active-distributed temperature sensing; heterogeneity; hyporheic zone; lowland river; water fluxes variabilities; Active-distributed temperature sensing; Distributed temperature sensing; Flux variability; Heterogeneity; Hyporheic; Hyporheic zone; Lowland rivers; Streambeds; Water flux; Water flux variability; Water Science and Technology
Abstract :
[en] Characterizing the spatiotemporal variability of water fluxes at the stream-groundwater interface is extremely challenging due to the lack of methods for estimating hyporheic flows at different scales. To address this, we demonstrate the potential of Active-Distributed Temperature Sensing (DTS) methods for measuring and mapping hyporheic flow in a lowland stream. Experiments were conducted by burying a few hundred meters of heatable Fiber-Optic cables within streambed sediments in a large meander, where permanent stream-losing conditions are observed along the stream reach. We propose a new methodology to filter ambient temperature variations along the heated section of the DTS cable and to extend the application of Active-DTS to losing streams. After data processing, the results show that, along lateral and longitudinal stream profiles, both thermal conductivity and water flux values follow normal distributions with relatively small standard deviations. Hyporheic fluxes vary by one order of magnitude. The absence of correlation between water fluxes within the hyporheic zone and streambed topography variations suggests that the variability is mainly controlled by local streambed heterogeneities. This means that the spatiotemporal variability of fluxes may be used as a marker of the variability of streambed hydraulic conductivities. The relatively low spatial variability (one order of magnitude) in hyporheic flow suggests a small variability of streambed properties. This is an important result for calibrating models assessing hyporheic processes, in which the hydraulic conductivity distribution is generally assumed. Additionally, measurements made over three years yield similar estimates showing the remarkable stability of hyporheic flows through time.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Simon, Nataline ; Université de Liège - ULiège > Urban and Environmental Engineering
Bour, O.; CNRS, Univ Rennes, Geosciences Rennes – UMR 6118, Rennes, France
Heyman, J. ; CNRS, Univ Rennes, Geosciences Rennes – UMR 6118, Rennes, France
Lavenant, N.; CNRS, Univ Rennes, Geosciences Rennes – UMR 6118, Rennes, France
Petton, C.; CNRS, Univ Rennes, Geosciences Rennes – UMR 6118, Rennes, France
Crave, A.; CNRS, Univ Rennes, Geosciences Rennes – UMR 6118, Rennes, France
Language :
English
Title :
Spatiotemporal Variability of Hyporheic Flow in a Losing River Section
Publication date :
2024
Journal title :
Water Resources Research
ISSN :
0043-1397
eISSN :
1944-7973
Publisher :
John Wiley and Sons Inc
Volume :
60
Issue :
6
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
AELB - Agence de l'eau Loire-Bretagne ANR - Agence Nationale de la Recherche
Funding text :
This work was supported by the Agence de l\u2019Eau Loire Bretagne and by the ANR project EQUIPEX CRITEX (Grant ANR-11-EQPX-0011). We warmly thank Mamadou Ndom for his support during the installation of the FO cable, as well as Kerry Gallagher for English corrections and his kind and insightful suggestions. We also sincerely thank the associate editor, Prof. Dr. Jan Fleckenstein, and three reviewers for their remarks and comments that greatly help to improve the manuscript.This work was supported by the Agence de l\u2019Eau Loire Bretagne and by the ANR project EQUIPEX CRITEX (Grant ANR\u201011\u2010EQPX\u20100011). We warmly thank Mamadou Ndom for his support during the installation of the FO cable, as well as Kerry Gallagher for English corrections and his kind and insightful suggestions. We also sincerely thank the associate editor, Prof. Dr. Jan Fleckenstein, and three reviewers for their remarks and comments that greatly help to improve the manuscript.
Anderson, M. P. (2005). Heat as a ground water tracer. Ground Water, 43(6), 951–968. https://doi.org/10.1111/j.1745-6584.2005.00052.x
Arnon, S., Marx, L. P., Searcy, K. E., & Packman, A. I. (2010). Effects of overlying velocity, particle size, and biofilm growth on stream–subsurface exchange of particles. Hydrological Processes, 24(1), 108–114. https://doi.org/10.1002/hyp.7490
Aufleger, M., Conrad, M., Goltz, M., Perzlmaier, S., & Porras, P. (2007). Innovative dam monitoring tools based on distributed temperature measurement. Jordan Journal of Civil Engineering, 1, 29–37.
Banks, E. W., Morgan, L. K., Sai Louie, A. J., Dempsey, D., & Wilson, S. R. (2022). Active distributed temperature sensing to assess surface water–groundwater interaction and river loss in braided river systems. Journal of Hydrology, 615, 128667. https://doi.org/10.1016/j.jhydrol.2022.128667
Banks, E. W., Shanafield, M. A., Noorduijn, S., McCallum, J., Lewandowski, J., & Batelaan, O. (2018). Active heat pulse sensing of 3-D-flow fields in streambeds. Hydrology and Earth System Sciences, 22(3), 1917–1929. https://doi.org/10.5194/hess-22-1917-2018
Bardini, L., Boano, F., Cardenas, M. B., Sawyer, A. H., Revelli, R., & Ridolfi, L. (2013). Small-scale permeability heterogeneity has negligible effects on nutrient cycling in streambeds. Geophysical Research Letters, 40(6), 1118–1122. https://doi.org/10.1002/grl.50224
Bencala, K. (1993). A perspective on stream-catchment connections. Journal of the North American Benthological Society, 12(1), 44–47. https://doi.org/10.2307/1467684
Bense, V. F., Read, T., Bour, O., Le Borgne, T., Coleman, T., Krause, S., et al. (2016). Distributed temperature sensing as a downhole tool in hydrogeology. Water Resources Research, 52(12), 9259–9273. https://doi.org/10.1002/2016WR018869
Boano, F., Camporeale, C., & Revelli, R. (2010). A linear model for the coupled surface-subsurface flow in a meandering stream. Water Resources Research, 46(7), W07535. https://doi.org/10.1029/2009WR008317
Boano, F., Camporeale, C., Revelli, R., & Ridolfi, L. (2006). Sinuosity-driven hyporheic exchange in meandering rivers. Geophysical Research Letters, 33(18), L18406. https://doi.org/10.1029/2006GL027630
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., & Wörman, A. (2014). Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4), 603–679. https://doi.org/10.1002/2012RG000417
Boano, F., Revelli, R., & Ridolfi, L. (2007). Bedform-induced hyporheic exchange with unsteady flows. Advances in Water Resources, 30(1), 148–156. https://doi.org/10.1016/j.advwatres.2006.03.004
Briggs, M. A., Buckley, S. F., Bagtzoglou, A. C., Werkema, D. D., & Lane, J. W. (2016). Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling. Water Resources Research, 52(7), 5179–5194. https://doi.org/10.1002/2015WR018219
Brunner, P., Therrien, R., Renard, P., Simmons, C. T., & Franssen, H.-J. H. (2017). Advances in understanding river-groundwater interactions. Reviews of Geophysics, 55(3), 818–854. https://doi.org/10.1002/2017RG000556
Cardenas, M. B. (2008a). Surface water-groundwater interface geomorphology leads to scaling of residence times. Geophysical Research Letters, 35(8), L08402. https://doi.org/10.1029/2008GL033753
Cardenas, M. B. (2008b). The effect of river bend morphology on flow and timescales of surface water–groundwater exchange across pointbars. Journal of Hydrology, 362(1), 134–141. https://doi.org/10.1016/j.jhydrol.2008.08.018
Cardenas, M. B. (2009). A model for lateral hyporheic flow based on valley slope and channel sinuosity. Water Resources Research, 45(1), W01501. https://doi.org/10.1029/2008WR007442
Cardenas, M. B., & Wilson, J. L. (2007). Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resources Research, 43(8), W08412. https://doi.org/10.1029/2006WR005787
Cardenas, M. B., Wilson, J. L., & Zlotnik, V. A. (2004). Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resources Research, 40(8), W08307. https://doi.org/10.1029/2004WR003008
Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids. Oxford Univers. Press. Retrieved from https://infoscience.epfl.ch/record/27427
Chen, J., Xiong, F., Zheng, J., Ge, Q., & Cheng, F. (2019). The influence of infiltration angle on the identification effect of seepage with linear heat source method. Measurement, 148, 106974. https://doi.org/10.1016/j.measurement.2019.106974
Constantz, J. (2008). Heat as a tracer to determine streambed water exchanges. Water Resources Research, 44(4), W00D10. https://doi.org/10.1029/2008WR006996
Cucchi, K., Rivière, A., Baudin, A., Berrhouma, A., Durand, V., Rejiba, F., et al. (2018). LOMOS-mini: A coupled system quantifying transient water and heat exchanges in streambeds. Journal of Hydrology, 561, 1037–1047. https://doi.org/10.1016/j.jhydrol.2017.10.074
del Val, L., Carrera, J., Pool, M., Martínez, L., Casanovas, C., Bour, O., & Folch, A. (2021). Heat dissipation test with fiber-optic distributed temperature sensing to estimate groundwater flux. Water Resources Research, 57(3), e2020WR027228. https://doi.org/10.1029/2020WR027228
des Tombe, B. F., Bakker, M., Smits, F., Schaars, F., & van der Made, K.-J. (2019). Estimation of the variation in specific discharge over large depth using distributed temperature sensing (DTS) Measurements of the heat pulse response. Water Resources Research, 55(1), 811–826. https://doi.org/10.1029/2018WR024171
Diao, N., Li, Q., & Fang, Z. (2004). Heat transfer in ground heat exchangers with groundwater advection. International Journal of Thermal Sciences, 43(12), 1203–1211. https://doi.org/10.1016/j.ijthermalsci.2004.04.009
Fleckenstein, J. H., Krause, S., Hannah, D. M., & Boano, F. (2010). Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Special Issue on ground water-surface water interactions, 33(11), 1291–1295. https://doi.org/10.1016/j.advwatres.2010.09.011
Flipo, N., Monteil, C., Poulin, M., de Fouquet, C., & Krimissa, M. (2012). Hybrid fitting of a hydrosystem model: Long-term insight into the Beauce aquifer functioning (France). Water Resources Research, 48(5), W05509. https://doi.org/10.1029/2011WR011092
Flipo, N., Mouhri, A., Labarthe, B., Biancamaria, S., Rivière, A., & Weill, P. (2014). Continental hydrosystem modelling: The concept of nested stream-aquifer interfaces. Hydrology and Earth System Sciences, 18(8), 3121–3149. https://doi.org/10.5194/hess-18-3121-2014
Fovet, O., Ndom, M., Crave, A., & Pannard, A. (2020). Influence of dams on river water-quality signatures at event and seasonal scales: The Sélune River (France) case study. River Research and Applications, 36(7), 1267–1278. https://doi.org/10.1002/rra.3618
Fox, A., Boano, F., & Arnon, S. (2014). Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. Water Resources Research, 50(3), 1895–1907. https://doi.org/10.1002/2013WR014668
Fox, A., Laube, G., Schmidt, C., Fleckenstein, J. H., & Arnon, S. (2016). The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds. Water Resources Research, 52(9), 7460–7477. https://doi.org/10.1002/2016WR018677
Frei, S., Durejka, S., Le Lay, H., Thomas, Z., & Gilfedder, B. S. (2019). Quantification of hyporheic nitrate removal at the reach scale: Exposure times versus residence times. Water Resources Research, 55(11), 9808–9825. https://doi.org/10.1029/2019WR025540
Genereux, D. P., Leahy, S., Mitasova, H., Kennedy, C. D., & Corbett, D. R. (2008). Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. Journal of Hydrology, 358(3), 332–353. https://doi.org/10.1016/j.jhydrol.2008.06.017
Gianni, G., Richon, J., Perrochet, P., Vogel, A., & Brunner, P. (2016). Rapid identification of transience in streambed conductance by inversion of floodwave responses. Water Resources Research, 52(4), 2647–2658. https://doi.org/10.1002/2015WR017154
Gomez-Velez, J. D., & Harvey, J. W. (2014). A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins. Geophysical Research Letters, 41(18), 6403–6412. https://doi.org/10.1002/2014GL061099
Goto, S., Yamano, M., & Kinoshita, M. (2005). Thermal response of sediment with vertical fluid flow to periodic temperature variation at the surface. Journal of Geophysical Research, 110(B1), B01106. https://doi.org/10.1029/2004JB003419
Harvey, J., & Bencala, K. (1993). The effect of streambed topography on surface-subsurface water exchange. Water Resources Research, 29(1), 89–98. https://doi.org/10.1029/92WR01960
Hatch, C. E., Fisher, A. T., Revenaugh, J. S., Constantz, J., & Ruehl, C. (2006). Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resources Research, 42(10), W10410. https://doi.org/10.1029/2005WR004787
Hermans, T., Goderniaux, P., Jougnot, D., Fleckenstein, J. H., Brunner, P., Nguyen, F., et al. (2023). Advancing measurements and representations of subsurface heterogeneity and dynamic processes: Towards 4D hydrogeology. Hydrology and Earth System Sciences, 27(1), 255–287. https://doi.org/10.5194/hess-27-255-2023
Hester, E. T., Cardenas, M. B., Haggerty, R., & Apte, S. V. (2017). The importance and challenge of hyporheic mixing. Water Resources Research, 53(5), 3565–3575. https://doi.org/10.1002/2016WR020005
Hester, E. T., Eastes, L. A., & Widdowson, M. A. (2019). Effect of surface water stage fluctuation on mixing-dependent hyporheic denitrification in riverbed dunes. Water Resources Research, 55(6), 4668–4687. https://doi.org/10.1029/2018WR024198
Humphrey, C. E., Solomon, D. K., Genereux, D. P., Gilmore, T. E., Mittelstet, A. R., Zlotnik, V. A., et al. (2022). Using automated seepage meters to quantify the spatial variability and net flux of groundwater to a stream. Water Resources Research, 58(6), e2021WR030711. https://doi.org/10.1029/2021WR030711
Jones, J. B., & Mulholland, P. J. (2000). Aquatic ecology series. In Streams and ground waters (p. II). Academic Press. https://doi.org/10.1016/B978-0-12-389845-6.50020-X
Kalbus, E., Reinstorf, F., & Schirmer, M. (2006). Measuring methods for groundwater - Surface water interactions: A review. Hydrology and Earth System Sciences, 10(6), 873–887. https://doi.org/10.5194/hess-10-873-2006
Kaufman, M. H., Cardenas, M. B., Buttles, J., Kessler, A. J., & Cook, P. L. M. (2017). Hyporheic hot moments: Dissolved oxygen dynamics in the hyporheic zone in response to surface flow perturbations. Water Resources Research, 53(8), 6642–6662. https://doi.org/10.1002/2016WR020296
Krause, S., Abbott, B. W., Baranov, V., Bernal, S., Blaen, P., Datry, T., et al. (2022). Organizational principles of hyporheic exchange flow and biogeochemical cycling in river networks across scales. Water Resources Research, 58(3), e2021WR029771. https://doi.org/10.1029/2021WR029771
Krause, S., Hannah, D. M., & Fleckenstein, J. H. (2009). Hyporheic hydrology: Interactions at the groundwater-surface water interface. Hydrological Processes, 23(15), 2103–2107. https://doi.org/10.1002/hyp.7366
Krause, S., Hannah, D. M., Fleckenstein, J. H., Heppell, C. M., Kaeser, D., Pickup, R., et al. (2011). Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology, 4(4), 481–499. https://doi.org/10.1002/eco.176
Kurth, A.-M., Weber, C., & Schirmer, M. (2015). How effective is river restoration in re-establishing groundwater-surface water interactions? - A case study. Hydrology and Earth System Sciences, 19(6), 2663–2672. https://doi.org/10.5194/hess-19-2663-2015
Lague, D., & Feldmann, B. (2020). Chapter 2—Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis. In P. Tarolli & S. M. Mudd (Éds.), Developments in Earth surface processes (Vol. 23, p. 25–54). Elsevier. https://doi.org/10.1016/B978-0-444-64177-9.00002-3
Landon, M. K., Rus, D. L., & Harvey, F. E. (2001). Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Groundwater, 39(6), 870–885. https://doi.org/10.1111/j.1745-6584.2001.tb02475.x
Laube, G., Schmidt, C., & Fleckenstein, J. H. (2018). The systematic effect of streambed conductivity heterogeneity on hyporheic flux and residence time. Advances in Water Resources, 122, 60–69. https://doi.org/10.1016/j.advwatres.2018.10.003
Lewandowski, J., Angermann, L., Nuetzmann, G., & Fleckenstein, J. H. (2011). A heat pulse technique for the determination of small-scale flow directions and flow velocities in the streambed of sand-bed streams. Hydrological Processes, 25(20), 3244–3255. https://doi.org/10.1002/hyp.8062
Mamer, E. A., & Lowry, C. S. (2013). Locating and quantifying spatially distributed groundwater/surface water interactions using temperature signals with paired fiber-optic cables. Water Resources Research, 49(11), 7670–7680. https://doi.org/10.1002/2013WR014235
Perzlmaier, S., Aufleger, M., & Conrad, M. (2004). Distributed fiber optic temperature measurements in hydraulic engineering: Prospects of the heat-up method. In Proceedings of a workshop on dam safety problems and solutions, 72nd ICOLD annual meeting, Seoul, South Korea.
Read, T., Bour, O., Selker, J. S., Bense, V. F., Borgne, T. L., Hochreutener, R., & Lavenant, N. (2014). Active-distributed temperature sensing to continuously quantify vertical flow in boreholes. Water Resources Research, 50(5), 3706–3713. https://doi.org/10.1002/2014WR015273
Revelli, R., Boano, F., Camporeale, C., & Ridolfi, L. (2008). Intra-meander hyporheic flow in alluvial rivers. Water Resources Research, 44(12), W12428. https://doi.org/10.1029/2008WR007081
Rosenberry, D. O., Duque, C., & Lee, D. R. (2020). History and evolution of seepage meters for quantifying flow between groundwater and surface water: Part 1 – Freshwater settings. Earth-Science Reviews, 204, 103167. https://doi.org/10.1016/j.earscirev.2020.103167
Salehin, M., Packman, A. I., & Paradis, M. (2004). Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling. Water Resources Research, 40(11), W11504. https://doi.org/10.1029/2003WR002567
Schmidt, C., Bayer-Raich, M., & Schirmer, M. (2006). Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale. Hydrology and Earth System Sciences, 10(6), 849–859. https://doi.org/10.5194/hess-10-849-2006
Shackelford, C. D. (2013). Geoenvironmental engineering. In Reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.05424-5
Shanafield, M., Banks, E. W., Arkwright, J. W., & Hausner, M. B. (2018). Fiber-optic sensing for environmental applications: Where we have come from and what is possible. Water Resources Research, 54(11), 8552–8557. https://doi.org/10.1029/2018WR022768
Shanafield, M., Pohll, G., & Susfalk, R. (2010). Use of heat-based vertical fluxes to approximate total flux in simple channels. Water Resources Research, 46(3), W03508. https://doi.org/10.1029/2009WR007956
Simon, N., & Bour, O. (2023). An ADTS toolbox for automatically interpreting active distributed temperature sensing measurements. Groundwater, 61(2), 215–223. https://doi.org/10.1111/gwat.13172
Simon, N., Bour, O., & Crave, A. (2023). Dataset of “Spatiotemporal variability of hyporheic flow in a losing river section. Recherche Data Gouv. https://doi.org/10.57745/FHITDV
Simon, N., Bour, O., Faucheux, M., Lavenant, N., Le Lay, H., Fovet, O., et al. (2022). Combining passive and active distributed temperature sensing measurements to locate and quantify groundwater discharge variability into a headwater stream. Hydrology and Earth System Sciences, 26(5), 1459–1479. https://doi.org/10.5194/hess-26-1459-2022
Simon, N., Bour, O., Lavenant, N., Porel, G., Nauleau, B., & Klepikova, M. (2023). Monitoring groundwater fluxes variations through active-DTS measurements. Journal of Hydrology, 622, 129755. https://doi.org/10.1016/j.jhydrol.2023.129755
Simon, N., Bour, O., Lavenant, N., Porel, G., Nauleau, B., Pouladi, B., & Longuevergne, L. (2020). A comparison of different methods to estimate the effective spatial resolution of FO-DTS measurements achieved during sandbox experiments. Sensors, 20(2), 570. https://doi.org/10.3390/s20020570
Simon, N., Bour, O., Lavenant, N., Porel, G., Nauleau, B., Pouladi, B., et al. (2021). Numerical and experimental validation of the applicability of active-DTS experiments to estimate thermal conductivity and groundwater flux in porous media. Water Resources Research, 57(1), e2020WR028078. https://doi.org/10.1029/2020WR028078
Singh, T., Gomez-Velez, J. D., Wu, L., Wörman, A., Hannah, D. M., & Krause, S. (2020). Effects of Successive peak flow events on hyporheic exchange and residence times. Water Resources Research, 56(8), e2020WR027113. https://doi.org/10.1029/2020WR027113
Singh, T., Wu, L., Gomez-Velez, J. D., Lewandowski, J., Hannah, D. M., & Krause, S. (2019). Dynamic hyporheic zones: Exploring the role of peak flow events on bedform-induced hyporheic exchange. Water Resources Research, 55(1), 218–235. https://doi.org/10.1029/2018WR022993
Sophocleous, M. (2002). Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, 10(1), 52–67. https://doi.org/10.1007/s10040-001-0170-8
Stallman, W. (1965). Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature (Vol. 70). https://doi.org/10.1029/JZ070i012p02821
Stauffer, F., Bayer, P., Blum, P., Molina Giraldo, N., & Kinzelbach, W. (2013). Thermal use of shallow groundwater. https://doi.org/10.1201/b16239
Stonedahl, S. H., Harvey, J. W., Wörman, A., Salehin, M., & Packman, A. I. (2010). A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resources Research, 46(12), W12539. https://doi.org/10.1029/2009WR008865
Storey, R. G., Howard, K. W. F., & Williams, D. D. (2003). Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: A three-dimensional groundwater flow model. Water Resources Research, 39(2), 1034. https://doi.org/10.1029/2002WR001367
Tonina, D., & Buffington, J. M. (2011). Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels. Water Resources Research, 47(8), W08508. https://doi.org/10.1029/2010WR009140
Tóth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68(16), 4795–4812. https://doi.org/10.1029/JZ068i016p04795
Trauth, N., & Fleckenstein, J. H. (2017). Single discharge events increase reactive efficiency of the hyporheic zone. Water Resources Research, 53(1), 779–798. https://doi.org/10.1002/2016WR019488
van de Giesen, N., Steele-Dunne, S. C., Jansen, J., Hoes, O., Hausner, M. B., Tyler, S., & Selker, J. (2012). Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing data. Sensors, 12(5), 5471–5485. https://doi.org/10.3390/s120505471
Woessner, W. W. (2000). Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Ground Water, 38(3), 423–429. https://doi.org/10.1111/j.1745-6584.2000.tb00228.x
Wondzell, S. M., Herzog, S. P., Gooseff, M. N., Ward, A. S., & Schmadel, N. M. (2019). Geomorphic controls on hyporheic exchange across scales—Watersheds to particles. In Reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.12135-9
Wörman, A., Packman, A. I., Johansson, H., & Jonsson, K. (2002). Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resources Research, 38(1), 2-1–2-15. https://doi.org/10.1029/2001WR000769
Wörman, A., Packman, A. I., Marklund, L., Harvey, J. W., & Stone, S. H. (2007). Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophysical Research Letters, 34(7), L07402. https://doi.org/10.1029/2007GL029426
Wu, L., Singh, T., Gomez-Velez, J., Nützmann, G., Wörman, A., Krause, S., & Lewandowski, J. (2018). Impact of dynamically changing discharge on hyporheic exchange processes under gaining and losing groundwater conditions. Water Resources Research, 54(12), 10076–10093. https://doi.org/10.1029/2018WR023185
Zhang, B., Gu, K., Bayer, P., Qi, H., Shi, B., Wang, B., et al. (2023). Estimation of groundwater flow rate by an actively heated fiber optics based thermal response test in a grouted borehole. Water Resources Research, 59(1), e2022WR032672. https://doi.org/10.1029/2022WR032672
Zlotnik, V., & Tartakovsky, D. M. (2018). Interpretation of heat-pulse tracer tests for characterization of three-dimensional velocity fields in hyporheic zone. Water Resources Research, 54(6), 4028–4039. https://doi.org/10.1029/2017WR022476