C451A‐ERα mouse; NK3R; estetrol; kisspeptin; membrane estrogen signaling; Endocrinology, Diabetes and Metabolism; Endocrinology; Endocrine and Autonomic Systems; Cellular and Molecular Neuroscience
Abstract :
[en] Estrogen receptor alpha (ERα) is critical for reproduction, but the relative contributions of its nuclear and membrane signaling are unclear.The present study investigated the role of membrane ERα (mERα) using two complementary approaches: a mouse model lacking mERα signaling (C451A-ERα mice) and estetrol (E4), a natural estrogen described to prevent membrane ERα activation in different cell types. While ovariectomy (OVX) induced a comparable luteinizing hormone (LH) increase in both wild-type and C451A-ERα females, C451A-ERα females failed to respond to chronic estradiol (E2) (1 μg) exposure, indicating dysregulated negative feedback. This lack of LH regulation in C451A-ERα females was mirrored by an absence of change in the number of neurons immunoreactive (ir) for kisspeptin (Kp) in both the rostral periventricular area of the third ventricle (RP3V) and the arcuate nucleus (ARC), for progesterone receptor (PR)-ir nuclei in the preoptic area and hypothalamus, and for neurokinin 3 receptor (NK3R) in the ARC. Interestingly, increasing the dose of E2 to 5 μg restored normal negative feedback and normal numbers of Kp-ir neurons and PR-ir nuclei, but not the surface covered by Kp-ir fibers and the number of NK3R-ir neurons in the ARC. By contrast, E4 mimicked the negative feedback of E2 on circulating LH in OVX WT females following both acute and chronic treatment and potentiated rather than blocked the effects of E2 when administered along with it. E4 also mimicked the stimulatory effects of E2 on the number of PR-ir nuclei in several preoptic and hypothalamic regions and the percentage of area covered by Kp-ir material in the ARC, as well as its inhibitory action on the number of Kp-ir neurons in the ARC. Therefore, the C451A-ERα mutation interferes with the control of the negative feedback through distinct mechanisms differing by their dose-dependency to E2. By contrast, E4 mimicked all effects of E2 on the negative feedback and the associated neural circuits, indicating that E4 acts as a weak ERα agonist in this context. Together, these results suggest that C451A-ERα modifies the sensitivity to E2, impacting the negative feedback of E2 on LH regulation.
ULiège - Université de Liège Estetra SRL F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This work was supported by grants from the Fonds National pour la Recherche Scientifique (F.R.S.-FNRS PDR T.0042.15) and the Special Funds for Research from the University of Li\u00E8ge (FSR19/40) as well as a research project (E4Liberty) supported by the Walloon region to Estetra SRL. CAC is a Research Director of the F.R.S.-FNRS. We thank Arlette Gérard for carrying out the RIA assay.
Herbison AE. Physiology of the adult gonadotropin- releasing hormone neuronal network. Knobil and Neill's Physiology of Reproduction. Elsevier; 2015:399-467.
Herbison AE. A simple model of estrous cycle negative and positive feedback regulation of GnRH secretion. Front Neuroendocrinol. 2020;57:100837.
Goodman RL, Herbison AE, Lehman MN, Navarro VM. Neuroendocrine control of gonadotropin-releasing hormone: pulsatile and surge modes of secretion. J Neuroendocrinol. 2022;34(5):e13094.
Wang L, Moenter SM. Differential roles of hypothalamic AVPV and arcuate kisspeptin neurons in estradiol feedback regulation of female reproduction. Neuroendocrinology. 2020;110(3–4):172-184.
Clarkson J, Han SY, Piet R, et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A. 2017;114(47):E10216-E10223.
Han SY, McLennan T, Czieselsky K, Herbison AE. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion. Proc Natl Acad Sci U S A. 2015;112(42):13109-13114.
Mayer C, Boehm U. Female reproductive maturation in the absence of kisspeptin/GPR54 signaling. Nat Neurosci. 2011;14(6):704-710.
Padilla SL, Perez JG, Ben-Hamo M, et al. Kisspeptin neurons in the arcuate nucleus of the hypothalamus orchestrate circadian rhythms and metabolism. Curr Biol. 2019;29(4):592-604.e594.
Mohr MA, Esparza LA, Steffen P, Micevych P, Kauffman AS. Progesterone receptors in AVPV Kisspeptin neurons are sufficient for positive feedback induction of the LH surge. Endocrinology. 2021;162(11):1-8.
Porteous R, Herbison AE. Genetic deletion of Esr1 in the mouse preoptic area disrupts the LH surge and estrous cyclicity. Endocrinology. 2019;160(8):1821-1829.
Wang L, Vanacker C, Burger LL, et al. Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction. Elife. 2019;8:e43999. doi:10.7554/eLife.43999
Couse JF, Yates MM, Walker VR, Korach KS. Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) null mice reveals hypergonadism and endocrine sex reversal in females lacking ERalpha but not ERbeta. Mol Endocrinol. 2003;17(6):1039-1053.
Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, Mark M. Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development. 2000;127(19):4277-4291.
Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A. 1993;90:11162-11166.
Wersinger SR, Haisenleder DJ, Lubahn DB, Rissman EF. Steroid feedback on gonadotropin release and pituitary gonadotropin subunit mRNA in mice lacking a functional estrogen receptor alpha. Endocrine. 1999;11(2):137-143.
McDevitt MA, Glidewell-Kenney C, Jimenez MA, et al. New insights into the classical and non-classical actions of estrogen: evidence from estrogen receptor knock-out and knock-in mice. Mol Cell Endocrinol. 2008;290(1–2):24-30.
Arnal JF, Lenfant F, Metivier R, et al. Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol Rev. 2017;97(3):1045-1087.
Levin ER, Hammes SR. Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors. Nat Rev Mol Cell Biol. 2016;17(12):783-797.
Meitzen J, Mermelstein PG. Estrogen receptors stimulate brain region specific metabotropic glutamate receptors to rapidly initiate signal transduction pathways. J Chem Neuroanat. 2011;42(4):236-241.
Cornil CA, Ball GF, Balthazart J. Rapid control of male typical behaviors by brain-derived estrogens. Front Neuroendocrinol. 2012;33(4):425-446.
Kelly MJ, Rønnekleiv OK. Minireview: neural signaling of estradiol in the hypothalamus. Mol Endocrinol. 2015;29(5):645-657.
Blake CA. A medial basal hypothalamic site of synergistic action of estrogen and progesterone on the inhibition of pituitary luteinizing hormone release. Endocrinology. 1977;101(4):1130-1134.
Cheong RY, Porteous R, Chambon P, Abrahám I, Herbison AE. Effects of neuron-specific estrogen receptor (ER) α and ERβ deletion on the acute estrogen negative feedback mechanism in adult female mice. Endocrinology. 2014;155(4):1418-1427.
Herbison AE, Heavens RP, Dye S, Dyer RG. Acute action of oestrogen on medial preoptic gamma-aminobutyric acid neurons: correlation with oestrogen negative feedback on luteinizing hormone secretion. J Neuroendocrinol. 1991;3(1):101-106.
Chu Z, Andrade J, Shupnik MA, Moenter SM. Differential regulation of gonadotropin-releasing hormone neuron activity and membrane properties by acutely applied estradiol: dependence on dose and estrogen receptor subtype. J Neurosci. 2009;29(17):5616-5627.
Romanò N, Herbison AE. Activity-dependent modulation of gonadotrophin-releasing hormone neurone activity by acute oestradiol. J Neuroendocrinol. 2012;24(10):1296-1303.
Glidewell-Kenney C, Hurley LA, Pfaff L, Weiss J, Levine JE, Jameson JL. Nonclassical estrogen receptor a signaling mediates negative feedback in the female mouse reproductive axis. Proc Natl Acad Sci U S A. 2007;104(19):8173-8177.
Herbison AE. Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocr Rev. 1998;19(3):302-330.
Yeo SH, Herbison AE. Estrogen-negative feedback and estrous cyclicity are critically dependent upon estrogen receptor-α expression in the arcuate nucleus of adult female mice. Endocrinology. 2014;155(8):2986-2995.
Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 2005;146(9):3686-3692.
Gottsch ML, Navarro VM, Zhao Z, et al. Regulation of Kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. J Neurosci. 2009;29(29):9390-9395.
Gérard C, Arnal JF, Jost M, et al. Profile of estetrol, a promising native estrogen for oral contraception and the relief of climacteric symptoms of menopause. Expert Rev Clin Pharmacol. 2022;15(2):121-137.
Visser M, Foidart JM, Coelingh Bennink HJ. In vitro effects of estetrol on receptor binding, drug targets and human liver cell metabolism. Climacteric. 2008;11(Suppl 1):64-68.
Abot A, Fontaine C, Buscato M, et al. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor alpha modulation, uncoupling nuclear and membrane activation. EMBO Mol Med. 2014;6(10):1328-1346.
Benoit T, Valera MC, Fontaine C, et al. Estetrol, a fetal selective estrogen receptor modulator, acts on the vagina of mice through nuclear estrogen receptor α activation. Am J Pathol. 2017;187(11):2499-2507.
Coelingh Bennink HJ, Heegaard AM, Visser M, Holinka CF, Christiansen C. Oral bioavailability and bone-sparing effects of estetrol in an osteoporosis model. Climacteric. 2008;11(Suppl 1):2-14.
de Bournonville C, Lemoine P, Foidart JM, Arnal JF, Lenfant F, Cornil CA. Role of membrane estrogen receptor alpha (ERalpha) in the rapid regulation of male sexual behavior. J Neuroendocrinol. 2023;35(10):e13341.
Faure MC, Corona R, Roomans C, Lenfant F, Foidart JM, Cornil CA. Role of membrane estrogen receptor alpha on the positive feedback of estrogens on Kisspeptin and GnRH neurons. eNeuro. 2024;11(10):ENEURO.0271.
Adlanmerini M, Solinhac R, Abot A, et al. Mutation of the palmitoylation site of estrogen receptor alpha in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc Natl Acad Sci U S A. 2014;111(2):E283-E290.
Pedram A, Razandi M, Lewis M, Hammes S, Levin ER. Membrane-localized estrogen receptor α is required for normal organ development and function. Dev Cell. 2014;29(4):482-490.
Yu K, He Y, Hyseni I, et al. 17beta-estradiol promotes acute refeeding in hungry mice via membrane-initiated ERalpha signaling. Mol Metab. 2020;42:101053.
Yu M, Yin N, Feng B, et al. Identification of an ionic mechanism for ERalpha-mediated rapid excitation in neurons. Sci Adv. 2024;10(40):eadp0696.
Szymanski L, Bakker J. Aromatase knockout mice show normal steroid-induced activation of gonadotrophin-releasing hormone neurones and luteinising hormone surges with a reduced population of kisspeptin neurones in the rostral hypothalamus. J Neuroendocrinol. 2012;24(9):1222-1233.
Czieselsky K, Prescott M, Porteous R, et al. Pulse and surge profiles of luteinizing hormone secretion in the mouse. Endocrinology. 2016;157(12):4794-4802.
Steyn FJ, Wan Y, Clarkson J, Veldhuis JD, Herbison AE, Chen C. Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology. 2013;154(12):4939-4945.
López-Rodríguez D, Franssen D, Sevrin E, et al. Persistent vs transient alteration of folliculogenesis and estrous cycle after neonatal vs adult exposure to Bisphenol a. Endocrinology. 2019;160(11):2558-2572.
Franssen D, Barroso A, Ruiz-Pino F, et al. AMP-activated protein kinase (AMPK) signaling in GnRH neurons links energy status and reproduction. Metabolism. 2021;115:154460.
McLean AC, Valenzuela N, Fai S, Bennett SA. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J Vis Exp. 2012;(67):e4389. https://pubmed.ncbi.nlm.nih.gov/23007862/
Franklin K, Paxinos G. The Mouse Brain in Stereotaxic Coordinates. Academic Press; 2001.
Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, et al. Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinology. 2012;153(6):2800-2812.
Adachi S, Yamada S, Takatsu Y, et al. Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev. 2007;53(2):367-378.
Mittelman-Smith MA, Wong AM, Kathiresan AS, Micevych PE. Classical and membrane-initiated estrogen signaling in an in vitro model of anterior hypothalamic kisspeptin neurons. Endocrinology. 2015;156(6):2162-2173.
Gill JC, Wang O, Kakar S, Martinelli E, Carroll RS, Kaiser UB. Reproductive hormone-dependent and -independent contributions to developmental changes in kisspeptin in GnRH-deficient hypogonadal mice. PLoS One. 2010;5(7):e11911.
Xu Z, Kaga S, Mochiduki A, et al. Immunocytochemical localization of kisspeptin neurons in the rat forebrain with special reference to sexual dimorphism and interaction with GnRH neurons. Endocr J. 2012;59(2):161-171.
Yeo SH, Herbison AE. Projections of arcuate nucleus and rostral periventricular kisspeptin neurons in the adult female mouse brain. Endocrinology. 2011;152(6):2387-2399.
Kraus WL, Montano MM, Katzenellenbogen BS. Identification of multiple, widely spaced estrogen-responsive regions in the rat progesterone receptor gene. Mol Endocrinol. 1994;8(8):952-969.
Navarro VM, Castellano JM, McConkey SM, et al. Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. Am J Physiol Endocrinol Metab. 2011a;300(1):E202-E210.
Acconcia F, Ascenzi P, Bocedi A, et al. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell. 2005;16(1):231-237.
Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER. A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem. 2007;282(31):22278-22288.
Jiang Y, Horkeby K, Henning P, et al. Membrane estrogen receptor α signaling modulates the sensitivity to estradiol treatment in a dose-and tissue-dependent manner. Sci Rep. 2023;13:9046.
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol. 2022;34(6):e13145.
Fabre A, Tramunt B, Montagner A, et al. Membrane estrogen receptor-alpha contributes to female protection against high-fat diet-induced metabolic disorders. Front Endocrinol Lausanne. 2023;14:1215947.
McQuillan HJ, Clarkson J, Kauff A, et al. Definition of the estrogen negative feedback pathway controlling the GnRH pulse generator in female mice. Nat Commun. 2022;13(1):7433.
Han SY, Morris PG, Kim JC, et al. Mechanism of kisspeptin neuron synchronization for pulsatile hormone secretion in male mice. Cell Rep. 2023;42(1):111914.
Clarkson J, Boon WC, Simpson ER, Herbison AE. Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology. 2009a;150(7):3214-3220.
Clarkson J, d'Anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE. Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol. 2009b;21(8):673-682.
Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology. 2006;147(12):5817-5825.
Brock O, Bakker J. The two kisspeptin neuronal populations are differentially organized and activated by estradiol in mice. Endocrinology. 2013;154(8):2739-2749.
Dubois SL, Acosta-Martínez M, DeJoseph MR, et al. Positive, but not negative feedback actions of estradiol in adult female mice require estrogen receptor α in kisspeptin neurons. Endocrinology. 2015;156(3):1111-1120.
Burke MC, Letts PA, Krajewski SJ, Rance NE. Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: morphologic evidence of interrelated function within the arcuate nucleus. J Comp Neurol. 2006;498(5):712-726.
Navarro VM, Bosch MA, León S, et al. The integrated hypothalamic tachykinin-kisspeptin system as a central coordinator for reproduction. Endocrinology. 2015;156(2):627-637.
Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci. 2009;29(38):11859-11866.
de Croft S, Boehm U, Herbison AE. Neurokinin B activates arcuate kisspeptin neurons through multiple tachykinin receptors in the male mouse. Endocrinology. 2013;154(8):2750-2760.
Ruka KA, Burger LL, Moenter SM. Regulation of arcuate neurons coexpressing kisspeptin, neurokinin B, and dynorphin by modulators of neurokinin 3 and κ-opioid receptors in adult male mice. Endocrinology. 2013;154(8):2761-2771.
Navarro VM, Gottsch ML, Wu M, et al. Regulation of NKB pathways and their roles in the control of Kiss1 neurons in the arcuate nucleus of the male mouse. Endocrinology. 2011b;152(11):4265-4275.
Clayton DF. The genomic action potential. Neurobiol Learn Mem. 2000;74(3):185-216.
Lalmansingh AS, Uht RM. Estradiol regulates corticotropin-releasing hormone gene (crh) expression in a rapid and phasic manner that parallels estrogen receptor-alpha and -beta recruitment to a 3′,5′-cyclic adenosine 5′-monophosphate regulatory region of the proximal crh promoter. Endocrinology. 2008;149(1):346-357.
Negro-Vilar A, Orias R, McCann SM. Evidence for a pituitary site of action for the acute inhibition of LH release by estrogen in the rat. Endocrinology. 1973;92(6):1680-1684.
Blake CA, Norman RL, Sawyer CH. Localization of inhibitory actions of estrogen and nicotine on release of luteinizing hormone in rats. Neuroendocrinology. 1974;16(1):22-35.
Pillerová M, Borbélyová V, Hodosy J, et al. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front Neuroendocrinol. 2021;62:100926.
Reese JC, Katzenellenbogen BS. Mutagenesis of cysteines in the hormone binding domain of the human estrogen receptor. Alterations in binding and transcriptional activation by covalently and reversibly attaching ligands. J Biol Chem. 1991;266(17):10880-10887.
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol. 2022;539:111467.
La Rosa P, Pesiri V, Leclercq G, Marino M, Acconcia F. Palmitoylation regulates 17β-estradiol-induced estrogen receptor-α degradation and transcriptional activity. Mol Endocrinol. 2012;26(5):762-774.
Vasudevan N, Kow L-M, Pfaff DW. Early membrane estrogenic effects required for full expression of slower genomic actions in a nerve cell line. PNAS. 2001;98(21):12267-12271.
McDevitt MA, Glidewell-Kenney C, Weiss J, Chambon P, Jameson JL, Levine JE. Estrogen response element-independent estrogen receptor (ER)-alpha signaling does not rescue sexual behavior but restores normal testosterone secretion in male ERalpha knockout mice. Endocrinology. 2007;148(11):5288-5294.
Treen AK, Luo V, Chalmers JA, et al. Divergent regulation of ER and kiss genes by 17β-estradiol in hypothalamic ARC versus AVPV models. Mol Endocrinol. 2016;30(2):217-233.
Khbouz B, de Bournonville C, Court L, et al. Role for the membrane estrogen receptor alpha in the sexual differentiation of the brain. Eur J Neurosci. 2020;52(1):2627-2645.
Hewitt SC, Li L, Grimm SA, et al. Novel DNA motif binding activity observed in vivo with an estrogen receptor α mutant mouse. Mol Endocrinol. 2014;28(6):899-911.
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol. 2023;19(7):407-424.
Otto C, Fuchs I, Kauselmann G, et al. GPR30 does not mediate estrogenic responses in reproductive organs in mice. Biol Reprod. 2009;80:34-41.
Otto C, Rohde-Schulz B, Schwarz G, et al. G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol. Endocrinology. 2008;149(10):4846-4856.
Urban N, Leonhardt M, Schaefer M. Multiplex G protein-coupled receptor screen reveals reliably acting agonists and a Gq-phospholipase C coupling mode of GPR30/GPER1. Mol Pharmacol. 2023;103(2):48-62.
Liu H, Guo S, Dai A, et al. Structural and functional evidence that GPR30 is not a direct estrogen receptor. Cell Res. 2024;34(7):530-533.
Cirillo F, Spinelli A, Talia M, et al. Estetrol/GPER/SERPINB2 transduction signaling inhibits the motility of triple-negative breast cancer cells. J Transl Med. 2024;22(1):450.
Otsuka M, Kadokawa H. GPR30 mediates estrone, estriol, and estradiol to suppress gonadotropin-releasing hormone-induced luteinizing hormone secretion in the anterior pituitary of heifers. J Reprod Dev. 2017;63(5):519-525.
Rudolf FO, Kadokawa H. Expression of estradiol receptor, GPR30, in bovine anterior pituitary and effects of GPR30 agonist on GnRH-induced LH secretion. Anim Reprod Sci. 2013;139(1–4):9-17.
Qin X, Xiao Y, Ye C, et al. Pituitary action of E2 in prepubertal grass carp: receptor specificity and signal transduction for luteinizing hormone and follicle-stimulating hormone regulation. Front Endocrinol Lausanne. 2018;9:308.
Noel SD, Keen KL, Baumann DI, Filardo EJ, Terasawa E. Involvement of G protein-coupled receptor 30 (GPR30) in rapid action of estrogen in primate LHRH neurons. Mol Endocrinol. 2009;23(3):349-359.
Sun J, Chu Z, Moenter SM. Diurnal in vivo and rapid in vitro effects of estradiol on voltage-gated calcium channels in gonadotropin-releasing hormone neurons. J Neurosci. 2010;30(11):3912-3923. doi:10.1523/JNEUROSCI.6256-09.2010
Lebesgue D, Reyna-Neyra A, Huang X, Etgen AM. GPR30 differentially regulates short latency responses of luteinising hormone and prolactin secretion to oestradiol. J Neuroendocrinol. 2009;21(9):743-752.
Romano N, Lee K, Abraham IM, Jasoni CL, Herbison AE. Nonclassical estrogen modulation of presynaptic GABA terminals modulates calcium dynamics in gonadotropin-releasing hormone neurons. Endocrinology. 2008;149(11):5335-5344.
Arreguin-Arevalo JA, Ashley RL, Wagenmaker ER, Oakley AE, Karsch FJ, Nett TM. Membrane-initiated actions of estradiol (E2) in the regulation of LH secretion in ovariectomized (OVX) ewes. Reprod Biol Endocrinol. 2010;8:40.
Davis TL, Whitesell JD, Cantlon JD, Clay CM, Nett TM. Does a nonclassical signaling mechanism underlie an increase of estradiol-mediated gonadotropin-releasing hormone receptor binding in ovine pituitary cells? Biol Reprod. 2011;85(4):770-778.