NMR; age-related macular degeneration; biomarkers; metabolomics; personalized and precision medicine; Biochemistry; Molecular Biology; Biochemistry, Genetics and Molecular Biology (miscellaneous)
Abstract :
[en] [en] INTRODUCTION: This study applies NMR-based metabolomics to investigate neovascular age-related macular degeneration (nAMD), addressing challenges in patient management, disease progression evaluation, and treatment response assessment. A two-year follow-up of 29 nAMD patients undergoing treatment provided 231 time points for analysis.
METHODS: Over the two-year period, 11 males and 18 females (aged 61-92 years) were monitored, yielding 231 time points. At each time point, blood samples for NMR metabolomics analysis, clinical measurements (e.g., lactate, glucose levels, HDL/LDL cholesterol, and blood pH), and optical coherence tomography (OCT) images were collected to evaluate the progression of choroidal neovascularization. 1H-NMR metabolomic analysis led to the quantification of over 60 metabolites and of the major lipoprotein fractions. Both multivariate and univariate statistical approaches tailored for longitudinal data were employed to identify biomarkers correlating metabolomic changes with ocular alterations during disease progression.
RESULTS AND DISCUSSION: Despite a rigorous analytical workflow enabling precise quantification of over 60 metabolites and the application of advanced statistical tools for longitudinal data, achieving consistent results across the cohort proved challenging. The dataset's heterogeneity, reflecting real-world clinical practice, complicated the derivation of global conclusions. Personalized analyses on a patient-by-patient basis successfully identified individual correlation models, but a universal model remained elusive. This study highlights the inherent challenges of translating findings from controlled settings into clinical practice, where factors such as visit frequency, treatment variability, and disease heterogeneity limit data uniformity. We emphasize the importance of experimental design in longitudinal studies, particularly when dealing with incomplete and variable datasets. We are therefore confident that, considering both the challenges and difficulties identified in this work and the preliminary results presented here, it is possible to develop predictive and individualized models for monitoring patients with nAMD. Such models could greatly assist clinicians in providing better care for these patients.
Disciplines :
Ophthalmology
Author, co-author :
Schoumacher, Matthieu ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
LAMBERT, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'ophtalmologie
Campas, Manon ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Blaise, Pierre ; Université de Liège - ULiège > Département des sciences cliniques
LOCHT, Bénédicte ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'ophtalmologie
THYS, Michèle ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'ophtalmologie
DUCHATEAU, Edouard ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'ophtalmologie
Cavalier, Etienne ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Rakic, Jean-Marie ; Université de Liège - ULiège > Département des sciences cliniques > Ophtalmologie
Noël, Agnès ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
De Tullio, Pascal ; Université de Liège - ULiège > Département de pharmacie
Language :
English
Title :
Opportunities, challenges, and difficulties in NMR-based metabolomics applied to neovascular age-related macular degeneration (nAMD) patient follow-up.
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was supported by grants from the FEDER project No. DMLA-AB/ULG (Fonds europ\u00E9en de d\u00E9veloppement r\u00E9gional) and the National Fund for Scientific Research (FNRS, Belgium), at which Pascal de Tullio is a Research Director.
Ashrafian H. Sounderajah V. Glen R. Ebbels T. Blaise B. J. Kalra D. et al. (2021). Metabolomics: the stethoscope for the twenty-first century. Med. Princ. Pract. 30 (4), 301–310. 10.1159/000513545
Blaise B. J. Correia G. D. S. Haggart G. A. Surowiec I. Sands C. Lewis M. R. et al. (2021). Statistical analysis in metabolic phenotyping. Nat. Protoc. Sept. 16 (9), 4299–4326. 10.1038/s41596-021-00579-1
Bressler N. M. Doan Q. V. Varma R. Lee P. P. Suñer I. J. Dolan C. et al. (2011). Estimated cases of legal blindness and visual impairment avoided using ranibizumab for choroidal neovascularization: non-hispanic white population in the United States with age-related macular degeneration. Arch. Ophthalmol. 129 (6), 709–717. 10.1001/archophthalmol.2011.140
Brown C. Green B. Thompson R. den Hollander A. Lengyel I. EYE-RISK consortium (2018). Metabolomics and age-related macular degeneration. Metabolites 9 (1), 4. 10.3390/metabo9010004
Brown D. M. Kaiser P. K. Michels M. Soubrane G. Heier J. S. Kim R. Y. et al. (2006). Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 355 (14), 1432–1444. 10.1056/NEJMoa062655
Bulirsch L. M. Saßmannshausen M. Nadal J. Liegl R. Thiele S. Holz F. G. (2022). Short-term real-world outcomes following intravitreal brolucizumab for neovascular AMD: SHIFT study. Br. J. Ophthalmol. Sept. 106 (9), 1288–1294. 10.1136/bjophthalmol-2020-318672
Burés Jelstrup A. Pomares E. Navarro R. on behalf of the BIOIMAGE Study Group (2020). Relationship between aflibercept efficacy and genetic variants of genes associated with neovascular age-related macular degeneration: the BIOIMAGE trial. Ophthalmologica 243 (6), 461–470. 10.1159/000508902
Chakravarthy U. Harding S. P. Rogers C. A. Downes S. M. Lotery A. J. Culliford L. A. et al. (2013). Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial. Lancet 382 (9900), 1258–1267. 10.1016/S0140-6736(13)61501-9
Cheung C. M. G. Gan A. Fan Q. Chee M. L. Apte R. S. Khor C. C. et al. (2017). Plasma lipoprotein subfraction concentrations are associated with lipid metabolism and age-related macular degeneration. J. Lipid Res. 58 (9), 1785–1796. 10.1194/jlr.M073684
Clish C. B. (2015). Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb. Mol. Case Stud. 1 (1), a000588. 10.1101/mcs.a000588
Colijn J. M. Buitendijk G. H. S. Prokofyeva E. Alves D. Cachulo M. L. Khawaja A. P. et al. (2017). Prevalence of age-related macular degeneration in europe: the past and the future. Ophthalmol. déc 124 (12), 1753–1763. 10.1016/j.ophtha.2017.05.035
Daien V. Finger R. P. Talks J. S. Mitchell P. Wong T. Y. Sakamoto T. et al. (2021). Evolution of treatment paradigms in neovascular age-related macular degeneration: a review of real-world evidence. Br. J. Ophthalmol. 105 (11), 1475–1479. 10.1136/bjophthalmol-2020-317434
Grunwald J. E. Daniel E. Huang J. Ying G. S. Maguire M. G. Toth C. A. et al. (2014). Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121 (1), 150–161. 10.1016/j.ophtha.2013.08.015
Holz F. G. Amoaku W. Donate J. Guymer R. H. Kellner U. Schlingemann R. O. et al. (2011). Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study. Ophthalmology 118 (4), 663–671. 10.1016/j.ophtha.2010.12.019
Hong N. Shen Y. Yu C. Wang S. Tong J. (2016). Association of the polymorphism Y402H in the CFH gene with response to anti‐ VEGF treatment in age‐related macular degeneration: a systematic review and meta‐analysis. Acta Ophthalmol. 94 (4), 334–345. 10.1111/aos.13049
Jacob M. Lopata A. L. Dasouki M. Abdel Rahman A. M. (2019). Metabolomics toward personalized medicine. Mass Spectrom. Rev. mai 38 (3), 221–238. 10.1002/mas.21548
Laíns I. Kelly R. S. Miller J. B. Silva R. Vavvas D. G. Kim I. K. et al. (2018). Human plasma metabolomics study across all stages of age-related macular degeneration identifies potential lipid biomarkers. Ophthalmol. févr 125 (2), 245–254. 10.1016/j.ophtha.2017.08.008
Lalwani G. A. Rosenfeld P. J. Fung A. E. Dubovy S. R. Michels S. Feuer W. et al. (2009). A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am. J. Ophthalmol. juill 148 (1), 43–58. 10.1016/j.ajo.2009.01.024
Lambert V. Hansen S. Schoumacher M. Lecomte J. Leenders J. Hubert P. et al. (2020). Pyruvate dehydrogenase kinase/lactate axis: a therapeutic target for neovascular age-related macular degeneration identified by metabolomics. J. Mol. Med. déc 98 (12), 1737–1751. 10.1007/s00109-020-01994-9
Liland K. H. (2011). Multivariate methods in metabolomics – from pre-processing to dimension reduction and statistical analysis. TrAC Trends Anal. Chem. juin 30 (6), 827–841. 10.1016/j.trac.2011.02.007
Lotery A. Griner R. Ferreira A. Milnes F. Dugel P. (2017). Real-world visual acuity outcomes between ranibizumab and aflibercept in treatment of neovascular AMD in a large US data set. Eye. déc 31 (12), 1697–1706. 10.1038/eye.2017.143
Maguire M. G. Martin D. F. Ying G. S. Jaffe G. J. Daniel E. Grunwald J. E. et al. (2016). Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the comparison of age-related macular degeneration treatments trials. Ophthalmol. août 123 (8), 1751–1761. 10.1016/j.ophtha.2016.03.045
Menni C. Fauman E. Erte I. Perry J. R. B. Kastenmüller G. Shin S. Y. et al. (2013). Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 62 (12), 4270–4276. 10.2337/db13-0570
Meyer C. H. Michels S. Rodrigues E. B. Hager A. Mennel S. Schmidt J. C. et al. (2011). Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial factor injections. Acta Ophthalmol. 89 (1), 70–75. 10.1111/j.1755-3768.2010.02064.x
Mitchell S. L. Uppal K. Williamson S. M. Liu K. Burgess L. G. Tran V. et al. (2018). The carnitine shuttle pathway is altered in patients with neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 59 (12), 4978–4985. 10.1167/iovs.18-25137
Modi Y. S. Tanchon C. Ehlers J. P. (2015). Comparative safety and tolerability of anti-VEGF therapy in age-related macular degeneration. Drug Saf. mars 38 (3), 279–293. 10.1007/s40264-015-0273-0
Mohamad N. A. Ramachandran V. Ismail P. Mohd Isa H. Chan Y. M. Ngah N. F. et al. (2018). Analysis of the association between CFH Y402H polymorphism and response to intravitreal ranibizumab in patients with neovascular age-related macular degeneration (nAMD). Bosn J Basic Med Sci. 18 (3), 260–267. 10.17305/bjbms.2018.2493
Nicholson J. K. Lindon J. C. Holmes E. (1999). Metabonomics »: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. janv 29 (11), 1181–1189. 10.1080/004982599238047
Osborn M. P. Park Y. Parks M. B. Burgess L. G. Uppal K. Lee K. et al. (2013). Metabolome-wide association study of neovascular age-related macular degeneration. PLoS ONE. 8 (8), e72737. 10.1371/journal.pone.0072737
Palmnas M. Vogel H. (2013). The future of NMR metabolomics in cancer therapy: towards personalizing treatment and developing targeted drugs? Metabolites 3 (2), 373–396. 10.3390/metabo3020373
Polat O. İnan S. Özcan S. Doğan M. Küsbeci T. Yavaş G. F. et al. (2017). Factors affecting compliance to intravitreal anti-vascular endothelial growth factor therapy in patients with age-related macular degeneration. Turk J Ophthalmol. 47 (4), 205–210. 10.4274/tjo.28003
Rosenfeld P. J. Brown D. M. Heier J. S. Boyer D. S. Kaiser P. K. Chung C. Y. et al. (2006). Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355 (14), 1419–1431. 10.1056/NEJMoa054481
Sampey B. P. Freemerman A. J. Zhang J. Kuan P. F. Galanko J. A. O’Connell T. M. et al. (2012). Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS ONE. 7 (6), e38812. 10.1371/journal.pone.0038812
Schmidt-Erfurth U. Chong V. Loewenstein A. Larsen M. Souied E. Schlingemann R. et al. (2014). Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br. J. Ophthalmol. 98, 1144–1167. 10.1136/bjophthalmol-2014-305702
Schmidt-Erfurth U. Waldstein S. M. (2016). A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog. Retin. Eye Res. 50, 1–24. 10.1016/j.preteyeres.2015.07.007
Spanou L. Dimou A. Kostara C. E. Bairaktari E. Anastasiou E. Tsimihodimos V. (2022). A study of the metabolic pathways affected by gestational diabetes mellitus: comparison with type 2 diabetes. Diagnostics 12 (11), 2881. 10.3390/diagnostics12112881
Trivedi D K. Hollywood K A. Goodacre R. (2017). Metabolomics for the masses: the future of metabolomics in a personalized world. Eur. J. Mol. and Clin. Med. 3 (6), 294. 10.1016/j.nhtm.2017.06.001
Tsilimbaris M. K. López-Gálvez M. I. Gallego-Pinazo R. Margaron P. Lambrou G. N. (2016). Epidemiological and clinical baseline characteristics as predictive biomarkers of response to anti-VEGF treatment in patients with neovascular AMD. J. Ophthalmol. 2016, 4367631. 10.1155/2016/4367631
Wang G. Shen G. Jiang X. Chen Z. Yin T. (2020). Assessment of para-inflammation in a wound healing model. Exp. Ther. Med. 15, 655–661. 10.3892/etm.2020.8666
Westerhuis J. A. van Velzen E. J. J. Hoefsloot H. C. J. Smilde A. K. (2010). Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics. mars 6 (1), 119–128. 10.1007/s11306-009-0185-z
Wong W. L. Su X. Li X. Cheung C. M. G. Klein R. Cheng C. Y. et al. (2014). Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2 (2), e106–e116. 10.1016/S2214-109X(13)70145-1
Writing Committee for the UK Age-Related Macular Degeneration EMR Users Group (2014). The neovascular age-related macular degeneration database: multicenter study of 92 976 ranibizumab injections: report 1: visual acuity. Ophthalmol. mai 121 (5), 1092–1101. 10.1016/j.ophtha.2013.11.031
Zhang X. Qiu B. Gong Z. Chen X. Wang Y. Nie Y. (2022). Differentially regulated apolipoproteins and lipid profiles as novel biomarkers for polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Front. Endocrinol. 13, 946327. 10.3389/fendo.2022.946327