[en] Human papillomavirus (HPV) infections drive one in 20 new cancer cases, exerting a particularly high burden on women. Most anogenital HPV infections are cleared in less than two years, but the underlying mechanisms that favour persistence in around 10% of women remain largely unknown. Notwithstanding, it is precisely this information that is crucial for improving treatment, screening, and vaccination strategies. To understand viral and immune dynamics in non-persisting HPV infections, we set up an observational longitudinal cohort study with frequent on-site visits for biological sample collection. We enrolled 189 women aged from 18 to 25 and living in the area of Montpellier (France) between 2016 and 2020. We performed 974 on-site visits for a total of 1,619 months of follow-up. We collected data on virus load, local immune cell populations, local concentrations of cytokines, and circulating antibody titres. Using hierarchical Bayesian statistical modelling to simultaneously analyse the data from 164 HPV infections from 76 participants, we show that in two months after infection, HPV viral load in non-persisting infections reaches a plateau that lasts on average for 13 to 20 months (95% credibility interval) and is then followed by a rapid clearance phase. This first description of the dynamics of HPV infections comes with the identification of immune correlates associated with infection clearance, especially gamma-delta T cells and CXCL10 concentration. A limitation of this study on HPV kinetics is that many infection follow-ups are censored. Furthermore, some immune cell populations are difficult to label because cervical immunity is less well characterised than systemic immunity. These results open new perspectives for understanding the frontier between acute and chronic infections, and for controlling HPV-associated diseases, as well as for research on human cancers of infectious origin. Trial Registration: This trial was registered is registered at ClinicalTrials.gov under the ID NCT02946346. This study has been approved by the Comité de Protection des Personnes (CPP) Sud Méditerranée I (reference number 2016-A00712-49); by the Comité Consultatif sur le Traitement de l'Information en matière de Recherche dans le domaine de la Santé (reference number 16.504); by the Commission Nationale Informatique et Libertés (reference number MMS/ABD/ AR1612278, decision number DR-2016-488), by the Agence Nationale de Sécurité du Médicament et des Produits de Santé (reference 20160072000007).
Disciplines :
Immunology & infectious disease
Author, co-author :
Tessandier, Nicolas ; CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France ; MIVEGEC, CNRS, IRD, Université de Montpellier, France
Elie, Baptiste; CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France ; MIVEGEC, CNRS, IRD, Université de Montpellier, France
Boué, Vanina; MIVEGEC, CNRS, IRD, Université de Montpellier, France
Selinger, Christian; MIVEGEC, CNRS, IRD, Université de Montpellier, France ; Swiss Tropical and Public Health Institute, Basel, Switzerland
Rahmoun, Massilva; MIVEGEC, CNRS, IRD, Université de Montpellier, France
Bernat, Claire; MIVEGEC, CNRS, IRD, Université de Montpellier, France ; CNRS UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
Grasset, Sophie; MIVEGEC, CNRS, IRD, Université de Montpellier, France
Groc, Soraya; MIVEGEC, CNRS, IRD, Université de Montpellier, France ; PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
Bedin, Anne-Sophie; PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
Beneteau, Thomas; MIVEGEC, CNRS, IRD, Université de Montpellier, France
Bonneau, Marine; Department of Obstetrics and Gynaecology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
Graf, Christelle; Department of Obstetrics and Gynaecology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
Jacobs, Nathalie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Virologie
Kamiya, Tsukushi; CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
Kerioui, Marion; IAME, INSERM, Université de Paris, Paris, France
Lajoie, Julie; Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
Melki, Imène; CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
Prétet, Jean-Luc; Université de Franche-Comté, CNRS, Chrono-environnement, Besançon, France ; Centre National de Référence Papillomavirus, CHRU de Besançon, France
Reyné, Bastien; MIVEGEC, CNRS, IRD, Université de Montpellier, France
Schlecht-Louf, Géraldine; UMR996, Inflammation, Chemokines and Immunopathology, INSERM, Université Paris-Saclay, Orsay, France
Sofonea, Mircea T; PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France ; CHU de Nîmes, Nîmes, France
Supplisson, Olivier; CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France ; Sorbonne Université, France
Wymant, Chris; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
Foulongne, Vincent; PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
Guedj, Jérémie; IAME, INSERM, Université de Paris, Paris, France
Picot, Marie-Christine; Department of Medical Information (DIM), Centre Hospitalier Universitaire de Montpellier, Montpellier, France
Reynes, Jacques; Department of Infectious and Tropical Diseases, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
Tribout, Vincent; Center for Free Information, Screening and Diagnosis (CeGIDD), Centre Hospitalier Universitaire de Montpellier, Montpellier, France
Tuaillon, Édouard; PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
Waterboer, Tim; German Cancer Research Center (DKFZ), Infections and Cancer Epidemiology, Heidelberg, Germany
Segondy, Michel; PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
Bravo, Ignacio G; MIVEGEC, CNRS, IRD, Université de Montpellier, France
Boulle, Nathalie; PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
Murall, Carmen Lía; MIVEGEC, CNRS, IRD, Université de Montpellier, France ; National Microbiology Laboratory (NML), Public Health Agency of Canada (PHAC), Canada
Alizon, Samuel ; CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France ; MIVEGEC, CNRS, IRD, Université de Montpellier, France
ERC - European Research Council CNRS - Centre National de la Recherche Scientifique IRD - Institut de Recherche pour le Développement FRM - Fondation pour la Recherche Médicale
Funding text :
This EVOLPROOF project has received funding from the European Research Council (ERC) under the European Union\u2019s Horizon 2020 research and innovation programme (grant agreement No 648963, to SA). The authors acknowledge further support from the Centre National de la Recherche Scientifique, the Institut de Recherche pour le D\u00E9veloppement, the F\u00E9d\u00E9ration Hospitali\u00E8re Universitaire InCH of Montpellier (to SA), the Fondation pour la Recherche Medicale (to TK), the Ligue contre le Cancer (to TB), the Agence Nationale de la Recherche contre le Sida (ANRS-MIE, to NT (grant # 21290), IM and OS (grant # 22485)) and to the Labex MemoLife (to BE). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank all the study, the CeGIDD and hospital staff from the CHU of Montpellier for their commitment and help. The authors acknowledge the ISO 9001 certified IRD i-Trop HPC (member of the SouthGreen Platform) at IRD Montpellier for providing HPC resources that have contributed to theresearch results reported within this article (bioinfo.ird.fr and www.southgreen.fr). Theauthors acknowledge further support from the Centre National de la Recherche Scientifique,the Institut de Recherche pour le De\u00B4veloppement, the Fe\u00B4de\u00B4ration Hospitali\u00E8re UniversitaireInCH of Montpellier.
de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017; 141(4):664–670. https://doi.org/10.1002/ijc.30716 PMID: 28369882
Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global Burden of Human Papillomavirus and Related Diseases. Vaccine. 2012; 30:F12–F23. https://doi.org/10.1016/j. vaccine.2012.07.055 PMID: 23199955
Winer RL, Hughes JP, Feng Q, O’Reilly S, Kiviat NB, Holmes KK, et al. Condom use and the risk of genital human papillomavirus infection in young women. N Engl J Med. 2006; 354(25):2645–2654. https:// doi.org/10.1056/NEJMoa053284 PMID: 16790697
Ho GYF, Bierman R, Beardsley L, Chang CJ, Burk RD. Natural History of Cervicovaginal Papillomavirus Infection in Young Women. N Engl J Med. 1998; 338(7):423–428. https://doi.org/10.1056/NEJM199802123380703 PMID: 9459645
Moscicki AB, Shiboski S, Broering J, Powell K, Clayton L, Jay N, et al. The natural history of human papillomavirus infection as measured by repeated DNA testing in adolescent and young women. J Pediatr. 1998; 132(2):277–284. https://doi.org/10.1016/s0022-3476(98)70445-7 PMID: 9506641
Insinga RP, Dasbach EJ, Elbasha EH, Liaw KL, Barr E. Incidence and duration of cervical human papillomavirus 6, 11, 16, and 18 infections in young women: an evaluation from multiple analytic perspectives. Cancer Epidemiol Biomarkers Prev. 2007; 16(4):709–715. https://doi.org/10.1158/1055-9965. EPI-06-0846 PMID: 17416761
Ramanakumar AV, Naud P, Roteli-Martins CM, de Carvalho NS, de Borba PC, Teixeira JC, et al. Incidence and duration of type-specific human papillomavirus infection in high-risk HPV-naïve women: results from the control arm of a phase II HPV-16/18 vaccine trial. BMJ Open. 2016; 6(8):e011371. https://doi.org/10.1136/bmjopen-2016-011371 PMID: 27566633
Stanley M. Host defence and persistent human papillomavirus infection. Curr Opin Virol. 2021; 51:106–110. https://doi.org/10.1016/j.coviro.2021.09.010 PMID: 34628358
Ryser MD, Myers ER, Durrett R. HPV clearance and the neglected role of stochasticity. PLoS Comput Biol. 2015; 11(3):e1004113. https://doi.org/10.1371/journal.pcbi.1004113 PMID: 25769112
Beneteau T, Selinger C, Sofonea MT, Alizon S. Episome partitioning and symmetric cell divisions: Quantifying the role of random events in the persistence of HPV infections. PLoS Comput Biol. 2021; 17 (9):e1009352. https://doi.org/10.1371/journal.pcbi.1009352 PMID: 34491986
Herrero R, González P, Markowitz LE. Present status of human papillomavirus vaccine development and implementation. Lancet Oncol. 2015; 16(5):e206–e216. https://doi.org/10.1016/S1470-2045(14) 70481-4 PMID: 25943065
Lei J, Ploner A, Elfström KM, Wang J, Roth A, Fang F, et al. HPV Vaccination and the Risk of Invasive Cervical Cancer. New Engl J Med. 2020; 383(14):1340–1348. https://doi.org/10.1056/ NEJMoa1917338 PMID: 32997908
Bruni L, Diaz M, Barrionuevo-Rosas L, Herrero R, Bray F, Bosch FX, et al. Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. Lancet Glob Health. 2016; 4(7):e453–e463. https://doi.org/10.1016/S2214-109X(16)30099-7 PMID: 27340003
Schiffman M, Solomon D. Clinical practice. Cervical-cancer screening with human papillomavirus and cytologic cotesting. N Engl J Med. 2013; 369(24):2324–2331. https://doi.org/10.1056/NEJMcp1210379 PMID: 24328466
Wild CP, Weiderpass Stewart BW, editors. The World Cancer Report. Lyon, France: International Agency for Research on Cancer; 2020.
Skeate JG, Woodham AW, Einstein MH, Silva DMD, Kast WM. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases. Hum Vaccin Immunother. 2016; 12(6):1418–1429. https://doi.org/10.1080/21645515.2015.1136039 PMID: 26835746
Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence evolution? Proc B. 2015; 282:20141069. https://doi.org/10.1098/rspb.2014.1069 PMID: 25429011
Woodman CB, Collins S, Winter H, Bailey A, Ellis J, Prior P, et al. Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. The Lancet. 2001; 357(9271):1831–1836. https://doi.org/10.1016/S0140-6736(00)04956-4 PMID: 11410191
Liebenberg LJP, McKinnon LR, Yende-Zuma N, Garrett N, Baxter C, Kharsany ABM, et al. HPV infection and the genital cytokine milieu in women at high risk of HIV acquisition. Nat Commun. 2019; 10 (1):5227. https://doi.org/10.1038/s41467-019-13089-2 PMID: 31745084
Selinger C, Rahmoun M, Murall CL, Bernat C, Boué V, Bonneau M, et al. Cytokine response following perturbation of the cervicovaginal milieu during HPV genital infection. Immunol Res. 2021; 69(3):255–263. https://doi.org/10.1007/s12026-021-09196-2 PMID: 33939124
Usyk M, Schlecht NF, Pickering S, Williams L, Sollecito CC, Gradissimo A, et al. molBV reveals immune landscape of bacterial vaginosis and predicts human papillomavirus infection natural history. Nat Commun. 2022; 13(1):233. https://doi.org/10.1038/s41467-021-27628-3 PMID: 35017496
Jaisamrarn U, Castellsagué X, Garland SM, Naud P, Palmroth J, Rosario-Raymundo MRD, et al. Natural History of Progression of HPV Infection to Cervical Lesion or Clearance: Analysis of the Control Arm of the Large, Randomised PATRICIA Study. PLoS ONE. 2013; 8(11):e79260. https://doi.org/10.1371/ journal.pone.0079260 PMID: 24260180
Skinner SR, Wheeler CM, Romanowski B, Castellsagué X, Lazcano-Ponce E, Rowena Del Rosario-Raymundo M, et al. Progression of HPV infection to detectable cervical lesions or clearance in adult women: Analysis of the control arm of the VIVIANE study. Int J Cancer. 2016; 138(10):2428–2438. https://doi.org/10.1002/ijc.29971 PMID: 26685704
Juno JA, Boily-Larouche G, Lajoie J, Fowke KR. Collection, isolation, and flow cytometric analysis of human endocervical samples. J Vis Exp. 2014; 89:e51906. https://doi.org/10.3791/51906 PMID: 25045942
Shannon B, Yi TJ, Perusini S, Gajer P, Ma B, Humphrys MS, et al. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol. 2017; 10 (5):1310–1319. https://doi.org/10.1038/mi.2016.129 PMID: 28120845
Hede DV, Polese B, Humblet C, Wilharm A, Renoux V, Dortu E, et al. Human papillomavirus oncoproteins induce a reorganization of epithelial-associated γδ T cells promoting tumor formation. Proc Natl Acad Sci U S A. 2017; 114(43):E9056–E9065. https://doi.org/10.1073/pnas.1712883114 PMID: 29073102
Murall CL, Rahmoun M, Selinger C, Baldellou M, Bernat C, Bonneau M, et al. Natural history, dynamics, and ecology of human papillomaviruses in genital infections of young women: protocol of the PAP-CLEAR cohort study. BMJ Open. 2019; 9(6):e025129. https://doi.org/10.1136/bmjopen-2018-025129 PMID: 31189673
Murall CL, Jackson R, Zehbe I, Boulle N, Segondy M, Alizon S. Epithelial stratification shapes infection dynamics. PLoS Comput Biol. 2019; 15(1):e1006646. https://doi.org/10.1371/journal.pcbi.1006646 PMID: 30673699
Canini L, Perelson AS. Viral kinetic modeling: state of the art. J Pharmacokinet Pharmacodyn. 2014; 41 (5):431–443. https://doi.org/10.1007/s10928-014-9363-3 PMID: 24961742
Mollers M, Vossen JM, Scherpenisse M, van der Klis FRM, Meijer CJLM, de Melker HE. Review: Current knowledge on the role of HPV antibodies after natural infection and vaccination: Implications for monitoring an HPV vaccination programme. J Med Virol. 2013; 85(8):1379–1385. https://doi.org/10.1002/jmv.23616 PMID: 23722396
Weber LM, Nowicka M, Soneson C, Robinson MD. diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering. Commun Biol. 2019; 2:183. https://doi.org/10.1038/s42003-019-0415-5 PMID: 31098416
Scott ME, Shvetsov YB, Thompson PJ, Hernandez BY, Zhu X, Wilkens LR, et al. Cervical cytokines and clearance of incident human papillomavirus infection: Hawaii HPV cohort study. Int J Cancer. 2013; 133(5):1187–1196. https://doi.org/10.1002/ijc.28119 PMID: 23436563
Brotman RM, Shardell MD, Gajer P, Tracy JK, Zenilman JM, Ravel J, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014; 210 (11):1723–1733. https://doi.org/10.1093/infdis/jiu330 PMID: 24943724
Micalessi IM, Boulet GAV, Bogers JJ, Benoy IH, Depuydt CE. High-throughput detection, genotyping and quantification of the human papillomavirus using real-time PCR. Clin Chem Lab Med. 2011; 50 (4):655–661. https://doi.org/10.1515/cclm.2011.835 PMID: 22505529
Comets E, Lavenu A, Lavielle M. Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm. J Stat Softw. 2017; 80:1–41. https://doi.org/10.18637/jss.v080.i03
Kissler SM, Fauver JR, Mack C, Olesen SW, Tai C, Shiue KY, et al. Viral dynamics of acute SARSCoV-2 infection and applications to diagnostic and public health strategies. PLoS Biol. 2021; 19(7): e3001333. https://doi.org/10.1371/journal.pbio.3001333 PMID: 34252080
Perelson AS. Modelling viral and immune system dynamics. Nat Rev Immunol. 2002; 2(1):28–36. https://doi.org/10.1038/nri700 PMID: 11905835
Marks M, Gravitt PE, Utaipat U, Gupta SB, Liaw K, Kim E, et al. Kinetics of DNA load predict HPV 16 viral clearance. J Clin Virol. 2011; 51(1):44–49. https://doi.org/10.1016/j.jcv.2011.01.011 PMID: 21388867
Verhelst S, Poppe WAJ, Bogers JJ, Depuydt CE. Serial measurement of type-specific human papillomavirus load enables classification of cervical intraepithelial neoplasia lesions according to occurring human papillomavirus-induced pathway. Eur J Cancer Prev. 2017; 26(2):156. https://doi.org/10.1097/ CEJ.0000000000000241 PMID: 26890987
Baumann A, Henriques J, Selmani Z, Meurisse A, Lepiller Q, Vernerey D, et al. HPV16 Load Is a Potential Biomarker to Predict Risk of High-Grade Cervical Lesions in High-Risk HPV-Infected Women: A Large Longitudinal French Hospital-Based Cohort Study. Cancers. 2021; 13(16):4149. https://doi.org/ 10.3390/cancers13164149 PMID: 34439304
Zaki AM, Hadingham A, Flaviani F, Haque Y, Mi JD, Finucane D, et al. Neutrophils Dominate the Cervical Immune Cell Population in Pregnancy and Their Transcriptome Correlates With the Microbial Vaginal Environment. Front Microbiol. 2022: 13. https://doi.org/10.3389/fmicb.2022.904451 PMID: 35774454
Hazenberg MD, Spits H. Human innate lymphoid cells. Blood. 2014; 124(5):700–709. https://doi.org/10.1182/blood-2013-11-427781 PMID: 24778151
Yokoji K, Giguère K, Malagón T, Rönn MM, Mayaud P, Kelly H, et al. Association of naturally acquired type-specific HPV antibodies and subsequent HPV re-detection: systematic review and meta-analysis. Infectious Agents and Cancer. 2023; 18(1):70. https://doi.org/10.1186/s13027-023-00546-3 PMID: 37941016
Murall CL, Reyné B, Selinger C, Bernat C, Boué V, Grasset S, et al. HPV cervical infections and serological status in vaccinated and unvaccinated women. Vaccine. 2020; 38(51):8167–8174. https://doi. org/10.1016/j.vaccine.2020.10.078 PMID: 33168348
Bogaards JA, van der Weele P, Woestenberg PJ, van Benthem BHB, King AJ. Bivalent Human Papillomavirus (HPV) Vaccine Effectiveness Correlates With Phylogenetic Distance From HPV Vaccine Types 16 and 18. J Infect Dis. 2019; 220(7):1141–1146. https://doi.org/10.1093/infdis/jiz280 PMID: 31165164
Brown DR, Joura EA, Yen GP, Kothari S, Luxembourg A, Saah A, et al. Systematic literature review of cross-protective effect of HPV vaccines based on data from randomized clinical trials and real-world evidence. Vaccine. 2021; 39(16):2224–2236. https://doi.org/10.1016/j.vaccine.2020.11.076 PMID: 33744051
Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UME, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012; 4(132):132ra52. https://doi.org/10.1126/scitranslmed. 3003605 PMID: 22553250
Hughes SM, Levy CN, Katz R, Lokken EM, Anahtar MN, Hall MB, et al. Changes in concentrations of cervicovaginal immune mediators across the menstrual cycle: a systematic review and meta-analysis of individual patient data. BMC Med. 2022; 20(1):353. https://doi.org/10.1186/s12916-022-02532-9 PMID: 36195867
Holmes A, Lameiras S, Jeannot E, Marie Y, Castera L, Sastre-Garau X, et al. Mechanistic signatures of HPV insertions in cervical carcinomas. Genomic Med. 2016; 1(1):1–16. https://doi.org/10.1038/ npjgenmed.2016.4 PMID: 29263809
Gravitt PE. The known unknowns of HPV natural history. J Clin Invest. 2011; 121(12):4593–4599. https://doi.org/10.1172/JCI57149 PMID: 22133884
Depuydt CE, Jonckheere J, Berth M, Salembier GM, Vereecken AJ, Bogers JJ. Serial type-specific human papillomavirus (HPV) load measurement allows differentiation between regressing cervical lesions and serial virion productive transient infections. Cancer Med. 2015; 4(8):1294–1302. https://doi. org/10.1002/cam4.473 PMID: 25991420
Mirabello L, Yeager M, Yu K, Clifford GM, Xiao Y, Zhu B, et al. HPV16 E7 Genetic Conservation Is Critical to Carcinogenesis. Cell. 2017; 170(6):1164–1174.e6. https://doi.org/10.1016/j.cell.2017.08.001 PMID: 28886384
Virgin HW, Wherry EJ, Ahmed R. Redefining chronic viral infection. Cell. 2009; 138(1):30–50. https://doi.org/10.1016/j.cell.2009.06.036 PMID: 19596234
Kleter B, van Doorn LJ, ter Schegget J, Schrauwen L, van Krimpen K, Burger M, et al. Novel Short-Fragment PCR Assay for Highly Sensitive Broad-Spectrum Detection of Anogenital Human Papillomaviruses. Am J Pathol. 1998; 153(6):1731–1739. https://doi.org/10.1016/S0002-9440(10)65688-X PMID: 9846964
Geraets DT, Struijk L, Kleter B, Molijn A, van Doorn LJ, Quint WGV, et al. The original SPF10 LiPA25 algorithm is more sensitive and suitable for epidemiologic HPV research than the SPF10 INNO-LiPA Extra. J Virol Methods. 2015;215–216:22–29. https://doi.org/10.1016/j.jviromet.2015.01.001 PMID: 25698462
Coutlée F, Gravitt P, Kornegay J, Hankins C, Richardson H, Lapointe N, et al. Use of PGMY Primers in L1 Consensus PCR Improves Detection of Human Papillomavirus DNA in Genital Samples. J Clin Microbiol. 2002; 40(3):902–907. https://doi.org/10.1128/JCM.40.3.902-907.2002 PMID: 11880413
Vuitton L, Jaillet C, Jacquin E, Monnien F, Heberle M, Mihai MI, et al. Human papillomaviruses in colorectal cancers: A case-control study in western patients. Dig Liver Dis. 2017; 49(4):446–450. https://doi. org/10.1016/j.dld.2016.11.003 PMID: 27931969
Waterboer T, Sehr P, Michael KM, Franceschi S, Nieland JD, Joos TO, et al. Multiplex Human Papillomavirus Serology Based on In Situ–Purified Glutathione S-Transferase Fusion Proteins. Clin Chem. 2005; 51(10):1845–1853. https://doi.org/10.1373/clinchem.2005.052381 PMID: 16099939
Clifford GM, Shin HR, Oh JK, Waterboer T, Ju YH, Vaccarella S, et al. Serologic Response to Oncogenic Human Papillomavirus Types in Male and Female University Students in Busan, South Korea. Cancer Epidemiol Biomarkers Prev. 2007; 16(9):1874–1879. https://doi.org/10.1158/1055-9965.EPI-07-0349 PMID: 17855708
Kreimer AR, Johansson M, Waterboer T, Kaaks R, Chang-Claude J, Drogen D, et al. Evaluation of Human Papillomavirus Antibodies and Risk of Subsequent Head and Neck Cancer. J Clin Oncol. 2013; 31(21):2708–2715. https://doi.org/10.1200/JCO.2012.47.2738 PMID: 23775966
Pattyn J, Van Keer S, Tjalma W, Matheeussen V, Van Damme P, Vorsters A. Infection and vaccine-induced HPV-specific antibodies in cervicovaginal secretions. A review of the literature. Papillomavirus. Research. 2019; 8:100185. https://doi.org/10.1016/j.pvr.2019.100185 PMID: 31494291
Nowicka M, Krieg C, Crowell HL, Weber LM, Hartmann FJ, Guglietta S, et al. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Res. 2019; 6:748. https://doi.org/10.12688/f1000research.11622.4
Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et al. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015; 87 (7):636–645. https://doi.org/10.1002/cyto.a.22625 PMID: 25573116
Mangiola S, Roth-Schulze AJ, Trussart M, Zozaya-Valdés E, Ma M, Gao Z, et al. sccomp: Robust differential composition and variability analysis for single-cell data. Proc Natl Acad Sci U S A. 2023; 120(33): e2203828120. https://doi.org/10.1073/pnas.2203828120 PMID: 37549298