[en] Savannas cover one-fifth of the Earth's surface, harbour substantial biodiversity, and provide a broad range of ecosystem services to hundreds of millions of people. The community composition of trees in tropical moist forests varies with climate, but whether the same processes structure communities in disturbance-driven savannas remains relatively unknown. We investigate how biodiversity is structured over large environmental and disturbance gradients in woodlands of eastern and southern Africa. We use tree inventory data from the Socio-Ecological Observatory for Studying African Woodlands (SEOSAW) network, covering 755 ha in a total of 6780 plots across nine countries of eastern and southern Africa, to investigate how alpha, beta, and phylogenetic diversity varies across environmental and disturbance gradients. We find strong climate-richness patterns, with precipitation playing a primary role in determining patterns of tree richness and high turnover across these savannas. Savannas with greater rainfall contain more tree species, suggesting that low water availability places distributional limits on species, creating the observed climate-richness patterns. Both fire and herbivory have minimal effects on tree diversity, despite their role in determining savanna distribution and structure. High turnover of tree species, genera, and families is similar to turnover in seasonally dry tropical forests of the Americas, suggesting this is a feature of semiarid tree floras. The greater richness and phylogenetic diversity of wetter plots shows that broad-scale ecological patterns apply to disturbance-driven savanna systems. High taxonomic turnover suggests that savannas from across the regional rainfall gradient should be protected if we are to maximise the conservation of unique tree communities.
Davies, Robert W. ; Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
Ryan, Casey M.; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
Harrison, Rhett D.; World Agroforestry, Lusaka, Zambia
Dexter, Kyle G.; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom ; Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
Ahrends, Antje; Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
te Beest, Mariska; Copernicus Institute for Sustainable Development, Utrecht University, Netherlands ; Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth, South Africa
Benitez, Lorena; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
Brade, Thom K.; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
Carreiras, Joao M. B.; National Centre for Earth Observation (NCEO), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, United Kingdom
Druce, Dave J.; Ecological Advice, Ezemvelo KZN Wildlife, Hluhluwe-iMfolozi Park, South Africa ; School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
Fayolle, Adeline ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Finckh, Manfred; Biodiversity, Evolution and Ecology of Plants, Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
Godlee, John L.; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
Gonclaves, Francisco M.; Herbarium of Lubango, ISCED Huíla, Lubango, Angola
Grundy, Isla M.; Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe
Hoche, T.; Biodiversity, Evolution and Ecology of Plants, Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
Holdo, Ricardo M.; Odum School of Ecology, University of Georgia, Athens, United States
Makungwa, Steve; Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe, Malawi
McNicol, Iain M.; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
Mograbi, Penelope J.; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom ; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
Muchawona, Anderson; Forest Research Centre, Harare, Zimbabwe
Muhate, Aristidies; Ministry of Land, Environment and Rural Development Mozambique, Maputo, Mozambique
Muledi, Jonathan; Ecologie, Restauration Ecologique et Paysage, Faculté des Sciences Agronomiques, Université de Lubumbashi, Democratic Republic Congo
Pritchard, Rose; Global Development Institute, School of Environment, Education and Development, University of Manchester, Manchester, United Kingdom
Revermann, Rasmus ; Biodiversity, Evolution and Ecology of Plants, Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany ; Faculty of Natural Resources and Spatial Sciences, Namibia University of Science and Technology, Windhoek, Namibia
Ribeiro, Natasha S.; Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Universidade Eduardo Mondlane, Maputo, Mozambique
Siampale, Abel; Ministry of Lands and Natural Resources, Cairo Road, Lusaka, Zambia
Carla Staver, A.; Department of Ecology and Evolutionary Biology, Yale University, New Haven, United States
Syampungani, Stephen; ORTARChI Chair Environment and Development, Department of Environmental and Plant Sciences, Copperbelt University, Kitwe, Zambia ; Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
Williams, Mathew; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
Swemmer, Anthony M.; South African Environment Observation Network (SAEON), Phalaborwa, South Africa
Edwards, David P.; Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
Precipitation gradients drive high tree species turnover in the woodlands of eastern and southern Africa
Publication date :
2023
Journal title :
Ecography
ISSN :
0906-7590
eISSN :
1600-0587
Publisher :
John Wiley and Sons Inc
Volume :
2023
Issue :
10
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
ForestIsLife
Funders :
NERC - Natural Environment Research Council NCEO - National Centre for Earth Observation
Funding text :
– DPE and RDH were supported by the UK Natural Environment Research council (NERC; grant no.: NE/W003708/1). JMBC was supported by the UK Natural Environment Research Council (NERC), through agreement no. PR140015 between NERC and the National Centre for Earth Observation.
Aleman, J. C. et al. 2020. Floristic evidence for alternative biome states in tropical Africa. – Proc. Natl Acad. Sci. USA 117: 28183–28190.
Andersen, A. N., Cook, G. D., Corbett, L. K., Douglas, M. M., Eager, R. E., Russel-Smith, J., Setterfield, S. A., Williams, R. J. and Woinarski, J. C. Z. 2005. Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. – Austral Ecol. 30: 155–167.
Andino, J. E. G., Pitman, N. C. A., ter Steege, H., Peralvo, M., Cerón, C. and Fine, P. V. A. 2021. The contribution of environmental and dispersal filters on phylogenetic and taxonomic beta diversity patterns in Amazonian tree communities. – Oecologia 196: 1119–1137.
Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. – Global Ecol. Biogeogr. 19: 134–143.
Baselga, A. and Orme, D. 2012. betapart: an R package for the study of beta diversity. – Methods Ecol. Evol. 3: 808–812.
Bivand R. S., Pebesma E. and Gomez-Rubio, V. 2013. Applied spatial data analysis with R, 2nd edn. – Springer.
Bürkner, P. C. 2017. Brmsan R package for Bayesian multilevel models using Stan. – J. Stat. Softw. 80: 1–28.
Byers, B. 2001. Conserving the Miombo Ecoregion. – WWF Southern Africa.
Cadotte, M. W. 2013. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. – Proc. Natl Acad. Sci. USA 110: 8996–9000.
Chidumayo, E. N. 2001. Climate and phenology of savanna vegetation in southern Africa. – J. Veg. Sci. 12: 347–354.
Currie, D. J., Mittelbach, G. G., Cornell, H. V., Field, R., Guégan, J-F., Hawkins, B. A., Kaufman, D. M., Kerr, J. T., Oberdorff, T., O'Brien, E. and Turner, J. R. G. 2004. Predictions and tests of climate-based hypothesis of broad-scale variation in taxonomic richness. – Ecol. Lett. 7: 1121–1134.
Davidar, P., Rajagopal, B., Mohandass, D., Puyravaud, J., Condit, R., Wright, S. J. and Leigh Jr, E. G. 2007. The effect of climatic gradients, topographic variation and species traits on the beta diversity of rain forest trees. – Global Ecol. Biogeogr. 16: 510–518.
Davies, R. W. et al. 2023. Data from: Precipitation gradients drive high tree species turnover in the woodlands of eastern and southern Africa. – Dryad Digital Repository, https://doi.org/10.5061/dryad.k98sf7mcb.
Dengler, J. 2009. Which function describes the species–area relationship best? A review and empirical evaluation. – J. Biogeogr. 36: 728–744.
Droissart, V., Dauby, G., Hardy, O. J., Deblauwe, V., Harris, D. J., Janssens, S., Mackinder, B. A., Blach-Overgaard, A., Sonké, B., Sosef, M. S. M., Stévart, T., Svenning, J.-C., Wieringa, J. J. and Couvreur, T. L. P. 2018. Beyond trees: biogeographical regionalization of tropical Africa. – J. Biogeogr. 45: 1153–1167.
DRYFLOR 2016. Plant diversity patterns in neotropical dry forests and their conservation implications. – Science 353: 1383–1387.
Engelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T., Turner, B. L. and Hubbell, S. P. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. – Nature 447: 80–82.
Esquivel-Muelbert, A. et al. 2017. Seasonal drought limits tree species richness across the Neotropics. – Ecography 40: 618–629.
Faith, D. P. 1992. Conservation evaluation and phylogenetic diversity. – Biol. Conserv. 61: 1–10.
Fayolle, A. et al. 2019. A sharp floristic discontinuity revealed by the biogeographic regionalization of African savannas. – J. Biogeogr. 46: 454–465.
Ferrier, S., Manion, G., Elith, J. and Richardson, K. 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. – Divers. Distrib. 13: 252–264.
Fick, S. E. and Hijmans, R. J. 2017. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. – Int. J. Climatol. 37: 4302–4315.
Fitzpatrick, A. M. C., Mokany, K., Manion, G., Lisk, M., Ferrier, S., Nieto-lugilde, D. and Fitzpatrick, M. M. 2021. Package ‘gdm'. – https://cran.r-project.org/web/packages/gdm/gdm.pdf.
Frost, P. 1996. The ecology of miombo woodlands. – In: Campbell, B. (ed.), The Miombo in transition: woodlands and welfare in Africa. Centre for International Forestry Research, pp. 11–57.
Furley, P. A., Rees, R. M., Ryan, C. M. and Saiz, G. 2008. Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. – Prog. Phys. Geogr. 32: 611–634.
Gaston, K. J. 2000. Global patterns in biodiversity. – Nature 405: 220–227.
Giglio, L., Justice, C., Boschetti, L. and Roy, D. 2015. MCD64A1 MODIS/Terra+Aqua burned area monthly L3 global 500m SIN Grid V006. – NASA EOSDIS Land Processes DAAC.
Godlee, J. L. et al. 2021. Structural diversity and tree density drives variation in the biodiversity–ecosystem function relationship of woodlands and savannas. – New Phytol. 232: 579–594.
González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. and Swenson, N. G. 2014. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. – J. Plant Ecol. 7: 145–153.
Harris, I., Osborn, T. J., Jones, P. and Lister, D. 2020. Ver. 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. – Sci. Data 7: 109.
Hempson, G. P., Archibald, S. and Bond W. J. 2017. The consequences of replacing wildlife with livestock in Africa. – Sci. Rep. 7: 17196.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotic, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S. and Kempen, B. 2017. SoilGrids250m: global gridded soil information based on machine learning. – PLoS One 12: e0169748.
Jin, Y. and Qian, H. 2019. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. – Ecography 42: 1353–1359.
Keil, P. and Chase, J. M. 2019. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. – Nat. Ecol. Evol. 3: 390–399.
Kembel, S., Cowan, P., Helmus, M., Cornwell, W., Morlon, H., Ackerly, D., Blomberg, S. P. and Webb, C. 2010. Picante: R tools for integrating phylogenies and ecology. – Bioinformatics 26: 1463–1464.
Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. and Bond, W. J. 2011. Deciphering the distribution of the savanna biome. – New Phytol. 191: 197–209.
Makumbe, P., Chikorowondo, G., Dzamara, P. C., Ndaimani, H. and Gandiwa, E. 2020. Effects of fire frequency on woody plant composition and functional traits in a wet savanna system. – Int. J. Ecol. 2020: 1672306.
McNicol, I. M., Ryan, C. M. and Williams, M. 2018. Carbon losses from deforestation and widespread degradation offset by extensive growth in African woodlands. – Nat. Commun. 9: 3045.
Mittelbach, G. G. et al. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. – Ecol. Lett. 10: 315–331.
MODIS Collection 61 NRT Hotspot / Active Fire Detections MCD14DL distributed from NASA FIRMS. – https://earthdata.nasa.gov/firms.
Mokany, K., Ware, C., Woolley, S. N. C., Ferrier, S. and Fitzpatrick, M. C. 2022. A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. – Global Ecol. Biogeogr. 31: 802–821.
Neves, D. M. et al. 2020. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. – Sci. Rep. 10: 1188.
O'Brien, E. M., Whittaker, R. J. and Field, R. 1998. Climate and woody plant diversity in southern Africa: relationships at species, genus and family levels. – Ecography 21: 495–509.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'hara, R. B., Simpson, G. L., Solymos, P., Stevens, H., Wagner, H. H. and Oksanen, M. J. 2013. Package ‘vegan'. – https://CRAN.R-project.org/package=vegan.
Oliveras, I. and Malhi, Y. 2016. Many shades of green: the dynamic tropical forest-savannah transition zones. – Phil. Trans. R. Soc. B 371: 20150308.
Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffman, W. A. and Andersen, A. N. 2014. Tropical grassy biomes: misunderstood, neglected, and under threat. – Trends Ecol. Evol. 29: 205–213.
Pringle, R. M., Prior, K. M., Palmer, T. M., Young, T. P. and Goheen, J. R. 2016. Large herbivores promote habitat specialization and beta diversity of African savanna trees. – Ecology 97: 2640–2657.
Réjou-Méchain, M. et al. 2021. Unveiling African rainforest composition and vulnerability to global change. – Nature 593: 90–94.
Ribeiro, N. S., Katerere, Y., Chirwa, P. W. and Grundy, I M. (eds). 2020. Miombo woodlands in a changing environment: securing the resilience and sustainability of people and woodlands. – Springer.
Ryan, C. M., Pritchard, R., McNicol, I., Owen, M. M., Fisher, J. A. and Lehmann, C. 2016. Ecosystem services from southern African woodlands and their future under global change. – Phil. Trans. R. Soc. B 371: 20150312.
Sandel, B. 2018. Richness-dependence of phylogenetic diversity indices. – Ecography 41: 837–844.
Sankaran, M. et al. 2005. Determinants of woody cover. – Nature 438: 846–849.
Sankaran, M., Ratnam, J. and Hanan, N. 2008. Woody cover in the African savannas: the role of resources, fire and herbivory. – Global Ecol. Biogeogr. 17: 236–245.
Scholes, R. J. and Archer, S. R. 1997. Tree-grass interactions in savannas. – Annu. Rev. Ecol. Syst. 28: 517–544.
Segovia, R. A., Pennington, R. T., Baker, T. R., Coelho de Souza, F., Neves, D. M., Davis, C. C., Armesto, J. J., Olivera-Filho, A. T. and Dexter, K. G. 2020. Freezing and water availability structure the evolutionary diversity of trees across the Americas. – Sci. Adv. 6: eaaz5373.
SEOSAW 2021. A network to understand the changing socio-ecology of the southern African woodlands SEOSAW): challenges, benefits, and methods. – Plants People Planet 3: 249–267.
Shirima, D. D., Pfeifer, M., Pllatts, P. J., Totland, Ø. and Moe, S. R. 2015. Interactions between canopy structures and herbaceous biomass along environmental gradients in moist forest and dry Miombo of Tanzania. – PLoS One 10: e0142784.
Smit, I. P. J., Asner, G. P., Govender, N., Kennedy-Bowdoin, T., Knapp, D. E. and Jacobson, J. 2010. Effects of fire on woody vegetation structure in African savannas. – Ecol. Appl. 20: 1865–1875.
Socolar, J. B., Gilroy, J. J., Kunin, W. E. and Edwards, D. P. 2016. How should beta-diversity inform biodiversity conservation? – Trends Ecol. Evol. 31: 67–80.
Spasojevic, M. J., Grace, J. B., Harrison, S. and Damschen, E. I. 2014. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. – J. Ecol. 102: 447–455.
Staver, A. C. and Bond, W. J. 2014. Is there a ‘browse trap'? Dynamics of herbivore impacts on trees and grasses in an African savanna. – J. Ecol. 102: 595–602.
Staver, A. C., Archibald, S. and Levin, S. A. 2011. The global extent and determinants of savanna and forest as alternative biome states. – Science 334: 230–232.
Swenson, N. G. 2014. Functional and phylogenetic ecology in R. – Springer.
ter Steege, H. et al. 2003. A spatial model of tree α-diversity and tree density for the Amazon. – Biodivers. Conserv. 12: 2255–2277.
The Plant List 2010. Ver. 1. – http://www.theplantlist.org/.
Tripathi, H. G., Mzumara, T. I., Martin, R. O., Parr, C. L., Phiri, C. and Ryan, C. M. 2019. Dissimilar effects of human and elephant disturbance on woodland structure and functional bird diversity in the mopane woodlands of Zambia. – Landscape Ecol. 34: 357–371.
Tripathi, H. G., Woollen, E. S., Carvalho, M., Parr, C. L. and Ryan, C. M. 2021. Agricultural expansion in African savannas: effects on diversity and composition of trees and mammals. – Biodivers. Conserv. 30: 3279–3297.
Umaña, M. N., Condit, R., Pérez, R., Turner, B. L., Wright, S. J. and Comita, L. S. 2021. Shifts in taxonomic and functional composition of trees along rainfall and phosphorous gradients in central Panama. – J. Ecol. 109: 51–61.
Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M. and Levy, M. A. 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. – Nat. Commun. 7: 12558.
Vinya, R., Malhi, Y., Fisher, J. B., Brown, N., Brodribb, T. J. and Arago, L. E. 2013. Xylem cavitation vulnerability influences tree species' habitat preferences in miombo woodlands. – Oecologia 173: 711–720.
White, F. 1983. The vegetation of Arica, vol 20. – Natural Resources Research, UNESCO.
Wigley, B. J., Fritz, H., Coetsee, C. and Bond, W. J. 2014. Herbivores shape woody plant communities in the Kruger National Park: lessons from three long-term exclosures. – Koedoe 56: 1–12.
Williams, R. J., Duff, G. A., Bowman, D. M. J. S. and Cook, G. D. 1996. Variation in the composition and structure of tropical savannas as a function of rainfall and soil texture along a large-scale climatic gradient in the Northern Territory, Australia. – J. Biogeogr. 23: 747–756.
Yachi, S. and Loreau, M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. – Proc. Natl Acad. Sci. USA 96: 1463–1468.