Climate change; Crop yield; GHG; Mitigation; SOC; SPACSYS; Animal Science and Zoology; Agronomy and Crop Science
Abstract :
[en] CONTEXT: Climate change is projected to threaten food security and stimulate greenhouse gas emissions. Hence, adaptation measures without sacrificing food production are required. OBJECTIVE: To assess possible consequences of rice–wheat system under climate change and to propose possible practices for mitigation. METHODS: The Soil-Plant-Atmosphere Continuum SYStem (SPACSYS) model was tested using datasets from long-term experiment (1991–2019) assessing the impact of different fertilisation on crop production, crop nitrogen (N) content, soil organic carbon (SOC) stock, methane (CH4) and nitrous oxide (N2O) emissions in a Cambisol under rice–wheat system. The validated SPACSYS was then used to investigate the possible mitigation strategies from 2024 to 2100 under climate change scenarios (SSP1–2.6 and SSP5–8.5) and the baseline scenario and mitigation management scenarios, i.e., (i) reduced N application rate by 20 % (RNA), (ii) the introduction of mid-season drainage (MSD) and (iii) integrated management combining RNA with MSD (IM). RESULTS AND CONCLUSIONS: Results showed that SPACSYS performed effectively in simulating yield and N content in grain and straw, SOC stock and CH4 and N2O emissions. Scenarios analysis elucidated that RNA would not decrease grain yields for either rice or wheat under the two climate change scenarios. Compared to the baseline scenario, low level of climate change scenario considering the CO2 fertilisation effects (SSP1–2.6_CO2) may benefit wheat yield (28 %) and had no effects on rice yield. In contrast, under the SSP5–8.5 scenario, whether CO2 fertilisation effects are considered or not, both rice and wheat yield could face great loss (i.e., 11.8–29.9 % for rice, 8.3–19.4 % for wheat). The winter wheat would not be suitable for planting in the distant future (2070–2100) due to the incomplete vernalisation caused by warming. The switching from winter wheat to spring wheat from 2070 onward could avoid the yield loss by 8.3–19.4 %. Climate change could decrease SOC sequestration rate. Under future climate change scenarios, IM could significantly decrease CH4 emissions by 56 % and N2O emissions by 24 %, as such reducing the net global warming potential by 69 % compared to no adaptation. Our simulations suggest that under climate change, crop switching in rice–wheat system combining integrated mitigation practices is possible to mitigate global warming and maintain crop production. SIGNIFICANCE: Our results underscore the significance of integrated adaptation of agricultural systems to climate change.
Disciplines :
Agriculture & agronomy
Author, co-author :
Wang, Shuhui ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Sun, Nan; State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Mu, Zhijian; College of Resources and Environment, Southwest University, Chongqing, China
Wang, Fa; College of Resources and Environment, Southwest University, Chongqing, China
Shi, Xiaojun; College of Resources and Environment, Southwest University, Chongqing, China
Liu, Chuang; Key Laboratory of Nutrient Cycling Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
Zhang, Shuxiang; State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Longdoz, Bernard ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges (BIODYNE)
Meersmans, Jeroen ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Colinet, Gilles ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Xu, Minggang; State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Taiyuan, China
Wu, Lianhai; Net zero and resilient farming, Rothamsted Research, Okehampton, United Kingdom ; School of Agriculture, Food and the Environment, Royal Agricultural University, Gloucestershire, United Kingdom
NSCF - National Natural Science Foundation of China CSC - China Scholarship Council CAAS - Chinese Academy of Agricultural Sciences
Funding text :
This study was supported by the National Key Research and Development Program of China ( 2021YFD1901205 ), the National Natural Science Foundation of China ( 42177341 ). S. Wang was supported by the China Scholarship Council (No. 202103250053 ). We acknowledge the Chinese Academy of Agricultural Sciences\u2014Gembloux Agro-Bio Tech joint PhD program and all the colleagues from the long-term fertilisation experimental site for their unremitting assistance.
Abalos, D., Cardenas, L.M., Wu, L., Climate change and N2O emissions from south West England grasslands: a modelling approach. Atmos. Environ. 132 (2016), 249–257, 10.1016/j.atmosenv.2016.03.007.
Bai, H., Xiao, D., Spatiotemporal changes of rice phenology in China during 1981–2010. Theor. Appl. Climatol. 140 (2020), 1483–1494, 10.1007/s00704-020-03182-8.
Baishya, A., Mishra, A., Sengupta, S., Modelling and assessment of climate change impact on Rainfed Rice cultivation in a sub-humid subtropical region. Agric. Res. 13 (2024), 85–95, 10.1007/s40003-023-00671-w.
Basche, A.D., Archontoulis, S.V., Kaspar, T.C., Jaynes, D.B., Parkin, T.B., Miguez, F.E., Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the midwestern United States. Agr Ecosyst Environ 218 (2016), 95–106, 10.1016/j.agee.2015.11.011.
Bingham, I.J., Wu, L., Simulation of wheat growth using the 3D root architecture model SPACSYS: validation and sensitivity analysis. Eur. J. Agron. 34 (2011), 181–189, 10.1016/j.eja.2011.01.003.
Bossio, D.A., Cook-Patton, S.C., Ellis, P.W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R.J., von Unger, M., Emmer, I.M., Griscom, B.W., The role of soil carbon in natural climate solutions. Nat. Sustain. 3 (2020), 391–398, 10.1038/s41893-020-0491-z.
Brignall, A.P., Rounsevel, M.D.A., Land evaluation modelling to assess the effects of climate change on winter wheat potential in England and Wales. J. Agr. Sci. 124 (1995), 159–172, 10.1017/s0021859600072841.
Brooking, I.R., Temperature response of vernalization in wheat: a developmental analysis. Ann. Bot. 78 (1996), 507–512, 10.1006/anbo.1996.0148.
Carlson, K.M., Gerber, J.S., Mueller, N.D., Herrero, M., MacDonald, G.K., Brauman, K.A., Havlik, P., O'Connell, C.S., Johnson, J.A., Saatchi, S., West, P.C., Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7 (2017), 63–68, 10.1038/NCLIMATE3158.
Challinor, A.J., A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4 (2014), 287–291, 10.1038/NCLIMATE2153.
Chapagain, R., Remenyi, T.A., Harris, R.M.B., Mohammed, C.L., Huth, N., Wallach, D., Rezaei, E.E., Ojeda, J.J., Decomposing crop model uncertainty: a systematic review. Field Crop Res, 279, 2022, 10.1016/j.fcr.2022.108448.
Chouard, P., Vernalization and its relations to dormancy. Annu. Rev. Plant Physiol. 11 (1960), 191–238, 10.1146/annurev.pp.11.060160.001203.
Deng, W., Casao, M.C., Wang, P., Sato, K., Hayes, P.M., Finnegan, E.J., Trevaskis, B., Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun., 6, 2015, 10.1038/ncomms6882.
Ding, Y., Wang, W., Zhuang, Q., Luo, Y., Adaptation of paddy rice in China to climate change: the effects of shifting sowing date on yield and irrigation water requirement. Agr. Water Manage., 228, 2020, 10.1016/j.agwat.2019.105890.
FAO, Food and Agriculture Organization of the United Nations, Faostat: FAO statistical databases. http://faostat.fao.org/default.aspx, 2018.
FAO, Food and Agriculture Organization of the United Nations, FAOSTAT Emissions shares. http://www.fao.org/faostat/en/#data/EM, 2020.
Fatima, Z., Ahmed, M., Hussain, M., Abbas, G., Ul-Allah, S., Ahmad, S., Ahmed, N., Ali, M.A., Sarwar, G., Haque, E.U., Iqbal, P., Hussain, S., The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci. Rep., 10, 2020, 10.1038/s41598-020-74740-3.
Gao, B., Huang, T., Ju, X., Gu, B., Huang, W., Xu, L., Rees, R.M., Powlson, D.S., Smith, P., Cui, S., Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Glob. Chang. Biol. 24 (2018), 5590–5606, 10.1111/gcb.14425.
Gaydon, D.S., Balwinder, S., Wang, E., Poulton, P.L., Ahmad, B., Ahmed, F., Akhter, S., Ali, I., Amarasingha, R., Chaki, A.K., Chen, C., Choudhury, B.U., Darai, R., Das, A., Hochman, Z., Horan, H., Hosang, E.Y., Kumar, P.V., Khan, A.S.M.M.R., Laing, A.M., Liu, L., Malaviachichi, M.A.P.W.K., Mohapatra, K.P., Muttaleb, M.A., Power, B., Radanielson, A.M., Rai, G.S., Rashid, M.H., Rathanayake, W.M.U.K., Sarker, M.M.R., Sena, D.R., Shamim, M., Subash, N., Suriadi, A., Suriyagoda, L.D.B., Wang, G., Wang, J., Yadav, R.K., Roth, C.H., Evaluation of the APSIM model in cropping systems of Asia. Field Crop Res 204 (2017), 52–75, 10.1016/j.fcr.2016.12.015.
Guo, Y., Zhang, G., Abdalla, M., Kuhnert, M., Bao, H., Xu, H., Ma, J., Begum, K., Smith, P., Modelling methane emissions and grain yields for a double-rice system in southern China with DAYCENT and DNDC models. Geoderma, 431, 2023, 116364, 10.1016/j.geoderma.2023.116364.
Guo, E., Li, T., Zhang, Z., Guo, S., Liu, Z., Zhao, J., Zhao, C., Fan, S., Shi, Y., Guan, K., Yang, C., Yang, X., Potential benefits of cropping pattern change in the climate-sensitive regions of rice production in China. Sci. Total Environ., 934, 2024, 10.1016/j.scitotenv.2024.173281.
Han, X., Hu, C., Chen, Y., Qiao, Y., Liu, D., Fan, J., Li, S., Zhang, Z., Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment. Eur. J. Agron., 113, 2020, 10.1016/j.eja.2019.125965.
Han, X., Roy, A., Moghaddasi, P., Moftakhari, H., Magliocca, N., Mekonnen, M., Moradkhani, H., Assessment of climate change impact on rainfed corn yield with adaptation measures in deep south, us. Agr Ecosyst Environ, 376, 2024, 10.1016/j.agee.2024.109230.
Hassall, K.L., Coleman, K., Dixit, P.N., Granger, S.J., Zhang, Y., Sharp, R.T., Wu, L., Whitmore, A.P., Richter, G.M., Collins, A.L., Milne, A.E., Exploring the effects of land management change on productivity, carbon and nutrient balance: application of an ensemble modelling approach to the upper river taw observatory. UK. Sci. Total Environ., 824, 2022, 10.1016/j.scitotenv.2022.153824.
Hu, H.-W., Chen, D., He, J.-Z., Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39 (2015), 729–749, 10.1093/femsre/fuv021.
IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.a. Meyer (Eds.)]. 2014, IPCC, Geneva, Switzerland, 151.
IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Eds.)]. 2021, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1017.
Jørgen, E.O., Marco, B., Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 16 (2002), 239–262, 10.1016/S1161-0301(02)00004-7.
Ku, H.-H., Ryu, J.-H., Bae, H.-S., Jeong, C., Lee, S.-E., Modeling a long-term effect of rice straw incorporation on SOC content and grain yield in rice field. Arch. Agron. Soil Sci. 65 (2019), 1941–1954, 10.1080/03650340.2019.1583330.
Le Mer, J., Roger, P., Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37 (2001), 25–50, 10.1016/S1164-5563(01)01067-6.
Li, C., Mosier, A., Wassmann, R., Cai, Z., Zheng, X., Huang, Y., Tsuruta, H., Boonjawat, J., Lantin, R., Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochem. Cy., 18, 2004, 10.1029/2003GB002045.
Liang, S., Li, Y., Zhang, X., Sun, Z., Sun, N., Duan, Y., Xu, M., Wu, L., Response of crop yield and nitrogen use efficiency for wheat-maize cropping system to future climate change in northern China. Agric. For. Meteorol. 262 (2018), 310–321, 10.1016/j.agrformet.2018.07.019.
Liang, S., Wu, W., Sun, J., Li, Z., Sun, X., Chen, H., Chen, S., Fan, L., You, L., Yang, P., Climate-mediated dynamics of the northern limit of paddy rice in China. Environ. Res. Lett., 16, 2021, 10.1088/1748-9326/abfac0.
Liang, H., Xu, J., Hou, H., Qi, Z., Yang, S., Li, Y., Hu, K., Modeling CH4 and N2O emissions for continuous and noncontinuous flooding rice systems. Agr. Syst., 203, 2022, 10.1016/j.agsy.2022.103528.
Liao, P., Sun, Y., Zhu, X., Wang, H., Wang, Y., Chen, J., Zhang, J., Zeng, Y., Zeng, Y., Huang, S., Identifying agronomic practices with higher yield and lower global warming potential in rice paddies: a global meta-analysis. Agr Ecosyst Environ, 322, 2021, 10.1016/j.agee.2021.107663.
Liu, R., Hayden, L., Suter, H., Hu, H.W., Lam, S.K., He, J.Z., Mele, P., Chen, D.L., The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil. Biol. Fertil. Soils 53 (2017), 141–152, 10.1007/s00374-016-1167-8.
Liu, S., Ji, C., Wang, C., Chen, J., Jin, Y., Zou, Z., Li, S., Niu, S., Zou, J., 2018a. Climatic role of terrestrial ecosystem under elevated CO2: a bottom-up greenhouse gases budget. Ecol. Lett. 21, 1108–1118. doi: https://doi.org/10.1111/ele.13078.
Liu, Y., Li, Y., Harris, P., Cardenas, L.M., Dunn, R.M., Sint, H., Murray, P.J., Lee, M.R.F., Wu, L., Modelling field scale spatial variation in water run-off, soil moisture, N2O emissions and herbage biomass of a grazed pasture using the SPACSYS model. Geoderma 315 (2018), 49–58, 10.1016/j.geoderma.2017.11.029.
Liu, X., Zhou, T., Liu, Y., Zhang, X., Li, L., Pan, G., Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem: a meta-analysis. Agr. Water Manage. 213 (2019), 1028–1035, 10.1016/j.agwat.2018.12.025.
Liu, C., Wang, L., Cocq, K.L., Chang, C., Li, Z., Chen, F., Liu, Y., Wu, L., Climate change and environmental impacts on and adaptation strategies for production in wheat-rice rotations in southern China. Agric. For. Meteorol., 292-293, 2020, 108136, 10.1016/j.agrformet.2020.108136.
Liu, Y., Tang, L., Qiu, X., Liu, B., Chang, X., Liu, L., Zhang, X., Cao, W., Zhu, Y., Impacts of 1.5 and 2.0°C global warming on rice production across China. Agric. For. Meteorol., 284, 2020, 107900, 10.1016/j.agrformet.2020.107900.
Liu, Y., Ge, T., van Groenigen, K.J., Yang, Y., Wang, P., Cheng, K., Zhu, Z., Wang, J., Li, Y., Guggenberger, G., Sardans, J., Penuelas, J., Wu, J., Kuzyakov, Y., Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Commun. Earth Environ., 2, 2021, 10.1038/s43247-021-00229-0.
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rötter, R.P., Boote, K.J., Ruane, A.C., Thorburn, P.J., Cammarano, D., Hatfield, J.L., Rosenzweig, C., Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R.F., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Müller, C., Kumar, S.N., Nendel, C., O'Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stöckle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., White, J.W., Wolf, J., Multimodel ensembles of wheat growth: many models are better than one. Glob. Chang. Biol. 21 (2015), 911–925, 10.1111/gcb.12768.
Meijide, B.A., Gruening, C., Goded, I., Seufert, G., Cescatti, A., Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agr Ecosyst Environ 238 (2017), 168–178, 10.1016/j.agee.2016.08.017.
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T. ASABE 50 (2007), 885–900, 10.13031/2013.23153.
O'Neill, B.C., Tebaldi, C., van Vuuren, D.P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G.A., Moss, R., Riahi, K., Sanderson, B.M., The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9 (2016), 3461–3482, 10.5194/gmd-9-3461-2016.
Porter, J.R., Gawith, M., Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10 (1999), 23–36, 10.1016/S1161-0301(98)00047-1.
Raftery, A.E., Zimmer, A., Frierson, D.M.W., Startz, R., Liu, P., Less than 2 °C warming by 2100 unlikely. Nat. Clim. Change 7 (2017), 637–641, 10.1038/nclimate3352.
Rising, J., Devineni, N., Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nat. Commun., 11, 2020, 10.1038/s41467-020-18725-w.
Sellar, A.A., Jones, C.G., Mulcahy, J.P., Tang, Y., Yool, A., Wiltshire, A., O'Connor, F.M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de Mora, L., Kuhlbrodt, T., Rumbold, S.T., Kelley, D.I., Ellis, R., Johnson, C.E., Walton, J., Abraham, N.L., Andrews, M.B., Andrews, T., Archibald, A.T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G.A., Gedney, N., Griffiths, P.T., Harper, A.B., Hendry, M.A., Hewitt, A.J., Johnson, B., Jones, A., Jones, C.D., Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R.J., Predoi, V., Robertson, E., Siahaan, A., Smith, R.S., Swaminathan, R., Woodhouse, M.T., Zeng, G., Zerroukat, M., UKESM1: description and evaluation of the U.K. earth system model. J. Adv. Model. Earth Sy. 11 (2019), 4513–4558, 10.1029/2019MS001739.
Shivanna, K.R., Climate change and its impact on biodiversity and human welfare. P. Indian Natl. Sci. Ac. 88 (2022), 160–171, 10.1007/s43538-022-00073-6.
Smith, W.N., Grant, B.B., Desjardins, R.L., Rochette, P., Drury, C.F., Li, C., Evaluation of two process-based models to estimate soil N2O emissions in eastern Canada. Can. J. Soil Sci. 88 (2008), 251–260, 10.4141/CJSS06030.
Smith, W.N., Grant, B.B., Desjardins, R.L., Kroebel, R., Li, C., Qian, B., Worth, D.E., McConkey, B.G., Drury, C.F., Assessing the effects of climate change on crop production and GHG emissions in Canada. Agr Ecosyst Environ 179 (2013), 139–150, 10.1016/j.agee.2013.08.015.
Tesfaye, K., Takele, R., Sapkota, B., Khatri-Chhetri, A., Solomon, D., Stirling, C., Albanito, F., Model comparison and quantification of nitrous oxide emission and mitigation potential from maize and wheat fields at a global scale. Sci. Total Environ., 782, 2021, 146696, 10.1016/j.scitotenv.2021.146696.
Tian, Z., Niu, Y., Fan, D., Sun, L., Ficsher, G., Zhong, H., Deng, J., Tubiello, F.N., Maintaining rice production while mitigating methane and nitrous oxide emissions from paddy fields in China: evaluating tradeoffs by using coupled agricultural systems models. Agr. Syst. 159 (2018), 175–186, 10.1016/j.agsy.2017.04.006.
Timsina, J., Humphreys, E., Performance of CERES-Rice and CERES-wheat models in rice–Wheat systems: a review. Agr. Syst. 90 (2006), 5–31, 10.1016/j.agsy.2005.11.007.
van Groenigen, K.J., van Kessel, C., Hungate, B.A., Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Chang. 3 (2012), 288–291, 10.1038/nclimate1712.
Wang, B., Liu, D.L., Asseng, S., Macadam, I., Yu, Q., Impact of climate change on wheat flowering time in eastern Australia. Agric. For. Meteorol. 209–210 (2015), 11–21, 10.1016/j.agrformet.2015.04.028.
Wang, L., Yuan, X., Liu, C., Li, Z., Chen, F., Li, S., Wu, L., Liu, Y., Soil C and N dynamics and hydrological processes in a maize-wheat rotation field subjected to different tillage and straw management practices. Agric. Ecosyst. Environ., 285, 2019, 106616, 10.1016/j.agee.2019.106616.
Wang, F., Mu, Z., Guo, T., Huang, A., Lin, X., Shi, X., Ni, J., Effect of long-term differentiated fertilisation regimes on greenhouse gas emissions from a subtropical rice-wheat cropping system. Plant Soil Environ. 66 (2020), 167–174, 10.17221/693/2019-PSE.
Wang, H., Zhang, Y., Zhang, Y., McDaniel, M.D., Sun, L., Su, W., Fan, X., Liu, S., Xiao, X., Water-saving irrigation is a ‘win-win’ management strategy in rice paddies – with both reduced greenhouse gas emissions and enhanced water use efficiency. Agr. Water Manage., 228, 2020, 10.1016/j.agwat.2019.105889.
Wang, Y., Tao, F., Chen, Y., Yin, L., Interactive impacts of climate change and agricultural management on soil organic carbon sequestration potential of cropland in China over the coming decades. Sci. Total Environ., 817, 2022, 10.1016/j.scitotenv.2022.153018.
Wang, S., Sun, N., Zhang, X., Hu, C., Wang, Y., Xiong, W., Zhang, S., Colinet, G., Xu, M., Wu, L., Assessing the impacts of climate change on crop yields, soil organic carbon sequestration and N2O emissions in wheat–maize rotation systems. Soil Till. Res., 240, 2024, 10.1016/j.still.2024.106088.
Wang, X., Wang, L., Chen, Y., Hu, Y., Guan, R., Li, M., Wang, L., Zhang, Y., Mitigating the negative effect of warming on crop yield: assessing the carbon fertilization and organic amendment application effect. Field Crop Res, 311, 2024, 10.1016/j.fcr.2024.109370.
Wang, Y., Wang, Z., Wu, L., Li, H., Li, J., Zhu, A., Jin, Y., Han, G., Effects of grazing and climate change on aboveground standing biomass and sheep live weight changes in the desert steppe in Inner Mongolia. China. Agr. Syst., 217, 2024, 10.1016/j.agsy.2024.103916.
Willmott, C.J., Some comments on the evaluation of model performance. B. Am. Meteorol. Soc. 63 (1982), 1309–1313, 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.
Wing, I.S., De Cian, E., Mistry, M.N., Global vulnerability of crop yields to climate change. J. Environ. Econ. Manag., 109, 2021, 10.1016/j.jeem.2021.102462.
Wu, L., Shepherd, A., Special features of the SPACSYS modeling package and procedures for parameterization and validation. Ahuja, L.R., Ma, L., (eds.) Advances in Agricultural Systems Modeling, 2011, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 117–154, 10.2134/advagricsystmodel2.c4.
Wu, L., McGechan, M.B., McRoberts, N., Baddeley, J.A., Watson, C.A., SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling—model description. Ecol. Model. 200 (2007), 343–359, 10.1016/j.ecolmodel.2006.08.010.
Wu, L., Rees, R.M., Tarsitano, D., Zhang, X., Jones, S.K., Whitmore, A.P., Simulation of nitrous oxide emissions at field scale using the SPACSYS model. Sci. Total Environ. 530–531 (2015), 76–86, 10.1016/j.scitotenv.2015.05.064.
Wu, L., Zhang, X., Griffith, B.A., Misselbrook, T.H., Sustainable grassland systems: a modelling perspective based on the north Wyke farm platform. Eur. J. Soil Sci. 67 (2016), 397–408, 10.1111/ejss.12304.
Wu, X., Liu, H., Li, X., Tian, Y., Mahecha, M.D., Responses of winter wheat yields to warming-mediated vernalization variations across temperate Europe. Front. Ecol. Evol., 5, 2017, 10.3389/fevo.2017.00126.
Wu, L., Misselbrook, T.H., Feng, L., Wu, L., Assessment of nitrogen uptake and biological nitrogen fixation responses of soybean to nitrogen fertiliser with SPACSYS. Sustainability, 12, 2020, 10.3390/su12155921.
Wu, L., Wu, L., Bingham, I.J., Misselbrook, T.H., Projected climate effects on soil workability and trafficability determine the feasibility of converting permanent grassland to arable land. Agr. Syst., 203, 2022, 10.1016/j.agsy.2022.103500.
Yang, J.M., Yang, J.Y., Liu, S., Hoogenboom, G., An evaluation of the statistical methods for testing the performance of crop models with observed data. Agr. Syst. 127 (2014), 81–89, 10.1016/j.agsy.2014.01.008.
Zhang, X., Sun, Z., Liu, J., Ouyang, Z., Wu, L., Simulating greenhouse gas emissions and stocks of carbon and nitrogen in soil from a long-term no-till system in the North China Plain. Soil Till. Res. 178 (2018), 32–40, 10.1016/j.still.2017.12.013.
Zhang, Z., Li, Y., Chen, X., Wang, Y., Niu, B., Liu, D.L., He, J., Pulatov, B., Hassan, I., Meng, Q., Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future. Agr. Syst., 205, 2023, 10.1016/j.agsy.2022.103581.
Zhao, Z., Cao, L., Deng, J., Sha, Z., Chu, C., Zhou, D., Wu, S., Lv, W., Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model. Agr. Syst., 178, 2020, 102743, 10.1016/j.agsy.2019.102743.
Zhong, Y., Wang, X., Yang, J., Zhao, X., Ye, X., Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields. Sci. Total Environ. 565 (2016), 420–426, 10.1016/j.scitotenv.2016.04.167.
Zhou, Z., Jin, J., Liu, J., Si, Y., Optimizing the sowing window for direct-seeded rice (Oryza sativa L.) considering high yield and methane emissions in Central China. Agr. Syst., 205, 2023, 10.1016/j.agsy.2022.103594.
Zhu, P., Burney, J., Chang, J., Jin, Z., Mueller, N.D., Xin, Q., Xu, J., Yu, L., Makowski, D., Ciais, P., Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Change 12 (2022), 1016–1023, 10.1038/s41558-022-01492-5.
Zou, J., Huang, Y., Jiang, J., Zheng, X., Sass, R.L., A 3–year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Global Biogeochem. Cy., 19, 2005, 10.1029/2004GB002401.