activated carbon; adsorption; carbon nanotubes; catalysis; graphene; heteroatoms; Carbon based materials; Carbon material; Degree of structural order; Element properties; Functionalizations; Heteroatoms; Hybridisation; Property; Scientific papers; Simple++; Materials Science (miscellaneous)
Abstract :
[en] While carbon in itself appears as simple an element as it could possibly get, the undeniable truth is that carbon materials represent a plethora of possibilities both from the perspective of their structure and their applications. While we may believe that carbon is “just another element”, one should never forget that its special ability to coordinate through different hybridizations with apparent ease grants the element properties that no other element may even match. Taking this one step further into the materials realm opens up numerous avenues in terms of materials dimensionality, surface and bulk functionalization, or degree of structural order just to mention a few examples. If these properties are translated into the properties and applications field, the results are just as impressive, with new applications and variants appearing with growingly larger frequency. This has resulted in over a million scientific papers published in the last decade in which the term “carbon” was used either in the title, abstract or keywords. When the search is narrowed down to the field “title” alone, the results drop to just over 318.000 scientific papers. These are figures that no other element in the periodic table can equal, which is a clear indicative that the story of carbon materials is still under constant evolution and development. This review will present an overview of the works published in the Frontiers in Carbon-based materials section during its 10 years of life that reflect the advancements achieved during the last decade in the field of carbon materials.
Disciplines :
Materials science & engineering
Author, co-author :
Flores-Lasluisa, Jhony Xavier ; Department of Chemical Engineering–Nanomaterials, Catalysis, Electrochemistry, University of Liège, Liège, Belgium
Navlani-García, Miriam; Departamento de Química Inorgánica e Instituto Universitario de Materiales, University of Alicante, Alicante, Spain
Berenguer-Murcia, Ángel; Departamento de Química Inorgánica e Instituto Universitario de Materiales, University of Alicante, Alicante, Spain
Morallón, Emilia; Departamento de Química-Física e Instituto Universitario de Materiales, University of Alicante, Alicante, Spain
Cazorla-Amorós, Diego; Departamento de Química Inorgánica e Instituto Universitario de Materiales, University of Alicante, Alicante, Spain
Language :
English
Title :
10 years of frontiers in carbon-based materials: carbon, the “newest and oldest” material. The story so far
Publication date :
2024
Journal title :
Frontiers in Materials
eISSN :
2296-8016
Publisher :
Frontiers
Volume :
11
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The authors would like to thank PID2022-137566OB-I00 and PID2022-137566OB-I00 projects funded by MCIN/AEI/10.13039/501100011033 and by \u201CERDF A way of making Europe\u201D, by the \u201CEuropean Union\u201D. The authors thank the MFA/2022/001 project for financing this work, which is part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana.
Al-zharani M. Alyami N. M. Qurtam A. A. Aljarba N. H. Alkahtani S. Mubarak M. et al. (2023). Use of multi-walled carbon nanotubes (MWCNTs) stabilized in Arabic gum colloidal solution to induce genotoxicity and apoptosis of human breast and lung cancer cell lines. Front. Mat. 10, 1229637. 10.3389/fmats.2023.1229637
Azam N. Najabat Ali M. Javaid Khan T. (2021). Carbon quantum dots for biomedical applications: review and analysis. Front. Mat. 8, 700403. 10.3389/fmats.2021.700403
Baladin A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nat. Mat. 10, 569–581. 10.1038/nmat3064
Barhoum A. Shalan A. E. El-Hout S. I. Ali G. A. M. Abdelbasir S. M. Abu-Serea E. S. et al. (2019). “A broad family of carbon nanomaterials: classification, properties, synthesis, and emerging applications,” in Handbook of nanofibers (Berlin, Germany: Springer International Publishing), 1–40. 10.1007/978-3-319-42789-8_59-1
Basit M. Abbas M. Ahmad N. Javed S. Shah N. A. (2022). Synthesis of ZnO/CNT nanocomposites for ultraviolet sensors. Front. Mat. 9, 835521. 10.3389/fmats.2022.835521
Beralus J.-M. Ruiz-Rosas R. Cazorla-Amorós D. Morallón E. (2014). Electroadsorption of arsenic from natural water in granular activated carbon. Front. Mat. 1, 28. 10.3389/fmats.2014.00028
Berenguer R. Morallón E. (2019). Oxidation of different microporous carbons by chemical and electrochemical methods. Front. Mat. 6, 130. 10.3389/fmats.2019.00130
Bianco A. Cheng H. Enoki T. Gogotsi Y. Hurt R. Koratkar N. et al. (2013). All in the graphene family – a recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1–6. 10.1016/j.carbon.2013.08.038
Boonyoung P. Kasukabe T. Hoshikawa Y. Berenguer-Murci Á. Cazorla-Amorós D. Boekfa B. et al. (2019). A simple “nano-templating” method using zeolite Y toward the formation of carbon schwarzites. Front. Mat. 6, 104. 10.3389/fmats.2019.00104
Brosler P. Girão A. V. Silva R. F. Tedim J. Oliveira F. J. (2023). In-house vs. commercial boron-doped diamond electrodes for electrochemical degradation of water pollutants: a critical review, Front. Mat. 10, 1020649. 10.3389/fmats.2023.1020649
Bumajdad A. Khan M. J. H. Lukaszewicz J. P. (2023). Nitrogen-enriched activated carbon derived from plant biomasses: a review on reaction mechanism and applications in wastewater treatment. Front. Mat. 10, 1218028. 10.3389/fmats.2023.1218028
Caballero-Briones F. Kaftelen-Odabaşı H. Gnanaseelan N. Ruiz-Perez F. Tolentino-Hernandez R. V. Kamaraj S. K. et al. (2023). International research in graphene-oxide based materials for net-zero energy, military and aeronautic applications catalysed by Tamaulipas, Mexico: a mini review. Front. Mat. 10, 1192724. 10.3389/fmats.2023.1192724
Calvo-Muñoz E. M. García-Mateos F. J. Rosas J. M. Rodríguez-Mirasol J. Cordero T. (2016). Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions. Front. Mat. 3, 23. 10.3389/fmats.2016.00023
Carmona R. J. Velasco L. F. Laurenti E. Maurino V. Ania C. O. (2016). Carbon materials as additives to WO3 for an enhanced conversion of simulated solar light. Front. Mat. 3, 9. 10.3389/fmats.2016.00009
Castro-Muñiz A. Hoshikawa Y. Komiyama H. Nakayama W. Itoh T. Kyotani T. (2016). Improving the direct electron transfer in monolithic bioelectrodes prepared by immobilization of FDH enzyme on carbon-coated anodic aluminum oxide films. Front. Mat. 3, 7. 10.3389/fmats.2016.00007
Cazorla-Amorós D. (2014). Grand challenges in carbon-based materials research. Front. Mat. 1, 6. 10.3389/fmats.2014.00006
Cesano F. Cravanzola S. Brunella V. Damin A. Scarano D. (2019). From polymer to magnetic porous carbon spheres: combined microscopy, spectroscopy, and porosity studies. Front. Mat. 6, 84. 10.3389/fmats.2019.00084
Cesano F. Uddin M. J. Lozano K. Zanetti M. Scarano D. (2020a). All-carbon Conductors for electronic and electrical wiring applications. Front. Mat. 7, 219. 10.3389/fmats.2020.00219
Cesano F. Uddin M. J. Mao Y. Huda M. N. (2020b). Editorial: carbon- and inorganic-based nanostructures for energy applications. Front. Mat. 7, 609576. 10.3389/fmats.2020.609576
Chao-Mujica F. J. Garcia-Hernández L. Camacho-López S. Camacho-López M. Camacho-López M. A. Reyes Contreras D. et al. (2021). Carbon quantum dots by submerged arc discharge in water: synthesis, characterization, and mechanism of formation. J. Appl. Phys. 129, 163301. 10.1063/5.0040322
Chen G. Song Y. (2016). Field emission from lateral multiwalled carbon nanotube yarn emitters. Front. Mat. 3, 48. 10.3389/fmats.2016.00048
Cui L. Ren X. Wang J. Sun M. (2020). Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging. Mat. Today Nano 12, 100091. 10.1016/j.mtnano.2020.100091
Dang H. Huang L.-K. Zhang Y. Wang C.-F. Chen S. (2016). Large-scale ultrasonic fabrication of white fluorescent carbon dots. Ind. Eng. Chem. Res. 55 (18), 5335–5341. 10.1021/acs.iecr.6b00894
Díaz-Delgado R. Doherty A. P. (2016). Carbons, ionic liquids, and quinones for electrochemical capacitors. Front. Mat. 3, 18. 10.3389/fmats.2016.00018
Dinu R. Lafont U. Damiano O. Mija A. (2023). Sustainable and recyclable thermosets with performances for high technology sectors. An environmental friendly alternative to toxic derivatives. Front. Mat. 10, 1242507. 10.3389/fmats.2023.1242507
Elumalai S. Su C.-Y. Yoshimura M. (2019). Scalable one-pot synthesis of nitrogen and boron Co-doped few layered graphene by submerged liquid plasma exfoliation. Front. Mat. 6, 216. 10.3389/fmats.2019.00216
Fan X. (2015). Graphene: a promising two-dimensional support for heterogeneous catalysts. Front. Mater 1, 39. 10.3389/fmats.2014.00039
Figueiredo J. L. Pereira M. Freitas M. Órfão J. J. M. (1999). Modification of the surface chemistry of activated carbons. Carbon 37 (9), 1379–1389. 10.1016/S0008-6223(98)00333-9
García-Mateos F. J. Ruiz-Rosas R. Rosas J. M. Rodríguez-Mirasol J. Cordero T. (2019). Controlling the composition, morphology, porosity, and surface chemistry of lignin-based electrospun carbon materials. Front. Mat. 6, 114. 10.3389/fmats.2019.00114
Geng J. Motta M. Engels V. Luo J. Johnson B. F. G. (2016). Temperature threshold and water role in CVD growth of single-walled carbon nanotubes. Front. Mat. 3, 4. 10.3389/fmats.2016.00004
Geng Y. Ren Q. Yang Z. He D. Wu Z. Cai J. et al. (2023). Preparation of SiO2 coated carbon fibers and its interfacial properties with cement paste matrix. Front. Mat. 10, 1128054. 10.3389/fmats.2023.1128054
Gouda M. H. Elnouby M. Aziz A. N. Youssef M. E. Santos D. M. F. Elessawy N. A. (2020). Green and low-cost membrane electrode assembly for proton exchange membrane fuel cells: effect of double-layer electrodes and gas diffusion layer. Front. Mat. 6, 337. 10.3389/fmats.2019.00337
Han L. Chen X. Zeng S. Liu J. Yang Z. Wang Z. et al. (2021). B, N dual doped coral-like carbon framework with superior pseudocapacitance and surface wettability. Front. Mat. 8, 705930. 10.3389/fmats.2021.705930
Ilnicka A. Lukaszewicz J. P. (2015). Discussion remarks on the role of wood and chitin constituents during carbonization. Front. Mat. 2, 20. 10.3389/fmats.2015.00020
Inagaki M. Kang F. Toyoda M. Konno H. (2014). Advanced materials science and engineering of carbon. Amsterdam, Netherlands: Elsevier Science. 10.1016/C2012-0-03601-0
Ishii T. Horiuchi A. Ozaki J. (2019). An ion-sensitive field effect transistor using metal-coordinated zeolite-templated carbons as a three-dimensional graphene nanoribbon network. Front. Mat. 6, 129. 10.3389/fmats.2019.00129
Jangir H. Bhardwaj A. Ramkumar J. Sarkar S. Das M. (2019). “Induced electron transfer” in silk cocoon derived N-doped reduced graphene oxide-Mo-Li-S electrode. Front. Mat. 6, 217. 10.3389/fmats.2019.00217
Kallumottakkal M. Hussein M. I. Iqbal M. Z. (2021). Recent progress of 2D nanomaterials for application on microwave absorption: a comprehensive study. Front. Mat. 8, 633079. 10.3389/fmats.2021.633079
Karamanova B. Shipochka M. Georgiev M. Stankulov T. Stoyanova A. Stoyanova R. (2021). Biomass-derived carbonaceous materials to achieve high-energy-density supercapacitors. Front. Mat. 8, 654841. 10.3389/fmats.2021.654841
Karami S. Papari S. Berruti F. (2022). Conversion of waste corn biomass to activated bio-char for applications in wastewater treatment. Front. Mat. 9, 839421. 10.3389/fmats.2022.839421
Kato Y. Sekiguchi A. Kobashi K. Sundaram R. Yamada T. Hata K. (2020). Mechanically robust free-standing single-walled carbon nanotube thin films with uniform mesh-structure by blade coating. Front. Mat. 7, 562455. 10.3389/fmats.2020.562455
Keyte J. Pancholi K. Njuguna J. (2019). Recent developments in graphene oxide/epoxy carbon fiber-reinforced composites. Front. Mat. 6, 224. 10.3389/fmats.2019.00224
Khan H. O. S. Zhu J. Jalil A. Sarwar R. T. Hameed F. Xu F. (2020). Optimal synthesis and evaluation of tri-amine modified ordered mesoporous carbon (TriFeOMC) and its application for the adsorption of arsenic and lead from aqueous solution. Front. Mat. 7, 112. 10.3389/fmats.2020.00112
Khan S. A. Habib S. Khan M. Y. A. Chauhdary S. T. Ali A. Kamel S. et al. (2023). Dichlorodifluoromethane-carbon dioxide: a dielectric mixture as a sustainable alternative to SF6 in high voltage applications. Front. Mat. 10, 1129739. 10.3389/fmats.2023.1129739
Kordas K. Pitkänen O. (2019). Piezoresistive carbon foams in sensing applications. Front. Mat. 6, 93. 10.3389/fmats.2019.00093
Kotal M. Kim J. Oh J. Oh I.-K. (2016). Recent progress in multifunctional graphene aerogels. Front. Mat. 3, 29. 10.3389/fmats.2016.00029
Kouloumpis A. Spyrou K. Dimos K. Georgakilas V. Rudolf P. Gournis D. (2015). A bottom-up approach for the synthesis of highly ordered fullerene-intercalated graphene hybrids. Front. Mat. 2, 10. 10.3389/fmats.2015.00010
Kumunda C. Adekunle A. S. Mamba B. B. Hlongwa N. W. Nkambule T. T. I. (2021). Electrochemical detection of environmental pollutants based on graphene derivatives: a review. Front. Mat. 7, 616787. 10.3389/fmats.2020.616787
Lenz M. Zabel J. Franzreb M. (2020). New approach for investigating diffusion kinetics within capacitive deionization electrodes using electrochemical impedance spectroscopy. Front. Mat. 7, 229. 10.3389/fmats.2020.00229
Li J. Zhou X. Lu K. Ma C. Li L. Wang H. et al. (2021). N-doped carbon boosted the formation of few-layered MoS2 for high- performance lithium and sodium storage. Front. Mat. 8, 739859. 10.3389/fmats.2021.739859
Liu T. (2023). Properties of graphene composite fiber seamless knitted fabric and its application in boxing training. Front. Mat. 10, 1098652. 10.3389/fmats.2023.1098652
Liu Y. Ren W. An M. Dong L. Gao L. Shai X. et al. (2022). A qualitative study of the disorder effect on the phonon transport in a two-dimensional graphene/h-BN heterostructure. Front. Mat. 9, 913764. 10.3389/fmats.2022.913764
Maboya W. K. Maubane-Nkadimeng M. S. Jijana A. N. Mmako H. K. (2022). Nitrogen inclusion in carbon nanotubes initiated by boron doping and chlorination: their use as electrocatalysts for oxygen reduction reaction. Front. Mat. 9, 886471. 10.3389/fmats.2022.886471
Macovez R. (2018). Physical properties of organic fullerene cocrystals. Front. Mat. 4, 46. 10.3389/fmats.2017.00046
Magesh V. Sundramoorthy A. K. Ganapathy D. (2022). Recent advances on synthesis and potential applications of carbon quantum dots. Front. Mat. 9, 906838. 10.3389/fmats.2022.906838
Matsuo Y. Araki M. (2017). Selective detection of acetone vapor using hydrophobized pillared carbon thin films. Front. Mat. 4, 17. 10.3389/fmats.2017.00017
Matsuo Y. Hayashida A. Konishi K. (2015). Porous properties of pillared carbons prepared from the thermal reduction of graphite oxide repeatedly silylated with methyltrichlorosilanes. Front. Mat. 2. 10.3389/fmats.2015.00021
Moulefera I. García-Mateos F. J. Benyoucef A. Rosas J. M. Rodríguez-Mirasol J. Cordero T. (2020). Effect of Co-solution of carbon precursor and activating agent on the textural properties of highly porous activated carbon obtained by chemical activation of lignin with H3PO4. Front. Mat. 7, 153. 10.3389/fmats.2020.00153
Mukherjee A. Patra B. R. Podder J. Dalai A. K. (2022). Synthesis of biochar from lignocellulosic biomass for diverse industrial applications and energy harvesting: effects of pyrolysis conditions on the physicochemical properties of biochar. Front. Mat. 9, 870184. 10.3389/fmats.2022.870184
Navlani-García M. Mori K. Salinas-Torres D. Kuwahara Y. Yamashita H. (2019). New approaches toward the hydrogen production from formic acid dehydrogenation over Pd-based heterogeneous catalysts. Front. Mat. 6, 44. 10.3389/fmats.2019.00044
Ong W.-J. (2017). 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter? Front. Mat. 4, 11. 10.3389/fmats.2017.00011
Orfanakis G. Patila M. Catzikonstantinou A. V. Lyra K.-M. Kouloumpis A. Spyrou K. et al. (2018). Hybrid nanomaterials of magnetic iron nanoparticles and graphene oxide as matrices for the immobilization of β-glucosidase: synthesis, characterization, and biocatalytic properties. Front. Mat. 5, 25. 10.3389/fmats.2018.00025
Otero T. F. Martinez J. G. Asaka K. (2016). Faradaic and capacitive components of the CNT electrochemical responses. Front. Mat. 3, 3. 10.3389/fmats.2016.00003
Parthasarathy P. Mackey H. R. Mariyam S. Zuhara S. Al-Ansari T. McKay G. (2021). Char products from bamboo waste pyrolysis and acid activation. Front. Mat. 7, 624791. 10.3389/fmats.2020.624791
Piñeiro-Prado I. Salinas-Torres D. Ruiz-Rosas R. Morallón E. Cazorla-Amorós D. (2016). Design of activated carbon/activated carbon asymmetric capacitors. Front. Mat. 3, 16. 10.3389/fmats.2016.00016
Poirot N. Rajalingam V. Murgu R. N. Omnée R. Raymundo-Piñero E. (2022). Nanotexturing TiO2 over carbon nanotubes for high-energy and high-power density pseudocapacitors in organic electrolytes. Front. Mat. 9, 1011782. 10.3389/fmats.2022.1011782
Quílez-Bermejo J. Pérez-Rodríguez S. Celzard A. Fierro V. (2022). Progress in the use of biosourced phenolic molecules for electrode manufacturing. Front. Mat. 9, 810575. 10.3389/fmats.2022.810575
Quqa S. Shu Y. Li S. Loh K. J. (2022). Pressure mapping using nanocomposite-enhanced foam and machine learning. Front. Mat. 9, 862796. 10.3389/fmats.2022.862796
Radovic L. R. (2005). The mechanism of CO2 chemisorption on zigzag carbon active sites: a computational chemistry study. Carbon 43 (5), 907–915. 10.1016/j.carbon.2004.11.011
Rosas J. M. Berenguer R. Valero-Romero M. J. Rodríguez-Mirasol J. Cordero T. (2014). Preparation of different carbon materials by thermochemical conversion of lignin. Front. Mat. 1, 29. 10.3389/fmats.2014.00029
Ruiz-Rosas R. García-Mateos F. J. Gutiérrez M. C. Rodríguez-Mirasol J. Cordero T. (2019). About the role of porosity and surface chemistry of phosphorus-containing activated carbons in the removal of micropollutants. Front. Mat. 6, 134. 10.3389/fmats.2019.00134
Salavagione H. J. Gómez-Fatou M. A. Shuttleworth P. S. Ellis G. J. (2018). New perspectives on graphene/polymer fibers and fabrics for smart textiles: the relevance of the polymer/graphene interphase. Front. Mat. 5, 18. 10.3389/fmats.2018.00018
Salinas-Torres D. Ruiz-Rosas R. Morallón E. Cazorla-Amorós D. (2019). Strategies to enhance the performance of electrochemical capacitors based on carbon materials. Front. Mat. 6, 115. 10.3389/fmats.2019.00115
Sanchís C. Ruiz-Rosas R. Berenguer-Murcia Á. Morallón E. Cazorla-Amorós D. (2015). Switchable surfactant-assisted carbon nanotube coatings: innovation through pH shift. Front. Mat. 2, 1. 10.3389/fmats.2015.00001
Santiago-Ramírez C. R. Nair P. R. Vela-Monroy C. A. Aba-Guevara C. G. Ramos-Delgado N. A. Gracia-Pinilla M. A. (2022). A minireview on the use of g-C3N4–chitosan biocomposite for potential applications. Front. Mat. 9, 856350. 10.3389/fmats.2022.856350
Sapalidis A. Sideratou Z. Panagiotaki K. N. Sakellis E. Kouvelos E. P. Papageorgiou S. et al. (2018). Fabrication of antibacterial poly(vinyl alcohol) nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes. Front. Mat. 5, 11. 10.3389/fmats.2018.00011
Schutjajew K. Yan R. Antonietti M. Roth C. Oschatz M. (2019). Effects of carbon pore size on the contribution of ionic liquid electrolyte phase transitions to energy storage in supercapacitors. Front. Mat. 6, 65. 10.3389/fmats.2019.00065
Tsirka K. Katsiki A. Chalmpes N. Gournis D. Paipetis A. S. (2018). Mapping of graphene oxide and single layer graphene flakes—defects annealing and healing. Front. Mat. 5, 37. 10.3389/fmats.2018.00037
Tzitzios V. Dimos K. Alhassan S. M. Mishra R. Kouloumpis A. Gournis D. et al. (2018). Facile MoS2 growth on reduced graphene-oxide via liquid phase method. Front. Mat. 5, 29. 10.3389/fmats.2018.00029
Valero-Romero M. J. Rodríguez-Cano M. Á. Palomo J. Rodríguez-Mirasol J. Cordero T. (2021). Carbon-based materials as catalyst supports for fischer–tropsch synthesis: a review. Front. Mat. 7, 617432. 10.3389/fmats.2020.617432
Varshney V. Lee J. Brown J. S. Farmer B. L. Voevodin A. A. Roy A. K. (2018). Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes. Front. Mat. 5, 17. 10.3389/fmats.2018.00017
Vrettos K. Karouta N. Loginos P. Donthula S. Gournis D. Georgakilas V. (2018). The role of diamines in the formation of graphene aerogels. Front. Mat. 5, 20. 10.3389/fmats.2018.00020
Walker P. L. (1972). Carbon: an old but new material. Carbon 10 (4), 369–370. 10.1016/0008-6223(72)90052-8
Walker P. L. (1990). Carbon: an old but new material revisited. Carbon 28 (2–3), 261–279. 10.1016/0008-6223(90)90001-F
Wei J. Geng S. Kumar M. Pitkänen O. Hietala M. Oksman K. (2019). Investigation of structure and chemical composition of carbon nanofibers developed from renewable precursor. Front. Mat. 6, 334. 10.3389/fmats.2019.00334
Worajittiphon P. Large M. J. King A. A. K. Jurewicz I. Dalton A. B. (2015). Stretchable conductive networks of carbon nanotubes using plasticized colloidal templates. Front. Mat. 2, 15. 10.3389/fmats.2015.00015
Wu D. Xie X. Zhang Y. Zhang D. Du W. Zhang X. et al. (2020). MnO2/Carbon composites for supercapacitor: synthesis and electrochemical performance. Front. Mat. 7, 2. 10.3389/fmats.2020.00002
Xu Y. Lu F. Liu K. Ma C. (2020). Direct graphene synthesis on lithium niobate substrate by carbon ion implantation. Front. Mat. 7, 572280. 10.3389/fmats.2020.572280
Yang M. Zhang M. (2019). Biodegradation of carbon nanotubes by macrophages. Front. Mat. 6, 225. 10.3389/fmats.2019.00225
Yang S. Sun J. Li X. Zhou W. Wang Z. He P. et al. (2014). Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J. Mat. Chem. A (2), 8660–8667. 10.1039/C4TA00860J
Yasri N. G. Sundramoorthy A. K. Chang W.-J. Gunasekaran S. (2014). Highly selective mercury detection at partially oxidized graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) nanocomposite film-modified electrode. Front. Mat. 1, 33. 10.3389/fmats.2014.00033
Yasuda E. Inagaki M. Kaneko K. Endo M. Oya A. Tanabe Y. (2003). Carbon alloys: novel concepts to develop carbon science and technology. Oxford: Elsevier Science Ltd. 10.1016/B978-0-08-044163-4.X5000-1
Yu C. Hou H. Liu X. Han L. Yao Y. Dai Z. et al. (2018). The recovery of the waste cigarette butts for N-doped carbon anode in lithium ion battery. Front. Mat. 5, 63. 10.3389/fmats.2018.00063
Zhang Z. Wang Y. Wang H. Xue X. Lin Q. (2021). Metal-organic frameworks promoted hydrogen storage properties of magnesium hydride for in-situ resource utilization (ISRU) on mars. Front. Mat. 8, 766288. 10.3389/fmats.2021.766288
ZhangCalderon Q. B. Ebbing C R. Elston L J. Byrd L W. Tsao B.-H. (2020). Thermal properties enhancement of vertically aligned carbon nanotubes-based metal nanocomposites as thermal interface materials. Front. Mat. 7, 572956. 10.3389/fmats.2020.572956
Zheng S. Q. Lim S. S. Foo C. Y. Haw C. Y. Chiu W. S. Chia C. H. et al. (2021). Recent progress on the applications of carbonaceous and metal-organic framework nanomaterials for supercapacitors. Front. Mat. 8, 777149. 10.3389/fmats.2021.777149
Zheng Y. Liu J. Liang J. Jaroniec M. Qiao S. Z. (2012). Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5, 6717–6731. 10.1039/C2EE03479D