Combination of Physico-Chemical and Lead Isotope Analyses for the Provenance Study of the Archaeological Materials: Example of Saadien Ceramics (16th Century, Marrakech Morocco)
El Halim, Mouhssin; Daoudi, Lahcen; El Idrissi, Hicham El Boudouret al.
archaeological ceramics; lead isotopes; Marrakech; provenance; raw clay materials; Ceramics and Composites; Materials Science (miscellaneous)
Abstract :
[en] This paper aims to study the provenance of archaeological Saadien ceramics (16th century, Marrakech) based on the chemical, mineralogical and lead isotope composition of clays used as raw materials in the manufacture of ceramics in Morocco and collected in the six major potter sites of Marrakech (Ourika I and II, Saada I and II and Mzouda) and Fez (Benjlikh). The clay chemical, mineralogical and isotopic signatures of these raw materials are compared to the compositions of decorated ceramics from El Badi Palace and Saadien Tombs, the most visited archaeological sites in Marrakech, described as World Heritage by UNESCO. The chemical composition was determined using X-ray fluorescence analysis, while the structural changes of the mineral phases during firing were studied using X-ray diffraction over a temperature range between 500–1000 °C. Pb isotopes, on the other hand, were measured using the Nu Plasma MC-ICP-MS technique. Results show that Saadien ceramics were made using calcareous clay from the Fez region. These clays were imported by the artisans from 400 km away to be used in the manufacturing of ceramics in the Saadien buildings of Marrakech. The firing temperature of these materials ranges between 600 and 700 °C for El Badi Palace, and from 800 to 900 °C for the Saadien Tombs ceramics using traditional ovens. This study reveals the mystery behind the source of Saadien ceramics and provides artisans with information about the origin of the raw materials used in Marrakech’s 16th-century buildings, which should be considered for any future restoration of these materials.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
El Halim, Mouhssin ; Laboratoire de Géosciences et Environnement, Faculty of Sciences and Techniques, Cadi Ayyad University, Morocco ; UR Argile, Géochimie et Environnement Sédimentaires (AGEs), Département de Géologie B.18, Sart-Tilman, Université de Liège, Liège, Belgium
Daoudi, Lahcen ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires ; Laboratoire de Géosciences et Environnement, Faculty of Sciences and Techniques, Cadi Ayyad University, Morocco
El Idrissi, Hicham El Boudour ; Laboratoire de Géosciences et Environnement, Faculty of Sciences and Techniques, Cadi Ayyad University, Morocco
El Ouahabi, Meriam ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires
Omdi, Fatima Ezzahra; Laboratoire de Géosciences et Environnement, Faculty of Sciences and Techniques, Cadi Ayyad University, Morocco
Gourfi, Abdelali; Laboratoire de Géosciences et Environnement, Faculty of Sciences and Techniques, Cadi Ayyad University, Morocco
Ait Hmeid, Hanane ; OLMAN-RL, Multidisciplinary Faculty of Nador, Mohamed 1st University, Nador, Morocco
Abdellah, Hanane Id; Laboratoire de Géosciences et Environnement, Faculty of Sciences and Techniques, Cadi Ayyad University, Morocco
Fagel, Nathalie ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires
Language :
English
Title :
Combination of Physico-Chemical and Lead Isotope Analyses for the Provenance Study of the Archaeological Materials: Example of Saadien Ceramics (16th Century, Marrakech Morocco)
The financial support is provided by the \u201CBilateral Cooperation Project Wallonie Bruxelles-Maroc\u201D (grant 2.7) and by the PPR-CNRST program (Centre National de Recherches Scientifiques et Techniques) (grant: PPR1/2015/63) that are all gratefully acknowledged.
Mommsen H. Beier T. Hein A. A complete chemical grouping of the Berkeley neutron activation analysis data on Mycenaean pottery J. Archaeol. Sci. 2002 29 613 637 10.1006/jasc.2001.0759
Kennett D.J. Anderson A.J. Cruz M.J. Clarck G.R. Summerhayes G.R. Geochemical characterization of Lapita pottery via inductively coupled plasma-mass spectrometry Archaeometry 2004 46 35 46 10.1111/j.1475-4754.2004.00142.x
Klein M. Jesse F. Kasper H.U. Golden A. Chemical characterization of ancient pottery from Sudan by X-ray fluorescence spectrometry (XRF), electron microprobe analyses (EMPA) and inductively coupled plasma mass spectrometry (ICP-MS) Archaeometry 2004 46 339 356 10.1111/j.1475-4754.2004.00162.x
Yellin J. Instrumental neutron activation based provenance studies at the Hebrew University of Jerusalem, with a case study on Mycenaean pottery from Cyprus Archaeometry 2007 49 271 288 10.1111/j.1475-4754.2007.00301.x
Ben-Shlomo D. Maier A.M. Mommsen H. Neutron activation and petrographic analysis of selected Late Bronze Age and Iron Age pottery from Tell es-Safi/Gath, Israel J. Archaeol. Sci. 2008 35 956 964 10.1016/j.jas.2007.06.020
Tschegg C. Ntaflos T. Hein I. Integrated geological, petrologic and geochemical approach to establish source material and technology of Late Cypriot Bronze Age Plain White ware ceramics J. Archaeol. Sci. 2009 36 1103 1114 10.1016/j.jas.2008.12.004
De Vleeschouwer F. Renson V. Claeys P. Nys K. Bindler R. Quantitative WD-XRF calibration for small ceramic samples and their source material Geoarchaeology 2011 26 440 450 10.1002/gea.20353
Renson V. Martiınez-Cortizas A. Mattielli N. Coenaerts J. Sauvage C. De Vleeschouwer F. Lorre C. Vanhaecke F. Bindler R. Rautman M. et al. Lead isotopic analysis within a multi-proxi approach to trace pottery sources. The example of White Slip II sherds from Late Bronze Age sites in Cyprus and Syria Appl. Geochem. 2013 28 220 234 10.1016/j.apgeochem.2012.10.025
Adan-Bayewitz D. Perlman I. Local pottery provenience studies: A role for clay analysis Archaeometry 1985 27 203 217 10.1111/j.1475-4754.1985.tb00363.x
Gomez B. Neff H. Rautman M.L. Vaughan S.J. Glascock M.D. The source provenance of Bronze Age and Roman pottery from Cyprus Archaeometry 2002 44 23 36 10.1111/1475-4754.00041
Santacreu A. Vicens G.M. Raw Materials and Pottery Production at the Late Bronze and Iron Age Site of Puig de Sa Morisca, Mallorca, Spain Geoarchaeology 2012 27 285 299 10.1002/gea.21409
Segvic B. Seselj L. Slovenec D. Lugovi B. Ferreiro Mahlmann R. Composition, technology of manufacture, and circulation of Hellenistic pottery from the Eastern Adriatic: A case study of three archaeological sites along the Dalmatian Coast, Croatia Geoarchaeology 2012 27 63 87 10.1002/gea.21379
El Ouahabi M. El Boudour El Idrissi H. Daoudi L. El Halim M. Fagel N. Moroccan clay deposits: Physico-chemical properties in view of provenance studies on ancient ceramics Appl. Clay Sci. 2019 172 65 74 10.1016/j.clay.2019.02.019
Fowler K.D. Fayek M. Middleton E. Clay acquisition and processing strategies during the first millennium A.D. in the Thukela River basin, South Africa: An ethnoarchaeological approach Geoarchaeology 2011 26 762 785 10.1002/gea.20372
Nunes K.P. Toyota R.G. Oliveira P.M.S. Neves E.G. Soares E.A.A. Munita C.S. Preliminary compositional evidence of provenance of ceramics from Hatahara archaeological site, central Amazonia J. Chem. 2013 2013 701748 10.1155/2013/701748
Glascock M.D. Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics Chemical Characterization of Ceramic Pastes in Archaeology Monographs in World Archaeology No. 7 Neff H. Prehistory Press Madison, WI, USA 1992 11 26
Reimann C. Filzmoser P. Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data Environ. Geol. 2000 39 1001 1014 10.1007/s002549900081
Usman A.A. Speakman R.J. Glascock M.D. An initial assessment of prehistoric ceramic production and exchange in northern Yoruba, north central Nigeria: Results of ceramic compositional analysis Afr. Archaeol. Rev. 2005 22 141 168 10.1007/s10437-005-8042-6
Tite M.S. Ceramic production, provenance and use—A review Archaeometry 2008 50 216 231 10.1111/j.1475-4754.2008.00391.x
Renson V. Coenaerts J. Nys K. Mattielli N. Vanhaecke F. Fagel N. Claeys P. Lead isotopic analysis for the identification of Late Bronze Age pottery from Hala Sultan Tekke (Cyprus) Archaeometry 2011 53 37 57 10.1111/j.1475-4754.2010.00535.x
Medeghini L. Fayek M. Mignardi S. Coletti F. Contino A. De Vito C. A provenance study of Roman lead-glazed ceramics using lead isotopes and secondary ion mass spectrometry (SIMS) Microchem. J. 2020 154 104519 10.1016/j.microc.2019.104519
El Halim M. Daoudi L. El Ouahabi M. Fagel N. Characterization of clays from Fez area (Northern Morocco) for potential uses in the ceramic industry Clay Miner. 2023 57 139 149 10.1180/clm.2022.30
El Halim M. Daoudi L. El Ouahabi M. Rebbouh L. Rousseau V. Cools C. Fagel N. Characterization of archaeological ceramics from Saadian Tombs (16th century) of Marrakech Mater. Today Proc. 2022 58 1142 1148 10.1016/j.matpr.2022.01.276
El Halim M. Daoudi L. El Ouahabi M. Rousseau V. Cools C. Fagel N. Mineralogical and geochemical characterization of archaeological ceramics from the El Badi Palace (sixteenth century), Morocco Clay Miner. 2018 53 459 470 10.1180/clm.2018.33
El Halim M. Daoudi L. El Alaoui El Fels A. Rebbou L. El Ouahabi M. Fagel N. Non-destructive portable X-ray Fluorescence (pXRF) method for the characterization of Islamic architectural ceramic: Example of Saadien tombs and El Badi palace ceramics (Marrakech, Morocco) J. Archaeol. Sci. Rep. 2020 32 102422 10.1016/j.jasrep.2020.102422
El Boudour El Idrissi H. Caractérisation des Argiles Utilisées dans le Secteur de la Terre Cuite de la Région de Marrakech en vue D’améliorer la Qualité des Produits Ph.D. Thesis Université de Liège Liège, Belgium 2017 28 50
Duchesne J.C. Bologne G. XRF major and trace element determination in Fe–Ti oxide minerals Geol. Belg. 2009 12 205 212
Weis D. Kieffer B. Maerschalk C. Barling J. de Jong J. Williams G.A. Hanano D. Pretorius W. Mattielli N. Scoates J.S. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS Geochem. Geophys. Geosystems 2006 7 Q08006 10.1029/2006GC001283
Bühn B. Pimentel M.M. Matteini M. Dantas E.L. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) An. Da Acad. Bras. De Ciências 2009 81 99 114 10.1590/S0001-37652009000100011
Molera J. Pradell T. Vendrell-Saz M. The colours of Ca-rich ceramic pastes: Origin and characterization Appl. Clay Sci. 1998 13 187 202 10.1016/S0169-1317(98)00024-6
Ngun B.K. Mohamad H. Sulaiman S.K. Okada K. Ahmad Z.A. Some ceramic properties of clays from central Cambodia Appl. Clay Sci. 2011 53 33 41 10.1016/j.clay.2011.04.017
Milheiro F. Freire M. Silva A. Holanda J. Densification behavior of a red firing Brazilian kaolinitic clay Ceram. Int. 2005 31 757 763 10.1016/j.ceramint.2004.08.010
Baccour H. Medhioub M. Jamoussi F. Mhiri T. Daoud A. Mineralogical evaluation and industrial applications of the Triassic clay deposits, Southern Tunisia Mater. Charact. 2008 59 1613 1622 10.1016/j.matchar.2008.02.008
El Boudour El Idrissi H. Daoudi L. El Ouahabi M. Balo Madi A. Collin F. Fagel N. Suitability of soils and river deposits from Marrakech for the manufacturing of earthenware Appl. Clay Sci. 2016 129 108 115 10.1016/j.clay.2016.05.013
De Ceuster S. Machaira D. Degryse P. Lead isotope analysis for provenancing ancient materials: A comparison of approaches RSC Adv. 2023 13 19595 19606 10.1039/D3RA02763E
Cultrone G. Rodriguez-Navarro C. Sebastian E. Cazalla O. De La Torre M.J. Carbonate and silicate phase reactions during ceramic firing Eur. J. Mineral. 2001 13 621 634 10.1127/0935-1221/2001/0013-0621
Echallier J.C. Mery S. Experimental Laboratory Approach of the Mineralogical and Physic-Chemical Evolution of Ceramics During Cooking Document No. 74 GAL Paris, France 1989
Dondi M. Ercolani G. Fabri B. Marsigli M. Chemical composition of melilite formed during the firing of carbonate-rich and iron-containing ceramic bodies J. Am. Ceram. Soc. 1999 82 465 468 10.1111/j.1551-2916.1999.tb20088.x
Nagy S. Kuzmann E. Weiszburg T. Gyokeres-Toth M. Riedel M. Oxide transformation during preparation of black pottery in Hungary J. Radioanal. Nucl. Chem. 2000 246 91 96 10.1023/A:1006733131174
El Ouahabi M. Daoudi L. Hatert F. Fagel N. Modified mineral phases during clay ceramic firing Clay Clay Miner. 2015 63 404 413 10.1346/CCMN.2015.0630506
Fabri B. Gualtieri S. Shoval S. The presence of calcite in archaeological ceramics J. Eur. Ceram. Soc. 2014 31 1899 1911 10.1016/j.jeurceramsoc.2014.01.007