., Pirard, J.P., Mercury porosimetry applied to low density xerogels; relation between structure and mechanical properties. J. Solgel. Sci. Technol. 13:1 (1998), 335–339, 10.1023/A:1008676211157.
Rekik, H., Pichon, L., Teymoorian, T., Arab, H., Sauvé, S., El Khakani, M.A., Drogui, P., Efficient electro-oxidation-based degradation of per- and polyfluoroalkyl (PFAS) persistent pollutants by using plasma torch synthesized pure-Magnéli phase-Ti4O7 anodes. J. Environ. Manage, 370, 2024, 10.1016/j.jenvman.2024.122929.
Samuel, M.S., Jose, S., Selvarajan, E., Mathimani, T., Pugazhendhi, A., Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. J. Photochem. Photobiol. B, 202, 2020, 10.1016/j.jphotobiol.2019.111642.
Sanavi Fard, M., Ehsani, A., Soleimani, F., Treatment of synthetic textile wastewater containing Acid Red 182 by electro-peroxone process using RSM. J. Environ. Manage, 344, 2023, 10.1016/j.jenvman.2023.118379.
Sanavi Fard, M., Ehsani, A., Soleimani, F., Optimization of toluenediamine degradation in synthetic wastewater by a UV/H2O2 process using full factorial design. Water (Basel) Resour. Ind., 30, 2023, 10.1016/j.wri.2023.100218.
Santos, D.H.S., Santos, J.P.T.S., Duarte, J.L.S., Oliveira, L.M.T.M., Tonholo, J., Meili, L., Zanta, C.L.P.S., Regeneration of activated carbon adsorbent by anodic and cathodic electrochemical process. Process Saf Environ. Protect. 159 (2022), 1150–1163, 10.1016/j.psep.2022.01.083.
Scholz, N., Setting criteria on endocrine disruptors: follow-up to the General Court judgment. Brief Eur. Parliament, 2016, 1–10 April.
Trench, A.B., Moura, J.P.C., VS, Antonin, Gentil, T.C., Lanza, M.R.V., Santos, M.C., Using a novel gas diffusion electrode based on Vulcan XC-72 carbon modified with Nb2O5 nanorods for enhancing H2O2 electrogeneration. J Electroanalytical Chem. (Easton), 946, 2023, 10.1016/j.jelechem.2023.117732.
Trevelin, L.C., Valim, R.B., Lourenço, J.C., De Siervo, A., Rocha, R.S., Lanza, M.R.V., Using ZrNb and ZrMo oxide nanoparticles as catalytic activity boosters supported on Printex L6 carbon for H2O2 production. Adv. Powder Technol. (Singap. World Sci.), 34(9), 2023, 10.1016/j.apt.2023.104108.
Turolla, A., Fumagalli, M., Bestetti, M., Antonelli, M., Electrophotocatalytic decolorization of an azo dye on TiO 2 self-organized nanotubes in a laboratory scale reactor. Desalination. 285 (2012), 377–382, 10.1016/j.desal.2011.10.029.
Undeman, E., Rasmusson, K., Kokorite, I., Leppänen, M.T., Larsen, M.M., Pazdro, K., Siedlewicz, G., Micropollutants in urban wastewater: large-scale emission estimates and analysis of measured concentrations in the Baltic Sea catchment. Mar. Pollut. Bull., 178, 2022, 10.1016/j.marpolbul.2022.113559.
UNESCO. PHI-IX: plan stratégique du Programme hydrologique intergouvernemental de l'UNESCO: la science pour un monde où la sécurité de l'eau est assurée dans un environnement en mutation. Neuvième Phase, 2022, 2022–2029.
United Nations Educational S and CO. Rapport mondial des Nations Unies sur la mise en valeur des ressources en eau 2021. 2021, United Nations.
Wolfs, C., Lambert, S.D., Léonard, A.F., Mahy, J.G., Custom-shaped carbon Xerogel materials by 3D printing. Processes, 10(10), 2022, 1979, 10.3390/pr10101979.
Xing, X., Qu, H., Chen, P., Chi, B., Xie, H., Studies on competitive adsorption of dyes onto carbon (XC-72) and regeneration of adsorbent. Water (Basel) Sci. Technol. (Singap. World Sci.) 74:10 (2016), 2505–2514, 10.2166/wst.2016.413.
Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J. Mol. Catal. 38 (1986), 5–25.
Yu, J.X., Li, B.H., Sun, X.M., Yuan, J., an, ChiR, Polymer modified biomass of baker's yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta. J. Hazard. Mater. 168:2–3 (2009), 1147–1154, 10.1016/j.jhazmat.2009.02.144.
Zhang, M., Yan, J., Wang, D., Dong, X., Ma, H., Wei, H., Wang, G., Anodic water oxidation to H2O2 on Fe-doped ZnO for electro-Fenton wastewater purification. Electrochim. Acta, 464, 2023, 142940, 10.1016/j.electacta.2023.142940.
Zhang, M., Yan, J., Wang, D., Dong, X., Ma, H., Wei, H., Wang, G., Anodic water oxidation to H2O2 on Fe-doped ZnO for electro-Fenton wastewater purification. Electrochim. Acta, 464, 2023, 10.1016/j.electacta.2023.142940.