Classification; Land cover transition; Landsat; Mass movement; Remote sensing; Time series analysis; Geography, Planning and Development; Computers in Earth Sciences
Abstract :
[en] Land use and land cover (LULC) analysis provides valuable information to understand environmental changes and their effects on landslide occurrence. However, LULC time series can be affected by errors in classifications that lead to invalid transitions and, therefore, to misinterpretations. One solution is to include temporal approaches that reduce the effects of invalid transitions. Here, we aimed to evaluate how such methods can improve the LULC analysis for a landslide-affected area. For that, we integrated the Random Forest (RF) class likelihoods with the temporal approach provided by the Compound Maximum a Posteriori (CMAP) algorithm, named here as RF-CMAP. Results from RF-CMAP were compared to those obtained from the traditional RF in a post-classification comparison approach. Although both methods presented high performance, with overall accuracy (OA) values greater than 0.87, RF-CMAP reached higher OA than RF for all the analysed years and corrected 99.92 km2 (12% of the total area) of invalid transitions presented by the traditional RF. Furthermore, RF-CMAP was capable of correctly classifying more areas than RF in landslides (e.g., 66% and 21% for RF-CMAP and RF in 2000, respectively). Finally, this study contributes to exploring the integration between RF and CMAP algorithms to avoid invalid transitions and to assess how the existence of LULC invalid transitions can impact subsequent analyses.
Maciel, Daniel Andrade; Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São Paulo, Brazil
Reis, Mariane Souza ; Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São Paulo, Brazil
Rennó, Camilo Daleles ; Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São Paulo, Brazil
Dutra, Luciano Vieira ; Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São Paulo, Brazil
Andrades-Filho, Clódis de Oliveira ; Department of Geodesy, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil ; Postgraduate Program in Remote Sensing, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
Velástegui-Montoya, Andrés ; Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Guayaquil, Ecuador ; Faculty of Engineering in Earth Sciences FICT, ESPOL Polytechnic University, Guayaquil, Ecuador
Zhang, Tingyu; Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources, Xi'an, China ; Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, China
Körting, Thales Sehn; Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São Paulo, Brazil
Anderson, Liana Oighenstein ; National Center for Monitoring and Early Warning of Natural Disaster, São José dos Campos, Brazil
Language :
English
Title :
Land use and land cover changes without invalid transitions: A case study in a landslide-affected area
Publication date :
2024
Journal title :
Remote Sensing Applications: Society and Environment
eISSN :
2352-9385
Publisher :
Elsevier
Volume :
36
Pages :
101314
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This research was financed in part by the Coordena\u00E7\u00E3o de Aperfei\u00E7oamento de Pessoal de N\u00EDvel Superior - Brasil (CAPES), Brazil - Finance Code 001 and in part by the National Council of Technological and Scientific Development (CNPq), Brazil project number 422354/2023-6 (Monitoring and Alerts of Land Cover Changes in Brazilian Biomes - Training and Semi-Automation of the BiomasBR Program), supported by the National Institute for Space Research (INPE), Brazil. This research was partly financed by the ESPOL Polytechnic University, Ecuador project \u201CIPUS: Identification and Prediction of Urban Sprawl\u201D, with code FICT-8-2023. LOA acknowledge the National Council for Scientific and Technological Development (CNPq), process number 314473/2020-3. The authors thank the S\u00E3o Paulo Research Foundation (FAPESP), Brazil grant no 2023/09118-6, and the Brazilian National Council for Scientific and Technological Development (CNPq, grant no 302205/2023-3).This research was financed in part by the Coordena\u00E7\u00E3o de Aperfei\u00E7oamento de Pessoal de N\u00EDvel Superior - Brasil (CAPES) - Finance Code 001 and in part by the National Council of Technological and Scientific Development (CNPq) project number 422354/2023-6 (Monitoring and Alerts of Land Cover Changes in Brazilian Biomes - Training and Semi-Automation of the BiomasBR Program), supported by the National Institute for Space Research (INPE). This research was partly financed by the ESPOL Polytechnic University project \u201CIPUS: Identification and Prediction of Urban Sprawl\u201D, with code FICT-8-2023. LOA acknowledge the National Council for Scientific and Technological Development (CNPq), process number 314473/2020-3. The authors thank the S\u00E3o Paulo Research Foundation (FAPESP, grant no 2023/09118-6), and the Brazilian National Council for Scientific and Technological Development (CNPq, grant no 302205/2023-3).
Almeida, C.A. de, Coutinho, A.C., Esquerdo, J.C.D.M., Adami, M., Venturieri, A., Diniz, C.G., Dessay, N., Durieux, L., Gomes, A.R., High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amazonica 46 (2016), 291–302, 10.1590/1809-4392201505504.
Alvares, C.A., Stape, J.L., Sentelhas, P.C., De Moraes Gonçalves, J.L., Sparovek, G., Köppen's climate classification map for Brazil. Meteorol. Z. 22 (2013), 711–728, 10.1127/0941-2948/2013/0507.
Andrades-Filho, C. de O., Mexias, L.F.S., Iescheck, A.L., Viero, A.P., Giaccom, B., Cargnin, B. da R., Michelin, C.R.L., Sluter, C.R., Gonzatti, C., Cavalheiro, D., Cremon, É., Barboza, E.G., Schwarzer, G., Jacques, F. de M., Oliveira, G.G., Dorneles, J.I., Cacciatore, J.A., Schmitt, H., Novakoski, K.R., Duarte, L. da C., Guasselli, L.A., Petry, L., Mevel, L.B., Peres, L.D. da S., Reis, M. da S., da Rosa, M.L.C.C., Righi, M., Silva, M.C., Ribeiro Junior, M., Gruber, N.L.S., Herrmann, P.B., Schumacher, R.G., Quevedo, R.P., Philipp, R.P., Cárdenas, S.M.M., Soares, V.M., Peres-Núñez, W., Mapeamento das cicatrizes de movimentos de massa decorrentes do acumulado de chuva no RS entre 27/04 e 13/05 de 2024. 2024, Porto Alegre.
Belgiu, M., Drăgu, L., Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogrammetry Remote Sens. 114 (2016), 24–31, 10.1016/j.isprsjprs.2016.01.011.
Boonprong, S., Cao, C., Chen, W., Bao, S., Random forest variable importance spectral indices scheme for burnt forest recovery monitoring—multilevel RF-VIMP. Rem. Sens., 10, 2018, 807, 10.3390/rs10060807.
Boori, M.S., Voženílek, V., Remote sensing and land use/land cover trajectories. J. Geophy. Rem. Sens., 2014, 10.4172/2169-0049.1000123.
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32, 10.1201/9780367816377-11.
Calle, M.L., Urrea, V., Letter to the editor: stability of random forest importance measures. Briefings Bioinf. 12 (2011), 86–89, 10.1093/bib/bbq011.
Chaves, M.E.D., Picoli, M.C.A., Sanches, I.D., Recent applications of landsat 8/OLI and sentinel-2/MSI for land use and land cover mapping: a systematic review. Rem. Sens., 12, 2020, 3062, 10.3390/rs12183062.
Chen, C.Y., Huang, W.L., Land use change and landslide characteristics analysis for community-based disaster mitigation. Environ. Monit. Assess. 185 (2013), 4125–4139, 10.1007/s10661-012-2855-y.
Chen, L., Guo, Z., Yin, K., Shrestha, D.P., Jin, S., The influence of land use and land cover change on landslide susceptibility: A case study in Zhushan Town, Xuan'en County (Hubei, China). Nat. Hazards Earth Syst. Sci. 19 (2019), 2207–2228, 10.5194/nhess-19-2207-2019.
Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37 (1991), 35–46, 10.1016/0034-4257(91)90048-B.
Dale, V.H., The relationship between land-use change and climate change. STUDIES of CLIMATE CHANGE 753 Ecological Applications, 1997.
Dutra, L.V., Rennó, C.D., Reis, M.S., Gamba, P., A generative method for simultaneous classification of Remote Sensing time series data using an ensemble of Decision Tree classifiers. Anais Do XX Simpósio Brasileiro de Sensoriamento Remoto, 2023, 179–182 Florianópolis.
Ebrahimy, H., Mirbagheri, B., Matkan, A.A., Azadbakht, M., Per-pixel land cover accuracy prediction: a random forest-based method with limited reference sample data. ISPRS J. Photogrammetry Remote Sens. 172 (2021), 17–27, 10.1016/j.isprsjprs.2020.11.024.
Fonseca, C.R., Ganade, G., Baldissera, R., Becker, C.G., Boelter, C.R., Brescovit, A.D., Campos, L.M., Fleck, T., Fonseca, V.S., Hartz, S.M., Joner, F., Käffer, M.I., Leal-Zanchet, A.M., Marcelli, M.P., Mesquita, A.S., Mondin, C.A., Paz, C.P., Petry, M.V., Piovensan, F.N., Putzke, J., Stranz, A., Vergara, M., Vieira, E.M., Towards an ecologically-sustainable forestry in the Atlantic Forest. Biol. Conserv. 142 (2009), 1209–1219, 10.1016/j.biocon.2009.02.017.
Foody, G.M., Status of land cover classification accuracy assessment. Remote Sens. Environ. 80 (2002), 185–201, 10.1016/S0034-4257(01)00295-4.
Gao, B., NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58 (1996), 257–266, 10.1016/S0034-4257(96)00067-3.
Garg, V., Nikam, B.R., Thakur, P.K., Aggarwal, S.P., Gupta, P.K., Srivastav, S.K., Human-induced land use land cover change and its impact on hydrology. HydroResearch 1 (2019), 48–56, 10.1016/j.hydres.2019.06.001.
Gariano, S.L., Petrucci, O., Rianna, G., Santini, M., Guzzetti, F., Impacts of past and future land changes on landslides in southern Italy. Reg. Environ. Change 18 (2018), 437–449, 10.1007/s10113-017-1210-9.
Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou, S., Wolff, E., Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GIsci. Rem. Sens. 55 (2018), 221–242, 10.1080/15481603.2017.1408892.
Glade, T., Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena 51 (2003), 297–314, 10.1016/S0341-8162(02)00170-4.
Habib, M., Quantifying topographic ruggedness using principal component analysis. Adv. Civ. Eng. 2021 (2021), 1–20, 10.1155/2021/3311912.
Henderson, K.A., Reis, M., Blanco, C.C., Pillar, V.D., Printes, R.C., Bauch, C.T., Anand, M., Landowner perceptions of the value of natural forest and natural grassland in a mosaic ecosystem in southern Brazil. Sustain. Sci. 11 (2016), 321–330, 10.1007/s11625-015-0319-3.
Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Disturbance-informed annual land cover classification maps of Canada's forested ecosystems for a 29-year landsat time series. Can. J. Rem. Sens. 44 (2018), 67–87, 10.1080/07038992.2018.1437719.
Huete, A.R., A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25 (1988), 295–309, 10.1016/0034-4257(88)90106-X.
IBGE - Instituto Brasileiro de Geografia e Estatística. Biomas e sistema costeiro-marinho do Brasil : compatível com a escala 1:250 000. 2019.
ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade. Plano de Manejo da Floresta Nacional de São Francisco de Paula. 2020.
Ishtiaque, A., Shrestha, M., Chhetri, N., Rapid urban growth in the kathmandu valley, Nepal: monitoring land use land cover dynamics of a himalayan city with landsat imageries. Environments, 4, 2017, 72, 10.3390/environments4040072.
Jia, S., Yang, C., Wang, M., Failler, P., Heterogeneous impact of land-use on climate change: study from a spatial perspective. Front. Environ. Sci., 10, 2022, 10.3389/fenvs.2022.840603.
Jordan, C.F., Derivation of leaf-area index from quality of light on the forest floor. Ecology 50 (1969), 663–666, 10.2307/1936256.
Kaufman, Y.J., Tanre, D., Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Rem. Sens. 30 (1992), 261–270, 10.1109/36.134076.
Kuhn, M., The Caret Package. 2012.
Lambin, E.F., Turner, B.L., Geist, H.J., Agbola, S.B., Angelsen, A., Bruce, J.W., Coomes, O.T., Dirzo, R., Fischer, G., Folke, C., George, P.S., Homewood, K., Imbernon, J., Leemans, R., Li, X., Moran, E.F., Mortimore, M., Ramakrishnan, P.S., Richards, J.F., Skånes, H., Steffen, W., Stone, G.D., Svedin, U., Veldkamp, T.A., Vogel, C., Xu, J., The causes of land-use and land-cover change: moving beyond the myths. Global Environ. Change 11 (2001), 261–269, 10.1016/S0959-3780(01)00007-3.
Lang, M., Change of land use and land cover by silvicultural expansion on the Campos de Cima da Serra, Rio Grande do Sul. 2013, Technische Universität München, Brazil (2002/03-2008/09).
Lee, T.-H., Ullah, A., Wang, R., Bootstrap Aggregating and Random Forest. 2020, 389–429, 10.1007/978-3-030-31150-6_13.
Leemans, R., Zuidema, G., Evaluating changes in land cover and their importance for global change. Trends Ecol. Evol. 10 (1995), 76–81, 10.1016/S0169-5347(00)88981-8.
Liaw, A., Wiener, M., Classification and regression by randomForest. R. News 2 (2002), 18–22.
Liu, D., Song, K., Townshend, J.R.G., Gong, P., Using local transition probability models in Markov random fields for forest change detection. Remote Sens. Environ. 112 (2008), 2222–2231, 10.1016/j.rse.2007.10.002.
Liu, J., Wu, Z., Zhang, H., Analysis of changes in landslide susceptibility according to land use over 38 years in lixian county, China. Sustainability 13 (2021), 1–23, 10.3390/su131910858.
Löbmann, M.T., Geitner, C., Wellstein, C., Zerbe, S., The influence of herbaceous vegetation on slope stability – a review. Earth Sci. Rev., 209, 2020, 103328, 10.1016/j.earscirev.2020.103328.
Lu, D., Mausel, P., Brondízio, E., Moran, E., Change detection techniques. Int. J. Rem. Sens. 25 (2004), 2365–2401, 10.1080/0143116031000139863.
Luerce, T.D., Geoturismo na bacia Hidrográfica do rio Rolante/RS: Um estudo acerca das Quedas d’água. 2015, Universidade Federal do Rio Grande do Sul, 10.1017/CBO9781107415324.004.
Maciel, A.L., Alves, D., Sant'Anna, S., Análise dos Processos de Desmatamento e Regeneração nas Unidades de Conservação Pertencentes no Vale do Ribeira (SP/PR) por Meio de Classificações de Imagens de Sensoriamento Remoto. Rev. Bras. Cartogr. 73 (2021), 261–277, 10.14393/rbcv73n1-55435.
Masi, E.B., Segoni, S., Tofani, V., Root reinforcement in slope stability models: a review. Geosciences, 11, 2021, 212, 10.3390/geosciences11050212.
McFeeters, S.K., The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Rem. Sens. 17 (1996), 1425–1432, 10.1080/01431169608948714.
Mertens, B., Lambin, E.F., Land-cover-change trajectories in southern Cameroon. Ann. Assoc. Am. Geogr. 90 (2000), 467–494.
Miller, C.L., Laflamme, R.A., The digital terrain model: theory & application, 1958, Society's 24th Annual Meeting, Washington DC.
NASA JPL. NASADEM Merged DEM Global 1 arc second V001. https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001, 2020.
Olofsson, P., Foody, G.M., Stehman, S.V., Woodcock, C.E., Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 129 (2013), 122–131, 10.1016/j.rse.2012.10.031.
Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A., Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148 (2014), 42–57, 10.1016/j.rse.2014.02.015.
Open Source, Microsoft, McFarland, M., Emanuele, R., Morris, D., Augspurger, T., microsoft/PlanetaryComputer: October 2022. https://doi.org/10.5281/zenodo.7261897, 2022.
Parra, E., Mohr, C.H., Korup, O., Predicting patagonian landslides: roles of forest cover and wind speed. Geophys. Res. Lett. 48 (2021), 1–10, 10.1029/2021GL095224.
Persichillo, M.G., Bordoni, M., Meisina, C., The role of land use changes in the distribution of shallow landslides. Sci. Total Environ. 574 (2017), 924–937, 10.1016/j.scitotenv.2016.09.125.
Petri, C.A., Galvão, L.S., Sensitivity of seven MODIS vegetation indices to BRDF effects during the amazonian dry season. Rem. Sens., 11, 2019, 1650, 10.3390/rs11141650.
Phan, T.N., Kuch, V., Lehnert, L.W., Land cover classification using google earth engine and random forest classifier—the role of image composition. Rem. Sens., 12, 2020, 2411, 10.3390/rs12152411.
Piao, Y., Jeong, S., Park, S., Lee, D., Analysis of land use and land cover change using time-series data and random forest in North Korea. Rem. Sens., 13, 2021, 3501, 10.3390/rs13173501.
Possantti, I., Aguirre, A., Alberti, C., Andrades Filho, C., Azeredo, L., Balbon, J., Barbedo, R., Barcelos, M., Becker, F., Bedin, M., Bregalda, N., Cacciatore, J., Camana, M., Camargo, P., Cantor, G., Cardozo, T., Cargnin, B., Carrard, G., Castilhos, M., Cazanova, R., Chiarelli, F., Collishonn, W., Cornely, A., Cremon, É., Cunha, L., Cunha, R., Cárdenas, S., Dorneles, J., Dornelles, F., Eckhardt, R., Fan, F., Froner, M., Giaccom, B., Giasson, S., Goldenfum, J., González-Ávila, I., Gonçalves, C., Gonçalves, G., Guasselli, L., Guimarães, E., Guimarães, E., Hellmann, A., Herrmann, P., Horstmann, G., Iablonovski, G., Iescheck, A., Kipper, P., Kobyama, M., Krasner, M., Krob, L., Kuele, P., Laipelt, L., Lutz, V., Maciel, J., Magalhães, F., Mallet, J., Marques, B., Marques, G., Meirelles, F., Mexias, L., Michel, G., Michel, R., Mincarone, M., Moura, E., Müller, J., Neves, É., Nicolini, I., Nonnemacher, L., Novakoski, K., Oliveira, G., Oliveira, M., Ott, P., Paiva, R., Peres, L., Petry, L., Quevedo, R.P., Quintela, R., Ramos, M., Rauber, A., Reis, M., Ribeiro, M., Righi, M., Risso, A., Rodrigues, R., Roitman, A., Rorato, G., Royer, S., Ruhoff, A., Ruoso, E., Sampaio, M., Schabbach, L., Schiaffino, M., Schmitt, H., Schumacher, R., Schwarzer, G., Serrano, N., Sigallis, A., Silva, M., Silva, S., Sluter, C., Soares, L., Soares, V., Sousa, L., Souza, A., Tschiedel, A., Ucha, L., Umbelino, G., Utzig, E., Zambrano, F., Banco de dados das cheias na Região Hidrográfica do Lago Guaíba em Maio de 2024. 2024.
Quevedo, R.P., Guasselli, L.A., Oliveira, G.G. De, Ruiz, L.F.C., Modelagem de áreas suscetíveis a movimentos de massa: avaliação comparativa de técnicas de amostragem, aprendizado de máquina e modelos digitais de elevação. Geociências UNESP 38 (2019), 781–795, 10.5016/geociencias.v38i3.14019.
Quevedo, R.P., Oliveira, G.G. De, Guasselli, L.A., Mapeamento de Suscetibilidade a Movimentos de Massa a partir de Redes Neurais Artificiais. Anuário do Instituto de Geociências - UFRJ 43 (2020), 128–138, 10.11137/2020_2_128_138.
Quevedo, R.P., Anderson, L.O., Horta, I.T.L.G., Velástegui-Montoya, A., Veiga, R.Q., Cardozo, C.P., Sparrow, S., The relationship between landslide occurrence and land use and land cover. Anais Do XX Simpósio Brasileiro de Sensoriamento Remoto, 2023, 1564–1567 Florianópolis.
Quevedo, R.P., Velastegui-Montoya, A., Montalván-Burbano, N., Morante-Carballo, F., Korup, O., Daleles Rennó, C., Land use and land cover as a conditioning factor in landslide susceptibility: a literature review. Landslides, 2023, 10.1007/s10346-022-02020-4.
R Core Team. R: A Language and Environment for Statistical Computing. 2014.
Rabby, Y.W., Li, Y., Abedin, J., Sabrina, S., Impact of land use/land cover change on landslide susceptibility in Rangamati municipality of Rangamati district, Bangladesh. ISPRS Int. J. Geo-Inf., 11, 2022, 10.3390/ijgi11020089.
Reichenbach, P., Busca, C., Mondini, A.C., Rossi, M., The influence of land use change on landslide susceptibility zonation: the briga catchment test site (Messina, Italy). Environ. Manag. 54 (2014), 1372–1384, 10.1007/s00267-014-0357-0.
Reis, M.S., Detection and analysis of forest regeneration trajectories in the lower Tapajós region. Doutorado Em Ciência Do Sistema Terrestre), 2022, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos.
Reis, M.S., Pantaleao, E., Dutra, L.V., Sant'Anna, S.J.S., Escada, M.I.S., Effects of different methods of radiometric calibration on the use of training data for supervised classification of Landsat5/TM images from other dates. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019, IEEE, 1566–1569, 10.1109/IGARSS.2019.8898150.
Reis, M.S., Dutra, L.V., Escada, M.I.S., Sant'Anna, S.J.S., Avoiding invalid transitions in land cover trajectory classification with a compound maximum a posteriori approach. IEEE Access 8 (2020), 98787–98799, 10.1109/ACCESS.2020.2997019.
Riffel, E.S., Guasselli, L.A., Ruiz, L.F.C., Gameiro, S., Relação entre ponto de ruptura e padrão morfométrico em deslizamentos, bacia hidrográfica do Rio Rolante - RS. Revista do Departamento de Geografia 41 (2021), 1–16, 10.11606/eISSN.2236-2878.rdg.2021.181554.
Riley, S.J., DeGloria, S.D., Elliot, Robert, A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 5 (1999), 1–4.
Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P., An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogrammetry Remote Sens. 67 (2012), 93–104, 10.1016/j.isprsjprs.2011.11.002.
Rossato, M.S., Os climas do Rio Grande do Sul: uma proposta de classificação climática. ENTRE-LUGAR 11 (2020), 57–85, 10.30612/el.v11i22.12781.
Rouse, Jr.J.W., Haas, R.H., Schell, J.A., Deering, D.W., Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. 1973.
Sangeeta, Singh, S.K., Influence of anthropogenic activities on landslide susceptibility: a case study in Solan district, Himachal Pradesh, India. J. Mt. Sci. 20 (2023), 429–447, 10.1007/s11629-022-7593-1.
SEMA. Diagnóstico Preliminar: descritivo dos eventos ocorridos no dia 5 de janeiro de 2017 entre as regiões dos municípios de São Francisco de paula e Rolante/rs. 2017, 1–26.
Sharma, R., Rimal, B., Baral, H., Nehren, U., Paudyal, K., Sharma, S., Rijal, S., Ranpal, S., Acharya, R., Alenazy, A., Kandel, P., Impact of land cover change on ecosystem services in a tropical forested landscape. Resources, 8, 2019, 18, 10.3390/resources8010018.
Souza, C.M., Shimbo, J.Z., Rosa, M.R., Parente, L.L., Alencar, A.A., Rudorff, B.F.T., Hasenack, H., Matsumoto, M., Ferreira, L.G., Souza-Filho, P.W.M., de Oliveira, S.W., Rocha, W.F., Fonseca, A.V., Marques, C.B., Diniz, C.G., Costa, D., Monteiro, D., Rosa, E.R., Vélez-Martin, E., Weber, E.J., Lenti, F.E.B., Paternost, F.F., Pareyn, F.G.C., Siqueira, J.V., Viera, J.L., Neto, L.C.F., Saraiva, M.M., Sales, M.H., Salgado, M.P.G., Vasconcelos, R., Galano, S., Mesquita, V.V., Azevedo, T., Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine. Rem. Sens., 12, 2020, 10.3390/RS12172735.
Su, T., Zhang, S., Liu, T., Multi-spectral image classification based on an object-based active learning approach. Rem. Sens., 12, 2020, 504, 10.3390/rs12030504.
Sun, L., Liu, Q., Abdelaziz, A., Tang, X., Grasselli, G., Simulating the entire progressive failure process of rock slopes using the combined finite-discrete element method. Comput. Geotech., 141, 2022, 104557, 10.1016/j.compgeo.2021.104557.
Tarantino, C., Blonda, P., Pasquariello, G., Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies. Nat. Hazards 41 (2007), 245–267, 10.1007/s11069-006-9041-x.
Tavares, P.A., Ferreira, J., Silva, C.V.J., Berenguer, E., Barlow, J., Exploring the role of deforestation and cropland expansion in driving a fire-transition in the Brazilian Amazon. Land, 11, 2022, 2274, 10.3390/land11122274.
Tewkesbury, A.P., Comber, A.J., Tate, N.J., Lamb, A., Fisher, P.F., A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 160 (2015), 1–14, 10.1016/j.rse.2015.01.006.
Thiam, S., Salas, E.A.L., Hounguè, N.R., Almoradie, A.D.S., Verleysdonk, S., Adounkpe, J.G., Komi, K., Modelling land use and land cover in the transboundary mono River catchment of Togo and Benin using Markov chain and stakeholder's perspectives. Sustainability, 14, 2022, 4160, 10.3390/su14074160.
Traoré, F., Cornet, Y., Denis, A., Wellens, J., Tychon, B., Monitoring the evolution of irrigated areas with Landsat images using backward and forward change detection analysis in the Kou watershed, Burkina Faso. Geocarto Int. 28 (2013), 733–752, 10.1080/10106049.2012.744100.
Uehara, T.D.T., Soares, A.R., Quevedo, R.P., Körting, T.S., Fonseca, L.M.G., Adami, M., Land cover classification of an area susceptible to landslides using Random Forest and NDVI time series data. 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2020), 2020.
Uehara, T.D.T., Sehn Körting, T., Soares, A., dos, R., Quevedo, R.P., Time-series metrics applied to land use and land cover mapping with focus on landslide detection. J. Appl. Remote Sens., 16, 2022, 10.1117/1.JRS.16.034518.
Van Den Eeckhaut, M., Poesen, J., Vandekerckhove, L., Van Gils, M., Van Rompaey, A., Human–environment interactions in residential areas susceptible to landsliding: the Flemish Ardennes case study. Area 42 (2010), 339–358, 10.1111/j.1475-4762.2009.00919.x.
Vuillez, C., Tonini, M., Sudmeier-Rieux, K., Devkota, S., Derron, M.H., Jaboyedoff, M., Land use changes, landslides and roads in the Phewa Watershed, Western Nepal from 1979 to 2016. Appl. Geogr. 94 (2018), 30–40, 10.1016/j.apgeog.2018.03.003.
Wang, H., Liu, C., Zang, F., Yang, J., Li, N., Rong, Z., Zhao, C., Impacts of topography on the land cover classification in the Qilian Mountains, Northwest China. Can. J. Rem. Sens. 46 (2020), 344–359, 10.1080/07038992.2020.1801401.
Wasowski, J., Understanding rainfall-landslide relationships in man-modified environments: a case-history from Caramanico Terme, Italy. Environ. Geol. 35 (1998), 197–209, 10.1007/s002540050306.
Winkler, K., Fuchs, R., Rounsevell, M., Herold, M., Global land use changes are four times greater than previously estimated. Nat. Commun., 12, 2021, 2501, 10.1038/s41467-021-22702-2.
Wulder, M.A., Loveland, T.R., Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E., Allen, R.G., Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P., Hughes, M.J., Huntington, J., Johnson, D.M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N., Scambos, T.A., Schaaf, C., Schott, J.R., Sheng, Y., Storey, J., Vermote, E., Vogelmann, J., White, J.C., Wynne, R.H., Zhu, Z., Current status of Landsat program, science, and applications. Remote Sens. Environ. 225 (2019), 127–147, 10.1016/j.rse.2019.02.015.
Xu, H., Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Rem. Sens. 27 (2006), 3025–3033, 10.1080/01431160600589179.
Zeng, T., Guo, Z., Wang, L., Jin, B., Wu, F., Guo, R., Tempo-spatial landslide susceptibility assessment from the perspective of human engineering activity. Rem. Sens., 15, 2023, 4111, 10.3390/rs15164111.
Zha, Y., Gao, J., Ni, S., Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Rem. Sens. 24 (2003), 583–594, 10.1080/01431160304987.
Zhu, Z., Change detection using landsat time series: a review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogrammetry Remote Sens. 130 (2017), 370–384, 10.1016/j.isprsjprs.2017.06.013.