Article (Scientific journals)
Use the 4S (Signal-Safe Speckle Subtraction): Explainable Machine Learning Reveals the Giant Exoplanet AF Lep b in High-contrast Imaging Data from 2011
Bonse, Markus J.; Gebhard, Timothy D.; Dannert, Felix A. et al.
2025In Astronomical Journal, 169, p. 194
Peer Reviewed verified by ORBi
 

Files


Full Text
Bonse_2025_AJ_169_194-2.pdf
Author postprint (12.88 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Direct imaging; Astronomy data reduction; Exoplanets; Interdisciplinary astronomy; High angular resolution; Astronomy image processing
Abstract :
[en] The main challenge of exoplanet high-contrast imaging (HCI) is to separate the signal of exoplanets from their host stars, which are many orders of magnitude brighter. HCI for ground-based observations is further exacerbated by speckle noise originating from perturbations in Earth's atmosphere and imperfections in the telescope optics. Various data postprocessing techniques are used to remove this speckle noise and reveal the faint planet signal. Often, however, a significant part of the planet signal is accidentally subtracted together with the noise. In the present work, we use explainable machine learning to investigate the reason for the loss of the planet signal for one of the most used postprocessing methods: principal component analysis (PCA). We find that PCA learns the shape of the telescope point-spread function for high numbers of PCA components. This representation of the noise captures not only the speckle noise but also the characteristic shape of the planet signal. Building on these insights, we develop a new postprocessing method (4S) that constrains the noise model to minimize this signal loss. We apply our model to 11 archival HCI data sets from the Very Large Telescope NACO instrument in the L' band and find that our model consistently outperforms PCA. The improvement is largest at close separations to the star (≤4λ/D), providing up to 1.5 mag deeper contrast. This enhancement enables us to detect the exoplanet AF Lep b in data from 2011, 11 yr before its subsequent discovery. We present updated orbital parameters for this object.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Bonse, Markus J.;  ETH Zurich, Department of Physics, Max-Planck-Institute for Intelligent Systems, Tubingen
Gebhard, Timothy D.;  ETH Zurich, Department of Physics, Max-Planck-Institute for Intelligent Systems, Tubingen, -
Dannert, Felix A.;  ETH Zurich, Department of Physics, -
Absil, Olivier  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Cantalloube, Faustine;  Institute de Planetologie et d'Astrophysique de Grenoble
Christiaens, Valentin  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Planetary & Stellar systems Imaging Laboratory
Cugno, Gabriele;  ETH Zurich, Department of Physics, University of Michigan, Department of Astronomy
Garvin, Emily O.;  ETH Zurich, Department of Physics
Hayoz, Jean;  ETH Zurich, Department of Physics
Kasper, Markus;  European Southern Observatory, Germany
Matthews, Elisabeth;  Max-Planck-Institute for Astronomy, Heidelberg
Schölkopf, Bernhard;  Max-Planck-Institute for Intelligent Systems, Tubingen, -
Quanz, Sascha P.;  ETH Zurich, Department of Physics, -, -
More authors (3 more) Less
Language :
English
Title :
Use the 4S (Signal-Safe Speckle Subtraction): Explainable Machine Learning Reveals the Giant Exoplanet AF Lep b in High-contrast Imaging Data from 2011
Publication date :
05 March 2025
Journal title :
Astronomical Journal
ISSN :
0004-6256
eISSN :
1538-3881
Publisher :
Institute of Physics Publishing (IOP)
Volume :
169
Pages :
194
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 819155 - EPIC - Earth-like Planet Imaging with Cognitive computing
Funders :
ERC - European Research Council
F.R.S.-FNRS - Fonds de la Recherche Scientifique
European Union
Commentary :
https://iopscience.iop.org/article/10.3847/1538-3881/adab79 - Copyright The American Astronomical Society (AAS) and IOP Publishing Limited 2025
Available on ORBi :
since 29 April 2025

Statistics


Number of views
59 (1 by ULiège)
Number of downloads
13 (0 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
2
OpenCitations
 
0
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBi