3D printing; Hospital preparation; Pediatrics; Personalized medicines; Semi-solid extrusion; Unlicensed preparation; Biotechnology; Materials Science (miscellaneous); Industrial and Manufacturing Engineering
Abstract :
[en] The long-standing issue of inadequate medicine formulations has been a focus of regulatory bodies and pharmaceutical research, particularly in adapting medicines for children’s unique requirements. The pediatric population presents diverse challenges in pharmacotherapy due to their varying age-related physiological differences, and taste and dosage form preferences. Conventional formulations often fail to meet these needs, leading to a high prevalence of off-label medication use and modifications by caregivers, which can compromise drug efficacy and safety. The well-known challenges of managing children’s medication are similar to those in geriatrics, both of which require dose adjustments to accommodate the patient’s pathophysiological characteristics and prevent deglutination problems. This paper explores recent innovations in drug formulations, highlighting the shift from traditional liquid formulations to solid dosages through three-dimensional (3D) printing technology. Recent advancements in 3D printing technology offer promising solutions to these challenges. Additive manufacturing (AM), or 3D printing, facilitates the creation of complex objects (e.g., drug formulations) directly from digital models, allowing for high precision and customization. 3D-printed formulations have displayed considerable promise in improving palatability, adherence, and dose accuracy for pediatric use. Innovations like chewable tablets and taste-masked formulations make medications more acceptable to children. Moreover, the ability of 3D printing to adjust drug release profiles and doses offers a personalized approach to pediatric and geriatric pharmacotherapy, which is essential for managing conditions that require precise therapeutic control. The paper discusses several case studies using the semi-solid extrusion (SSE) process for producing personalized dosage forms, along with various technical and regulatory challenges associated with implementing this process in hospital-based drug manufacturing. In conclusion, while 3D printing in pediatric and geriatric pharmacotherapy addresses many challenges of traditional drug formulations, ongoing research and adaptation of regulatory frameworks are necessary to expand its application, ensuring safer, more effective, and more acceptable medication.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Cerveto, Thomas; Grenoble Alpes University, Centre National de la Recherche Scientifique, CNRS, French National Centre for Scientific Research), Département de Pharmacochimie Moléculaire (DPM, Department of Molecular Pharmacochemistry), Unité Mixte de Recherche (UMR, Mixed Research Unit), Grenoble, France
Denis, Lucas; Clinical Pharmacy Department, Gustave Roussy Cancer Campus, Villejuif, France ; Paris-Saclay University, CNRS, Institut Galien Paris-Saclay, UMR, Orsay, France
Stoops, Maxime; Clinical Pharmacy Department, Gustave Roussy Cancer Campus, Villejuif, France
Lechanteur, Anna ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Jérôme, Christine ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie des macromolécules et des matériaux organiques (CERM)
Leenhardt, Julien; Pharmacy Department, Centre Hospitalier Universitaire (CHU, University Hospital Center) Grenoble Alpes, Grenoble, France ; Nuclear Medicine Department, CHU Grenoble Alpes, Grenoble, France ; Grenoble Alpes University, Institut National de la Santé et de la Recherche Médicale (INSERM, National Institute of Health and Medical Research), Laboratoire de Recherche sur les Maladies Cardiovasculaires (LRB, Cardiovascular Diseases Research Laboratory), UMR, Grenoble, France
Flynn, Stephen; Global Pharma Marketing service, Roquette Frères, France
Goyanes, Alvaro; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain ; Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, United Kingdom ; FABRX Ltd., Henwood House, Henwood, United Kingdom
Mazet, Roseline; Pharmacy Department, Centre Hospitalier Universitaire (CHU, University Hospital Center) Grenoble Alpes, Grenoble, France
Annereau, Maxime; Clinical Pharmacy Department, Gustave Roussy Cancer Campus, Villejuif, France
Choisnard, Luc; Grenoble Alpes University, Centre National de la Recherche Scientifique, CNRS, French National Centre for Scientific Research), Département de Pharmacochimie Moléculaire (DPM, Department of Molecular Pharmacochemistry), Unité Mixte de Recherche (UMR, Mixed Research Unit), Grenoble, France
Language :
English
Title :
The promising role of semi-solid extrusion technology in custom drug formulation for pediatric medicine
1. Rocchi F, Tomasi P. The development of medicines for children. Part of a series on Pediatric Pharmacology, guest edited by Gianvincenzo Zuccotti, Emilio Clementi, and Massimo Molteni. Pharmacol Res. 2011;64(3):169–175. doi: 10.1016/j.phrs.2011.01.016
2. O’Brien F, Clapham D, Krysiak K, et al. Making medicines baby size: the challenges in bridging the formulation gap in neonatal medicine. Int J Mol Sci. 2019;20(11):2688. doi: 10.3390/ijms20112688
3. Kogermann K, Lass J, Nellis G, Metsvaht T, Lutsar I. Age-appropriate formulations including pharmaceutical excipients in neonatal medicines. Curr Pharm Des. 2017;23(38):5779–5789. doi: 10.2174/1381612823666170926122613
4. Nunn T, Williams J. Formulation of medicines for children. Br J Clin Pharmacol. 2005;59(6):674–676. doi: 10.1111/j.1365-2125.2005.02410.x
5. Ranmal SR, Cram A, Tuleu C. Age-appropriate and acceptable paediatric dosage forms: insights into end-user perceptions, preferences and practices from the Children’s Acceptability of Oral Formulations (CALF) Study. Int J Pharm. 2016;514(1):296–307. doi: 10.1016/j.ijpharm.2016.07.054
6. Ivanovska V, Rademaker CMA, van Dijk L, Mantel-Teeuwisse AK. Pediatric drug formulations: a review of challenges and progress. Pediatrics. 2014;134(2):361–372. doi: 10.1542/peds.2013-3225
7. Joosse IR, Mantel-Teeuwisse AK, Wirtz VJ, Suleman F, van den Ham HA. Missing data on accessibility of children’s medicines. Bull World Health Organ. 2022;100(10): 636–642. doi: 10.2471/BLT.22.288137
8. Mfoafo KA, Omidian M, Bertol CD, Omidi Y, Omidian H. Neonatal and pediatric oral drug delivery: Hopes and hurdles. Int J Pharm. 2021;597:120296. doi: 10.1016/j.ijpharm.2021.120296
9. Alessandrini E, Brako F, Scarpa M, et al. Children’s preferences for oral dosage forms and their involvement in formulation research via EPTRI (European Paediatric Translational Research Infrastructure). Pharmaceutics. 2021;13(5):730. doi: 10.3390/pharmaceutics13050730
10. Jîtcă CM, Jîtcă G, Ősz BE, Pușcaș A, Imre S. Stability of oral liquid dosage forms in pediatric cardiology: a prerequisite for patient’s safety—a narrative review. Pharmaceutics. 2023;15(4):1306. doi: 10.3390/pharmaceutics15041306
11. Batchelor HK, Marriott JF. Formulations for children: problems and solutions. Br J Clin Pharmacol. 2015;79(3):405–418. doi: 10.1111/bcp.12268
12. Litalien C, Bérubé S, Tuleu C, et al. From paediatric formulations development to access: Advances made and remaining challenges. Br J Clin Pharmacol. 2022;88(10):4349–4383. doi: 10.1111/bcp.15293
13. US Food and Drug Administration. Qualifying for pediatric exclusivity under Section 505A of the Federal Food, Drug, and Cosmetic Act: frequently asked questions on pediatric exclusivity (505A). The Pediatric “Rule, ” and their Interaction. Q1–Q14: Exclusivity. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/ucm077915.htm.
14. US Food and Drug Administration. Pediatric Research Equity Act of 2003.
15. Regulation (EC) No 1901/2006 of the European Parliament and of the Council of 12 December 2006 on medicinal products for paediatric use and amending Regulation (EEC) No 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No 726/2004.
16. Regulation (EC) No 1902/2006 of the European Parliament and of the Council of 12 December 2006 amending Regulation 1901/2006 on medicinal products for paediatric use.
17. Commission, to the European Parliament, and the Council. 10 years of the EU Paediatric Regulation - State of Paediatric Medicines in the EU; 2017. Accessed April 20, 2021. https://health.ec.europa.eu/system/files/2017-11/2017_childrensmedicines_report_en_0.pdf
18. Kaguelidou F, Ouèdraogo M, Treluyer JM, et al. Développement des médicaments en pédiatrie: défis existants et recommandations. Therapies. 2023;78(1): 95–104. doi: 10.1016/j.therap.2022.12.002
19. Vieira I, Sousa JJ, Vitorino C. Paediatric medicines – regulatory drivers, restraints, opportunities and challenges. J Pharm Sci. 2021;110(4):1545–1556. doi: 10.1016/j.xphs.2020.12.036
20. Huss G, Barak S, Reali L, et al. Drug Shortages in Pediatrics in Europe: the position of the European Pediatric Societies. J Pediatr. 2023;261:113472 doi: 10.1016/j.jpeds.2023.11347
21. Atif M, Sehar A, Malik I, Mushtaq I, Ahmad N, Babar ZUD. What impact does medicines shortages have on patients? A qualitative study exploring patients’ experience and views of healthcare professionals. BMC Health Serv Res. 2021;21(1):827. doi: 10.1186/s12913-021-06812-7
22. ASHP Expert Panel on Drug Product Shortages, Fox ER, Birt A, et al. ASHP guidelines on managing drug product shortages in hospitals and health systems. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 2009;66(15):1399–1406. doi: 10.2146/ajhp090026
23. Butterfield L, Cash J, Pham K, Advocacy Committee for the Pediatric Pharmacy Advocacy Group. Drug shortages and implications for pediatric patients. J Pediatr Pharmacol Ther JPPT Off J PPAG. 2015;20(2):149–152. doi: 10.5863/1551-6776-20.2.149
24. Metzger ML, Billett A, Link MP. The impact of drug shortages on children with cancer-the example of mechlorethamine. N Engl J Med. 2012;367(26):2461–2463. doi: 10.1056/NEJMp1212468
25. Allen HC, Garbe MC, Lees J, et al. Off-label medication use in children, more common than we think: a systematic review of the literature. J Okla State Med Assoc. 2018; 111(8):776–783.
26. Balan S, Hassali MAA, Mak VSL. Two decades of off-label prescribing in children: a literature review. World J Pediatr WJP. 2018;14(6):528–540. doi: 10.1007/s12519-018-0186-y
27. Koszma EIA, Bispo AJB, Santana IA de O, dos Santos CNODB. Use of off-label medications in a neonatal intensive care unit. Rev Paul Pediatr. 2021;39:e2020063. doi: 10.1590/1984-0462/2021/39/2020063
28. Meng M, Lv M, Wang L, et al. Off-label use of drugs in pediatrics: a scoping review. Eur J Pediatr. 2022;181(9):3259–3269. doi: 10.1007/s00431-022-04515-7
29. Meng M, Zhou Q, Lei W, et al. Recommendations on off-label drug use in pediatric guidelines. Front Pharmacol. 2022;13:892574. doi: 10.3389/fphar.2022.892574
30. Richey RH, Craig JV, Shah UU, et al. MODRIC - Manipulation of drugs in children. Int J Pharm. 2013;457(1):339–341. doi: 10.1016/j.ijpharm.2013.08.061
31. Kirkevold Ø, Engedal K. Concealment of drugs in food and beverages in nursing homes: cross sectional study. BMJ. 2005;330(7481):20. doi: 10.1136/bmj.38268.579097.55
32. Mercovich N, Kyle GJ, Naunton M. Safe to crush? A pilot study into solid dosage form modification in aged care. Australas J Ageing. 2014;33(3):180–184. doi: 10.1111/ajag.12037
33. Kelly J, Wright D. Administering medication to adult patients with dysphagia. Nurs Stand R Coll Nurs G B 1987. 2009;23(29):62–68. doi: 10.7748/ns2009.03.23.29.62.c6928
34. Lemarchand C, Bienaymé H, Rieutord A, Abbou S, Annereau M, Bastid J. Dispensing oral temozolomide in children: precision and stability of a novel and ready to use liquid formulation in comparison with capsule derived mixtures. Pharmaceutics. 2023;15(12):2711. doi: 10.3390/pharmaceutics15122711
36. EDS Form Group. Aprépitant: avis d’expert sur les formulations extemporanées;2024. Accessed May 16, 2024. https://www.edqm.eu/documents/52006/1912832/Apr%C3%A9pitant%20-%20Avis%20d%E2%80%99expert%20sur%20les%20formulations%20extemporan%C3%A9es.pdf/02dc9885-c08b-e8f3-4554-b46bec47014a?t=1713795079735
37. Otsokolhich M, Annereau M, Bauters T, et al. SIOPE and ESOP recommendations for extemporaneous compounding of oral liquid medicine formulations in paediatric oncology. EJC Paediatr Oncol. 2024;3:100163. doi: 10.1016/j.ejcped.2024.100163
38. Annereau M, Toussaint B, Dufaÿ Wojcicki A, Dufaÿ S, Diaz Salmeron R, Boudy V. [2D-3D printing in hospital pharmacies, what roles and challenges?]. Ann Pharm Fr. 2021;79(4):361–374. doi: 10.1016/j.pharma.2021.01.002
39. Tagami T, Ito E, Kida R, Hirose K, Noda T, Ozeki T. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use. Int J Pharm. 2021;594:120118. doi: 10.1016/j.ijpharm.2020.120118
40. Thabet Y, Klingmann V, Breitkreutz J. Drug formulations: standards and novel strategies for drug administration in pediatrics. J Clin Pharmacol. 2018;58(S10):S26-S35. doi: 10.1002/jcph.1138
41. Vijayavenkataraman S, Fuh JYH, Lu WF. 3D printing and 3d bioprinting in pediatrics. Bioengineering. 2017;4(3):63. doi: 10.3390/bioengineering4030063
42. Lafeber I, Ruijgrok EJ, Guchelaar HJ, Schimmel KJM. 3D printing of pediatric medication: the end of bad tasting oral liquids?—A scoping review. Pharmaceutics. 2022;14(2):416. doi: 10.3390/pharmaceutics14020416
43. Sukanya VS, Panigrahy N, Rath SN. Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur J Pediatr. 2021;180(2):323–332. doi: 10.1007/s00431-020-03819-w
44. Taylor S, Glass BD. Altering dosage forms for older adults. Aust Prescr. 2018;41(6):191–193. doi: 10.18773/austprescr.2018.063
45. Gauthier P. État des lieux des besoins en préparation magistrale gériatrique pour la voie orale; 2021. Accessed May 25, 2022. https://dumas.ccsd.cnrs.fr/dumas-03736513
46. Thakar N, Rajab I, Moozhayil S. Extemporaneous compounding of amoxicillin suspensions during national shortage. Pharmacy Times. https://www.pharmacytimes.com/view/extemporaneouscompounding-of-amoxicillin-suspensions-during-national-shortage. Published 2023. Accessed April 4, 2024.
47. Watson CP, Tyler KL, Bickers DR, Millikan LE, Smith S, Coleman E. A randomized vehicle-controlled trial of topical capsaicin in the treatment of postherpetic neuralgia. Clin Ther. 1993;15(3):510–526.
48. Ashley DD. FDA Revises Hospital and Health System Compounding Guidance to Help Preserve Patient Access to Compounded Drugs; 2021. Accessed May 10, 2024. https://www.fda.gov/news-events/press-announcements/fda-revises-hospital-and-health-system-compoundingguidance-help-preserve-patient-access-compounded
49. ANSM. Bonnes Pratiques de Préparation; 2022. Accessed September 20, 2022. https://ansm.sante.fr/documents/reference/bonnespratiques-de-preparation
50. Beer N, Hegger I, Kaae S, et al. Scenarios for 3D printing of personalized medicines - a case study. Explor Res Clin Soc Pharm. 2021;4:100073. doi: 10.1016/j.rcsop.2021.100073
51. Warsi MH, Yusuf M, Robaian MA, Khan M, Muheem A, Khan S. 3D printing methods for pharmaceutical manufacturing: opportunity and challenges. Curr Pharm Des. 2023;24(42):4949–4956. Accessed January 5, 2023. https://www.eurekaselect.com/article/95074
52. International Organization for Standardization [ISO]. ISO/ASTM 52900:2021(Fr), Fabrication Additive — Principes Généraux — Fondamentaux et Vocabulaire; 2021. Accessed November 22, 2022. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed2:v1:fr
53. Barlier C, Bernard A. Fabrication Additive: Du Prototypage Rapide à l’impression 3D Ed. 2. Dunod; 2020.
55. Gibson I, Rosen D, Stucker B. Additive Manufacturing Technologies. 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. 2nded. Springer; 2015.
56. International Organization for Standardization [ISO]. Norme internationale ISO/ASTM 52900 Fabrication additive — Principes généraux — Fondamentaux et vocabulaire. Accessed July 26, 2022. https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/07/45/74514.html
57. Auriemma G, Tommasino C, Falcone G, Esposito T, Sardo C, Aquino RP. Additive manufacturing strategies for personalized drug delivery systems and medical devices: fused filament fabrication and semi solid extrusion. Molecules. 2022;27(9):2784. doi: 10.3390/molecules27092784
58. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–451. doi: 10.1016/j.tips.2018.02.006
59. Pou J, Riveiro A, Davim JP. Additive Manufacturing. Elsevier Science; 2021.
60. Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm. 2021;600:120501. doi: 10.1016/j.ijpharm.2021.120501
61. Dotchev K, Yusoff W. Recycling of polyamide 12 based powders in the laser sintering process. Rapid Prototyp J. 2009;15(3):192–203. doi: 10.1108/13552540910960299
62. Kellens K, Renaldi R, Dewulf W, Kruth J pierre, Duflou JR. Environmental impact modeling of selective laser sintering processes. Rapid Prototyp J. 2014;20(6):459–470. doi: 10.1108/RPJ-02-2013-0018
64. Melocchi A, Briatico-Vangosa F, Uboldi M, et al. Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing. Int J Pharm. 2021;592:119901. doi: 10.1016/j.ijpharm.2020.119901
65. Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: fFrom hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553–575. doi: 10.1016/j.addr.2021.05.003
66. Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Controlled Release. 2021;329:743–757. doi: 10.1016/j.jconrel.2020.10.008
67. Uddin MJ, Hassan J, Douroumis D. Thermal inkjet printing: prospects and applications in the development of medicine. Technologies. 2022;10(5):108. doi: 10.3390/technologies10050108
68. Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet printing of pharmaceuticals. Adv Mater. 2024;36(11):2309164. doi: 10.1002/adma.202309164
69. Académie de Pharmacie. Dictionnaire de l’académie de Pharmacie. https://dictionnaire.acadpharm.org/w/Extrusion
70. Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I. Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines. J Controlled Release. 2021;330:821–841. doi: 10.1016/j.jconrel.2020.10.056
71. Cano-Vicent A, Tambuwala MM, Hassan SkS, et al. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit Manuf. 2021;47:102378. doi: 10.1016/j.addma.2021.102378
72. Eleftheriadis GK, Ritzoulis C, Bouropoulos N, et al. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: in vitro and ex vivo evaluation. Eur J Pharm Biopharm. 2019;144:180–192. doi: 10.1016/j.ejpb.2019.09.018
73. Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gaisford S, Basit AW. Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. Int J Pharm. 2019;567:118471. doi: 10.1016/j.ijpharm.2019.118471
74. Isreb A, Baj K, Wojsz M, Isreb M, Peak M, Alhnan MA. 3D printed oral theophylline doses with innovative ‘radiator-like’ design: Impact of polyethylene oxide (PEO) molecular weight. Int J Pharm. 2019;564:98–105. doi: 10.1016/j.ijpharm.2019.04.017
75. Nober C, Manini G, Carlier E, et al. Feasibility study into the potential use of fused-deposition modeling to manufacture 3D-printed enteric capsules in compounding pharmacies. Int J Pharm. 2019;569:118581. doi: 10.1016/j.ijpharm.2019.118581
76. Parulski C, Jennotte O, Lechanteur A, Evrard B. Challenges of fused deposition modeling 3D printing in pharmaceutical applications: where are we now? Adv Drug Deliv Rev. 2021;175:113810. doi: 10.1016/j.addr.2021.05.020
77. Quodbach J, Bogdahn M, Breitkreutz J, et al. Quality of FDM 3D printed medicines for pediatrics: considerations for formulation development, filament extrusion, printing process and printer design. Ther Innov Regul Sci. 2022;56(6):910–928. doi: 10.1007/s43441-021-00354-0
78. Tagami T, Yoshimura N, Goto E, Noda T, Ozeki T. Fabrication of muco-adhesive oral films by the 3D printing of hydroxypropyl methylcellulose-based catechinloaded formulations. Biol Pharm Bull. 2019;42(11): 1898–1905. doi: 10.1248/bpb.b19-00481
79. Parulski C, Bya LA, Goebel J, Servais AC, Lechanteur A, Evrard B. Development of 3D printed mini-waffle shapes containing hydrocortisone for children’s personalized medicine. Int J Pharm. 2023;642:123131. doi: 10.1016/j.ijpharm.2023.123131
80. Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: personalised solutions for healthcare challenges. J Controlled Release. 2021;332:367–389. doi: 10.1016/j.jconrel.2021.02.027
81. Díaz-Torres E, Rodríguez-Pombo L, Ong JJ, et al. Integrating pressure sensor control into semi-solid extrusion 3D printing to optimize medicine manufacturing. Int J Pharm X. 2022;4:100133. doi: 10.1016/j.ijpx.2022.100133
82. Roche A, Sanchez-Ballester NM, Aubert A, Rossi JC, Begu S, Soulairol I. Preliminary Study on the development of caffeine oral solid form 3D printed by semi-solid extrusion for application in neonates. AAPS PharmSciTech. 2023;24(5):122. doi: 10.1208/s12249-023-02582-z
83. Koshovyi O, Vlasova I, Laur H, et al. Chemical composition and insulin-resistance activity of arginine-loaded american cranberry (Vaccinium macrocarpon Aiton, Ericaceae) Leaf Extracts. Pharmaceutics. 2023;15(11):2528. doi: 10.3390/pharmaceutics15112528
84. Lyousoufi M, Lafeber I, Kweekel D, et al. Development and bioequivalence of 3D-printed medication at the point-of-care: bridging the gap toward personalized medicine. Clin Pharmacol Ther. 2023;113(5):1125–1131. doi: 10.1002/cpt.2870
85. Chatzitaki AT, Eleftheriadis G, Tsongas K, et al. Fabrication of 3D-printed octreotide acetate-loaded oral solid dosage forms by means of semi-solid extrusion printing. Int J Pharm. 2023;632:122569. doi: 10.1016/j.ijpharm.2022.122569
86. Teoh XY, Zhang B, Belton P, Chan SY, Qi S. The effects of solid particle containing inks on the printing quality of porous pharmaceutical structures fabricated by 3d semisolid extrusion printing. Pharm Res. 2022;39(6):1267–1279. doi: 10.1007/s11095-022-03299-7
87. de Oliveira TV, de Oliveira RS, dos Santos J, Funk NL, Petzhold CL, Beck RCR. Redispersible 3D printed nanomedicines: an original application of the semisolid extrusion technique. Int J Pharm. 2022;624:122029. doi: 10.1016/j.ijpharm.2022.122029
88. Falcone G, Mazzei P, Piccolo A, et al. Advanced printable hydrogels from pre-crosslinked alginate as a new tool in semi solid extrusion 3D printing process. Carbohydr Polym. 2022;276:118746. doi: 10.1016/j.carbpol.2021.118746
89. Lopez-Vidal L, Real JP, Real DA, et al. Nanocrystalbased 3D-printed tablets: semi-solid extrusion using melting solidification printing process (MESO-PP) for oral administration of poorly soluble drugs. Int J Pharm. 2022;611:121311. doi: 10.1016/j.ijpharm.2021.121311
90. Zhang B, Belton P, Teoh XY, Gleadall A, Bibb R, Qi S. An investigation into the effects of ink formulations of semisolid extrusion 3D printing on the performance of printed solid dosage forms. J Mater Chem B. 2023;12(1):131–144. doi: 10.1039/D3TB01868G
91. Chen P, Liu J, Zhang K, et al. Preparation of clarithromycin floating core-shell systems (CSS) using multi-nozzle semi-solid extrusion-based 3D printing. Int J Pharm. 2021;605:120837. doi: 10.1016/j.ijpharm.2021.120837
92. Falcone G, Saviano M, Aquino RP, Del Gaudio P, Russo P. Coaxialsemi-solid extrusion and i on otropic alginategelation: a successful duo for personalized floating formulations via 3D printing. Carbohydr Polym. 2021;260:117791. doi: 10.1016/j.carbpol.2021.117791
93. Lafeber I, Tichem JM, Ouwerkerk N, et al. 3D printed furosemide and sildenafil tablets: Innovative production and quality control. Int J Pharm. 2021;603:120694. doi: 10.1016/j.ijpharm.2021.120694
94. Yang HS, Kim DW. Fabrication of gastro-floating famotidine tablets: hydroxypropyl methylcellulose-based semisolid extrusion 3D printing. Pharmaceutics. 2023; 15(2):316. doi: 10.3390/pharmaceutics15020316
95. Real JP, Real DA, Lopez-Vidal L, et al. 3D-printed gastroretentive tablets loaded with niclosamide nanocrystals by the melting solidification printing process (MESO-PP). Pharmaceutics. 2023;15(5):1387. doi: 10.3390/pharmaceutics15051387
96. Falcone G, Real JP, Palma SD, et al. Floating ricobendazole delivery systems: a 3D printing method by co-extrusion of sodium alginate and calcium chloride. Int J Mol Sci. 2022;23(3):1280. doi: 10.3390/ijms23031280
97. Ganatra P, Jyothish L, Mahankal V, Sawant T, Dandekar P, Jain R. Drug-loaded vegan gummies for personalized dosing of simethicone: a feasibility study of semi-solid extrusion-based 3D printing of pectin-based low-calorie drug gummies. Int J Pharm. 2024;651:123777. doi: 10.1016/j.ijpharm.2024.123777
98. Rodríguez-Pombo L, de Castro-López MJ, Sánchez-Pintos P, et al. Paediatric clinical study of 3D printed personalised medicines for rare metabolic disorders. Int J Pharm. 2024;657:124140. doi: 10.1016/j.ijpharm.2024.124140
99. Johannesson J, Pathare MM, Johansson M, Bergström CAS, Teleki A. Synergistic stabilization of emulsion gel by nanoparticles and surfactant enables 3D printing of lipid-rich solid oral dosage forms. J Colloid Interface Sci. 2023;650:1253–1264. doi: 10.1016/j.jcis.2023.07.055
100. Rouaz-El Hajoui K, Herrada-Manchón H, Rodríguez-González D, et al. Pellets and gummies: seeking a 3D printed gastro-resistant omeprazole dosage for paediatric administration. Int J Pharm. 2023;643:123289. doi: 10.1016/j.ijpharm.2023.123289
101. Chatzitaki AT, Mystiridou E, Bouropoulos N, Ritzoulis C, Karavasili C, Fatouros DG. Semi-solid extrusion 3D printing of starch-based soft dosage forms for the treatment of paediatric latent tuberculosis infection. J Pharm Pharmacol. 2022;74(10):1498–1506. doi: 10.1093/jpp/rgab121
102. Han X, Kang D, Liu B, et al. Feasibility of developing hospital preparation by semisolid extrusion 3D printing: personalized amlodipine besylate chewable tablets. Pharm Dev Technol. 2022;27(2):164–174. doi: 10.1080/10837450.2022.2027965
103. Zhu C, Tian Y, Zhang E, et al. Semisolid extrusion 3D printing of propranolol hydrochloride gummy chewable tablets: an innovative approach to prepare personalized medicine for pediatrics. AAPS PharmSciTech. 2022;23(5):166. doi: 10.1208/s12249-022-02304-x
104. Wang F, Li L, Zhu X, Chen F, Han X. Development of pH-responsive polypills via semi-solid extrusion 3D printing. Bioengineering. 2023;10(4):402. doi: 10.3390/bioengineering10040402
105. Korelc K, Larsen BS, Heintze AL, et al. Towards personalized drug delivery via semi-solid extrusion: exploring poly(vinyl alcohol-co-vinyl acetate) copolymers for hydrochlorothiazide-loaded films. Eur J Pharm Sci. 2024;192:106645. doi: 10.1016/j.ejps.2023.106645
106. Yi S, Xie J, Chen L, Xu F. Preparation of loratadine orally disintegrating tablets by semi-solid extrusion 3D printing. Curr Drug Deliv. 2023;20(6):818–829. doi: 10.2174/1567201819666221011094913
107. Koshovyi O, Heinämäki J, Raal A, et al. Pharmaceutical 3D-printing of nanoemulsified eucalypt extracts and their antimicrobial activity. Eur J Pharm Sci. 2023;187:106487. doi: 10.1016/j.ejps.2023.106487
108. Schmidt LM, dos Santos J, de Oliveira TV, et al. Drug-loaded mesoporous silica on carboxymethyl cellulose hydrogel: Development of innovative 3D printed hydrophilic films. Int J Pharm. 2022;620:121750. doi: 10.1016/j.ijpharm.2022.121750
109. Panraksa P, Rachtanapun P, Thipchai P, et al. Sustainable 3D printing of oral films with tunable characteristics using CMC-based inks from durian rind wastes. Eur J Pharm Biopharm. 2023;186:30–42. doi: 10.1016/j.ejpb.2023.03.006
110. Mathiyalagan R, Sjöholm E, Manandhar S, et al. Personalizing oral delivery of nanoformed piroxicam by semi-solid extrusion 3D printing. Eur J Pharm Sci. 2023; 188:106497. doi: 10.1016/j.ejps.2023.106497
111. Johannesson J, Wu M, Johansson M, Bergström CAS. Quality attributes for printable emulsion gels and 3D-printed tablets: towards production of personalized dosage forms. Int J Pharm. 2023;646:123413. doi: 10.1016/j.ijpharm.2023.123413
112. Suárez-González J, Magariños-Triviño M, Díaz-Torres E, Cáceres-Pérez AR, Santoveña-Estévez A, Fariña JB. Individualized orodispersible pediatric dosage forms obtained by molding and semi-solid extrusion by 3D printing: a comparative study for hydrochlorothiazide. J Drug Deliv Sci Technol. 2021;66:102884. doi: 10.1016/j.jddst.2021.102884
113. Hu J, Fitaihi R, Abukhamees S, Abdelhakim HE. Formulation and characterisation of carbamazepine orodispersible 3D-printed mini-tablets for paediatric use. Pharmaceutics. 2023;15(1):250. doi: 10.3390/pharmaceutics15010250
114. Elbl J, Veselý M, Blaháčková D, et al. Development of 3D printed multi-layered orodispersible films with porous structure applicable as a substrate for inkjet printing. Pharmaceutics. 2023;15(2):714. doi: 10.3390/pharmaceutics15020714
115. Janigová N, Elbl J, Pavloková S, Gajdziok J. Effects of various drying times on the properties of 3D printed orodispersible films. Pharmaceutics. 2022;14(2):250. doi: 10.3390/pharmaceutics14020250
116. Panraksa P, Zhang B, Rachtanapun P, Jantanasakulwong K, Qi S, Jantrawut P. ‘Tablet-in-Syringe’: a novel dosing mechanism for dysphagic patients containing fast-disintegrating tablets fabricated using semisolid extrusion 3D printing. Pharmaceutics. 2022;14(2):443. doi: 10.3390/pharmaceutics14020443
117. Abdella S, Afinjuomo F, Song Y, Upton R, Garg S. 3D printed bilayer mucoadhesive buccal film of estradiol: Impact of design on film properties, release kinetics and predicted in vivo performance. Int J Pharm. 2022;628:122324. doi: 10.1016/j.ijpharm.2022.122324
118. Takashima H, Tagami T, Kato S, Pae H, Ozeki T, Shibuya Y. Three-dimensional printing of an apigenin-loaded mucoadhesive film for tailored therapy to oral leukoplakia and the chemopreventive effect on a rat model of oral carcinogenesis. Pharmaceutics. 2022;14(8):1575. doi: 10.3390/pharmaceutics14081575
119. Munoz-Perez E, Rubio-Retama J, Cussó L, Igartua M, Hernandez RM, Santos-Vizcaino E. 3D-printed Laponite/Alginate hydrogel-based suppositories for versatile drug loading and release. Drug Deliv Transl Res. 2024. doi: 10.1007/s13346-023-01506-5
120. Awad A, Hollis E, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed multi-drug-loaded suppositories for acute severe ulcerative colitis. Int J Pharm X. 2023; 5:100165. doi: 10.1016/j.ijpx.2023.100165
121. Awad A, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed infliximab suppositories for rectal biologic delivery. Int J Pharm X. 2023;5:100176. doi: 10.1016/j.ijpx.2023.100176
122. Utomo E, Domínguez-Robles J, Anjani QK, et al. Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment. Int J Pharm X. 2022;5:100142. doi: 10.1016/j.ijpx.2022.100142
123. Teworte S, Aleandri S, Weber JR, Carone M, Luciani P. Mucoadhesive 3D printed vaginal ovules to treat endometriosis and fibrotic uterine diseases. Eur J Pharm Sci. 2023;188:106501. doi: 10.1016/j.ejps.2023.106501
124. Pérez Gutiérrez CL, Cottone F, Pagano C, et al. The Optimization of Pressure-Assisted Microsyringe (PAM) 3D printing parameters for the development of sustainable starch-based patches. Polymers. 2023;15(18):3792. doi: 10.3390/polym15183792
125. Kyser AJ, Mahmoud MY, Herold SE, et al. Formulation and characterization of pressure-assisted microsyringe 3D-printed scaffolds for controlled intravaginal antibiotic release. Int J Pharm. 2023;641:123054. doi: 10.1016/j.ijpharm.2023.123054
126. Archana M, Rubini D, Dharshini KP, et al. Development of an anti-infective urinary catheter composed of polyvinyl alcohol/sodium alginate/methylcellulose/polyethylene glycol by using a pressure-assisted 3D-printing technique. Int J Biol Macromol. 2023;249:126029. doi: 10.1016/j.ijbiomac.2023.126029
127. Conceição J, Farto-Vaamonde X, Goyanes A, et al. Hydroxypropyl-β-cyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. Carbohydr Polym. 2019;221:55–62. doi: 10.1016/j.carbpol.2019.05.084
128. Rahman J, Quodbach J. Versatility on demand – the case for semi-solid micro-extrusion in pharmaceutics. Adv Drug Deliv Rev. 2021;172:104–126. doi: 10.1016/j.addr.2021.02.013
129. Elbadawi M, Gustaffson T, Gaisford S, Basit AW. 3D printing tablets: predicting printability and drug dissolution from rheological data. Int J Pharm. 2020; 590:119868. doi: 10.1016/j.ijpharm.2020.119868
130. Suárez-González J, Díaz-Torres E, Monzón-Rodríguez CN, Santoveña-Estévez A, Fariña JB. Revolutionizing three-dimensional printing: enhancing quality assurance and point-of-care integration through instrumentation. Pharmaceutics. 2024;16(3):408. doi: 10.3390/pharmaceutics16030408
131. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643–650. doi: 10.1016/j.ijpharm.2015.07.067
132. Haring AP, Tong Y, Halper J, Johnson BN. Programming of multicomponent temporal release profiles in 3D printed polypills via core–shell, multilayer, and gradient concentration profiles. Adv Healthc Mater. 2018;7(16):1800213. doi: 10.1002/adhm.201800213
133. Borges AF, Silva C, Coelho JFJ, Simões S. Outlining critical quality attributes (CQAs) as guidance for the development of orodispersible films. Pharm Dev Technol. 2017;22(2):237–245. doi: 10.1080/10837450.2016.1199567
134. El Aita I, Breitkreutz J, Quodbach J. On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing. Eur J Pharm Biopharm. 2019;134:29–36. doi: 10.1016/j.ejpb.2018.11.008
135. Pluta P. Compounding overview: primary considerations for the workplace. Pharm Technol. 2024;48(2):18–22. Accessed April 10, 2024. https://www.pharmtech.com/view/compoundingoverview-primary-considerations-for-the-workplace
136. European Medicines Agency. ICH guideline Q10 on pharmaceutical quality system; 2007. https://www.ema.europa.eu/en/documents/scientificguideline/international-conference-harmonisationtechnical-requirements-registration-pharmaceuticals-human_en.pdf
137. European Medicines Agency. ICH guideline Q8 (R2) on pharmaceutical development; 2004. https://www.ema.europa.eu/en/documents/scientificguideline/international-conference-harmonisationtechnical-requirements-registration-pharmaceuticals-human-use_en-11.pdf
138. Seoane-Viaño I, Xu X, Ong JJ, et al. A case study on decentralized manufacturing of 3D printed medicines. Int J Pharm X. 2023;5:100184. doi: 10.1016/j.ijpx.2023.100184
139. Section 503A of the Federal Food, Drug, and Cosmetic Act. FDA; 2018. Accessed April 12, 2024. https://www.fda.gov/drugs/human-drug-compounding/section-503a-federal-food-drug-and-cosmetic-act
140. Beitler BG, Abraham PF, Glennon AR, et al. Interpretation of regulatory factors for 3D printing at hospitals and medical centers, or at the point of care. 3D Print Med. 2022;8(1):7. doi: 10.1186/s41205-022-00134-y
141. Jørgensen AK, Ong JJ, Parhizkar M, Goyanes A, Basit AW. Advancing non-destructive analysis of 3D printed medicines. Trends Pharmacol Sci. 2023;44(6):379–393. doi: 10.1016/j.tips.2023.03.006
142. Miller GF, Coffield E, Leroy Z, Wallin R. Prevalence and costs of five chronic conditions in children. J Sch Nurs Off Publ Natl Assoc Sch Nurses. 2016;32(5):357–364. doi: 10.1177/1059840516641190
143. Bg PK, Mehrotra S, Marques SM, Kumar L, Verma R. 3D printing in personalized medicines: a focus on applications of the technology. Mater Today Commun. 2023;35:105875. doi: 10.1016/j.mtcomm.2023.105875
144. ClinicalTrials.gov. Metronomic Chemotherapy in Wilms Tumor (MetroWilms-1906) (MetroWilms); 2022. Accessed April 30, 2024. https://classic.clinicaltrials.gov/ct2/show/NCT05384821
145. Binson G, Sanchez C, Waton K, et al. Accuracy of dose administered to children using off-labelled or unlicensed oral dosage forms. Pharmaceutics. 2021;13(7):1014. doi: 10.3390/pharmaceutics13071014
146. Curti C, Brandin T, Kabac T, et al. Contrôle qualité des préparations magistrales en officine: contraintes réglementaires et pistes d’amélioration. Pharm Hosp Clin. 2020;55(3):268–274. doi: 10.1016/j.phclin.2020.04.009
147. Zheng Z, Lv J, Yang W, et al. Preparation and application of subdivided tablets using 3D printing for precise hospital dispensing. Eur J Pharm Sci. 2020;149:105293. doi: 10.1016/j.ejps.2020.105293
148. Cui M, Pan H, Fang D, Sun H, Qiao S, Pan W. Exploration and evaluation of dynamic dose-control platform for pediatric medicine based on Drop-on-Powder 3D printing technology. Int J Pharm. 2021;596:120201. doi: 10.1016/j.ijpharm.2021.120201
149. Park BJ, Choi HJ, Moon SJ, et al. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2019;49:575–585. doi: 10.1007/s40005-018-00414-y
150. de Groot MCH, van Puijenbroek EP. Clindamycin and taste disorders. Br J Clin Pharmacol. 2007;64(4):542–545. doi: 10.1111/j.1365-2125.2007.02908.x
151. Shinotsuka H, Mizutani N, Aikawa S, Kimura G. Palatability evaluation of sulfamethoxazole/trimethoprim with sweetener using the two-bottle choice test. Chem Pharm Bull (Tokyo). 2023;71(12):906–908. doi: 10.1248/cpb.c23-00428
152. Protopapa C, Siamidi A, Kolipaka SS, Junqueira LA, Douroumis D, Vlachou M. In vitro profile of hydrocortisone release from three-dimensionally printed paediatric mini-tablets. Pharmaceutics. 2024;16(3):385. doi: 10.3390/pharmaceutics16030385
153. Herrada-Manchón H, Rodríguez-González D, Alejandro Fernández M, et al. 3D printed gummies: personalized drug dosage in a safe and appealing way. Int J Pharm. 2020;587:119687. doi: 10.1016/j.ijpharm.2020.119687
154. Godoi FC, Prakash S, Bhandari BR. 3d printing technologies applied for food design: Status and prospects. J Food Eng. 2016;179:44–54. doi: 10.1016/j.jfoodeng.2016.01.025
155. Schmidt CM, Knief A, Deuster D, Matulat P, Zehnhoff-Dinnesen A. Melatonin is a useful alternative to sedation in children undergoing brainstem audiometry with an age dependent success rate - a field report of 250 investigations. Neuropediatrics. 2007;38:2–4. doi: 10.1055/s-2007-981467
156. Seoane-Viaño I, Ong JJ, Luzardo-Álvarez A, et al. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci. 2021;16(1):110–119. doi: 10.1016/j.ajps.2020.06.003
157. Chakka LRJ, Chede S. 3D printing of pharmaceuticals for disease treatment. Front Med Technol. 2023;4: 1040052. doi: 10.3389/fmedt.2022.1040052
158. Heitman T, Day AJ, Bassani AS. Pediatric compounding pharmacy: taking on the responsibility of providing quality customized prescriptions. Children. 2019;6(5):66. doi: 10.3390/children6050066
159. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–17. doi: 10.1016/j.ejps.2014.11.009