This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/ licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
[en] Understanding the anatomical and genetic basis of complex phenotypic traits has long been a challenge for biological research. Domestic dogs offer a compelling model as they demonstrate more phenotypic variation than any other vertebrate species. Dogs have been intensely selected for specific traits and abilities, directly or indirectly, over the past 15,000 years since their initial domestication from the gray wolf. Because olfaction plays a central role in critical tasks, such as the detection of drugs, diseases, and explosives, as well as human rescue, we compared relative olfactory capacity across dog breeds and assessed changes to the canine olfactory system to their direct ancestors, wolves, and coyotes. We conducted a cross-disciplinary survey of olfactory anatomy, olfactory receptor (OR) gene variation, and OR gene expression in domestic dogs. Through comparisons to their closest wild canid relatives, the gray wolf and coyote, we show that domestic dogs might have lost functional OR genes commensurate with a documented reduction in nasal morphology as an outcome of the domestication process prior to breed formation. Critically, within domestic dogs alone, we found no genetic or morphological profile shared among functional or genealogical breed groupings, such as scent hounds, that might indicate evidence of any human-directed selection for enhanced olfaction. Instead, our results suggest that superior scent detection dogs likely owe their success to advantageous behavioral traits and training rather than an "olfactory edge" provided by morphology or genes.
Disciplines :
Zoology
Author, co-author :
Mouton, Alice ✱; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Socio-économie, Environnement et Développement (SEED) ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
Bird, Deborah J ✱; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
Li, Gang ✱; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA ; College of Life Sciences, Shaanxi Normal University, Xi'an, China
Craven, Brent A ; Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, USA
Levine, Jonathan M ; Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
Morselli, Marco ; Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
Pellegrini, Matteo ; Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
Van Valkenburgh, Blaire ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
Wayne, Robert K ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
Murphy, William J ; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
✱ These authors have contributed equally to this work.
Language :
English
Title :
Genetic and Anatomical Determinants of Olfaction in Dogs and Wild Canids.
NSF - National Science Foundation UCLA - University of California, Los Angeles
Funding text :
The authors thank curators and collection managers: M. Flannery of the California Academy of Sciences, C. Conroy of the Museum of Vertebrate Zoology, UC Berkeley, K. Molina of the Donald R. Dickey Collection, J. Dines of the Museum of Natural History Los Angeles County, K. Zyskowski of Yale Peabody Museum for providing skulls; M. Colbert, R. Ketchum, J. Maisano of the University of Texas HRCT Digital Morphology group, T. Jashaashvili, T. Skorka of Keck MIC, M. Faillace, J. Urbanski of General Electric Inspection Technologies, and T. Stecko, T. Ryan of Pennsylvania State University for producing high-quality CT scans. The authors thank Elizabeth Scanlan (TAMU) for domestic dog tissue sampling and preservation. This work was supported by National Science Foundation grants IOS-1457106 to R.K.W. and B.V.V. and IOS-1456506 to W.J.M. and J.M.L. A.M. and M.M. were supported by the QCBio Collaboratory Postdoctoral Fellowship (UCLA). A.M. used computational and storage services associated with the Hoffman2 Shared Cluster provided by UCLA Institute for Digital Research and Education\u2019s Research Technology Group.This work was supported by National Science Foundation grants IOS-1457106 to R.K.W. and B.V.V. and IOS-1456506 to W.J.M. and J.M.L. A.M. and M.M. were supported by the QCBio Collaboratory Postdoctoral Fellowship (UCLA). A.M. used computational and storage services associated with the Hoffman2 Shared Cluster provided by UCLA Institute for Digital Research and Education's Research Technology Group.
Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011:21(6):974–984. https://doi.org/10.1101/gr.114876.110.
American Kennel Club. The complete dog book. 20th ed. Ballantine Book, New York: Random House Publishing Group; 2007.
Arbanasić H, Huber D̵, Kusak J, Gomerčić T, Hrenović J, Galov A. Extensive polymorphism and evidence of selection pressure on major histocompatibility complex DLA-DRB1, DQA1 and DQB1 class II genes in Croatian grey wolves. Tissue Antigens. 2013:81(1): 19–27. https://doi.org/10.1111/tan.12029.
Arendt M, Cairns KM, Ballard JWO, Savolainen P, Axelsson E. Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity (Edinb). 2016:117(5):301–306. https://doi.org/10.1038/hdy.2016.48.
Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar A, Lindblad-Toh K. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013:495(7441):360–364. https://doi.org/10.1038/nature11837.
Beebe SC, Howell TJ, Bennett PC. Using scent detection dogs in conservation settings: a review of scientific literature regarding their selection. Front Vet Sci. 2016:3:96. https://doi.org/10.3389/fvets.2016.00096.
Bergström A, Frantz L, Schmidt R, Ersmark E, Lebrasseur O, Girdland-Flink L, Lin AT, Storå J, Sjögren K-G, Anthony D, et al. Origins and genetic legacy of prehistoric dogs. Science. 2020:370(6516): 557–564. https://doi.org/10.1126/science.aba9572.
Bird DJ, Amirkhanian A, Pang B, Van Valkenburgh B. Quantifying the cribriform plate: influences of allometry, function, and phylogeny in carnivora. Anat Rec. 2014:297(11):2080–2092. https://doi.org/10.1002/ar.23032.
Bird DJ, Hamid I, Fox-Rosales L, Van Valkenburgh B. Olfaction at depth: cribriform plate size declines with dive depth and duration in aquatic arctoid carnivorans. Ecol Evol. 2020:10(14):6929–6953. https://doi.org/10.1002/ece3.6343.
Bird DJ, Jacquemetton C, Buelow SA, Evans AW, Van Valkenburgh B. Domesticating olfaction: dog breeds, including scent hounds, have reduced cribriform plate morphology relative to wolves. Anat Rec. 2021:304(1):139–153. https://doi.org/10.1002/ar.24518.
Bird DJ, Murphy WJ, Fox-Rosales L, Hamid I, Eagle RA, Van Valkenburgh B. Olfaction written in bone: cribriform plate size parallels olfactory receptor gene repertoires in mammalia. Proc Biol Sci [Internet]. 2018:285. https://doi.org/10.1098/rspb.2018.0100.
Blighe K, Lun A. PCAtools: everything principal components analysis. R package version 2.0; 2020.
Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991:65(1): 175–187. https://doi.org/10.1016/0092-8674(91)90418-X.
Cannon A, Schwarcz HP, Knyf M. Marine-based subsistence trends and the stable isotope analysis of dog bones from Namu, British Columbia. J Archaeol Sci. 1999:26(4):399–407. https://doi.org/10.1006/jasc.1998.0341.
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012:6(2):80–92. https://doi.org/10.4161/fly.19695.
Crowley J, Adelman B. The Complete Dog Book: Official Publication of the American Kennel Club. New York: Howell Book House; 1998.
Cruz F, Vilà C, Webster MT. The legacy of domestication: accumulation of deleterious mutations in the dog genome. Mol Biol Evol. 2008:25(11):2331–2336. https://doi.org/10.1093/molbev/msn177.
Dargan R, Forbes SL. Cadaver-detection dogs: a review of their capabilities and the volatile organic compound profile of their associated training aids. WIREs Forensic Sci. 2021:3:e1409. https://doi.org/10.1002/wfs2.1409.
David Mech L. Hunting behavior of timber wolves in Minnesota. J Mammal. 1966:47(2):347–348. https://doi.org/10.2307/1378147.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013:29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Drake AG. Dispelling dog dogma: an investigation of heterochrony in dogs using 3D geometric morphometric analysis of skull shape. Evol Dev. 2011:13(2):204–213. https://doi.org/10.1111/j.1525-142X.2011.00470.x.
Drake AG, Klingenberg CP. Large-scale diversification of skull shape in domestic dogs: disparity and modularity. Am Nat. 2010:175(3): 289–301. https://doi.org/10.1086/650372.
Ensminger J. Police and military dogs: criminal detection, forensic evidence, and judicial admissibility. FL, USA: CRC Press; 2011.
Evans HE, de Lahunta A. Miller’s anatomy of the dog—E-book: Miller’s Anatomy of the dog—E-book. Saint Louis, Missouri: Elsevier Health Sciences; 2012.
Fan Z, Silva P, Gronau I, Wang S, Armero AS, Schweizer RM, Ramirez O, Pollinger J, Galaverni M, Ortega Del-Vecchyo D, et al. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res. 2016:26(2):163–173. https://doi.org/10.1101/gr.197517.115.
Field MA, Yadav S, Dudchenko O, Esvaran M, Rosen BD, Skvortsova K, Edwards RJ, Keilwagen J, Cochran BJ, Manandhar B, et al. The Australian dingo is an early offshoot of modern breed dogs. Sci Adv. 2022:8(16):eabm5944. https://doi.org/10.1126/sciadv.abm5944.
Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, Galaverni M, Fan Z, Marx P, Lorente-Galdos B, et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014:10(1):e1004016. https://doi.org/10.1371/journal.pgen.1004016.
Galaverni M, Caniglia R, Fabbri E, Lapalombella S, Randi E. MHC variability in an isolated wolf population in Italy. J Hered. 2013:104(5):601–612. https://doi.org/10.1093/jhered/est045.
Gazit I, Terkel J. Explosives detection by sniffer dogs following strenuous physical activity. Appl Anim Behav Sci. 2003:81(2):149–161. https://doi.org/10.1016/S0168-1591(02)00274-5.
Georgevsky D, Carrasco JJ, Valenzuela M, McGreevy PD. Domestic dog skull diversity across breeds, breed groupings, and genetic clusters. J Vet Behav. 2014:9(5):228–234. https://doi.org/10.1016/j.jveb.2014.04.007.
Gilad Y, Przeworski M, Lancet D. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol. 2004:2(1):E5. https://doi.org/10.1371/journal.pbio.0020005.
Gottwald T, Poole G, McCollum T, Hall D, Hartung J, Bai J, Luo W, Posny D, Duan Y-P, Taylor E, et al. Canine olfactory detection of a vectored phytobacterial pathogen, Liberibacter asiaticus, and integration with disease control. Proc Natl Acad Sci U S A. 2020:117(7): 3492–3501. https://doi.org/10.1073/pnas.1914296117.
Greenberg A. English Foxhound. American Kennel Club; 2017.
Grimm-Seyfarth A, Harms W, Berger A. Detection dogs in nature conservation: a database on their world-wide deployment with a review on breeds used and their performance compared to other methods. Methods Ecol Evol. 2021:12(4):568–579. https://doi.org/10.1111/ 2041-210X.13560.
Guiry EJ. Dogs as analogs in stable isotope-based human paleodietary reconstructions: a review and considerations for future use. J Archaeol Method Theory. 2012:19(3):351–376. https://doi.org/10.1007/s10816-011-9118-z.
Hall NJ, Glenn K, Smith DW, Wynne CDL. Performance of pugs, German shepherds, and greyhounds (Canis lupus familiaris) on an odor-discrimination task. J Comp Psychol. 2015:129(3):237–246. https://doi.org/10.1037/a0039271.
Hayden S, Bekaert M, Goodbla A, Murphy WJ, Dávalos LM, Teeling EC. A cluster of olfactory receptor genes linked to frugivory in bats. Mol Biol Evol. 2014:31(4):917–927. https://doi.org/10.1093/molbev/msu043.
Helton WS. Canine ergonomics: the science of working dogs. Taylor and Francis, Florida: CRC Press; 2009.
Hughes GM, Boston ESM, Finarelli JA, Murphy WJ, Higgins DG, Teeling EC. The birth and death of olfactory receptor gene families in mammalian niche adaptation. Mol Biol Evol. 2018:35(6): 1390–1406. https://doi.org/10.1093/molbev/msy028.
Hulva P, Černá Bolfíková B, Woznicová V, Jindřichová M, Benešová M, Mysłajek RW, Nowak S, Szewczyk M, Niedź wiecka N, Figura M, et al. Wolves at the crossroad: fission-fusion range biogeography in the western Carpathians and central Europe. Divers Distrib. 2018:24(2):179–192. https://doi.org/10.1111/ddi.12676.
Jacquemetton C, Drexler A, Kellerman G, Bird D, Van Valkenburgh B. The impact of extreme skull morphology in domestic dogs on cribriform plate shape. Anat Rec. 2021:304(1):190–201. https://doi.org/10.1002/ar.24512.
Jendrny P, Schulz C, Twele F, Meller S, von Köckritz-Blickwede M, Osterhaus ADME, Ebbers J, Pilchová V, Pink I, Welte T, et al. Scent dog identification of samples from COVID-19 patients—a pilot study. BMC Infect Dis. 2020:20(1):1–7. https://doi.org/10.1186/ s12879-020-05281-3.
Jendrny P, Twele F, Meller S, Schulz C, von Köckritz-Blickwede M, Osterhaus ADME, Ebbers H, Ebbers J, Pilchová V, Pink I, et al. Scent dog identification of SARS-CoV-2 infections in different body fluids. BMC Infect Dis. 2021:21(1):707. https://doi.org/10.1186/s12879-021-06411-1.
Jezierski T, Adamkiewicz E, Walczak M, Sobczyń ska M, Górecka-Bruzda A, Ensminger J, Papet E. Efficacy of drug detection by fully-trained police dogs varies by breed, training level, type of drug and search environment. Forensic Sci Int. 2014:237: 112–118. https://doi.org/10.1016/j.forsciint.2014.01.013.
Judah MEJ. An ancient history of dogs: spaniels through the ages. Morrisville, North Carolina: Lulu.com; 2007.
Kemp TJ, Bachus KN, Nairn JA, Carrier DR. Functional trade-offs in the limb bones of dogs selected for running versus fighting. J Exp Biol. 2005:208(18):3475–3482. https://doi.org/10.1242/jeb.01814.
Khan I, Yang Z, Maldonado E, Li C, Zhang G, Gilbert MTP, Jarvis ED, O’Brien SJ, Johnson WE, Antunes A. Olfactory receptor subgenomes linked with broad ecological adaptations in sauropsida. Mol Biol Evol. 2015:32(11):2832–2843. https://doi.org/10.1093/molbev/msv155.
Kim J, Williams FJ, Dreger DL, Plassais J, Davis BW, Parker HG, Ostrander EA. Genetic selection of athletic success in sport-hunting dogs. Proc Natl Acad Sci U S A [Internet]. 2018:115:E7212–E7221. https://doi.org/10.1073/pnas.1800455115.
Krueger F. Trim Galore: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some extra functionality for …. 2015. http://www.bioinformatics.babraham.ac.uk.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008:9(1):559. https://doi.org/10.1186/1471-2105-9-559.
Laska M, Shepherd GM. Olfactory discrimination ability of CD-1 mice for a large array of enantiomers. Neuroscience. 2007:144(1): 295–301. https://doi.org/10.1016/j.neuroscience.2006.08.063.
Lauruschkus G. Über Riechfeldgrösse und Riechfeldkoeffizient bei einigen Hunderassen und der Katze; 1942.
Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Res. 2018:5:1408. https://doi.org/10.12688/f1000research.9005.3.
Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-Seq read counts. Genome Biol. 2014:15(2):R29. https://doi.org/10.1186/gb-2014-15-2-r29.
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010:26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics [Internet]. 2009:25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352.
Lopez D, Montoya D, Ambrose M, Lam L, Briscoe L, Adams C, Modlin RL, Pellegrini M. Savant: a web-based tool for the sample-level visualization of molecular signatures in gene expression profiles. BMC Genomics. 2017:18(1):824. https://doi.org/10.1186/s12864-017-4167-7.
Lorinson D, Bright RM, White RAS. Brachycephalic airway obstruction syndrome—a review of 118 cases. Canine Pract. 1997:22(5/6):18–21. https://www.cabidigitallibrary.org/doi/full/10.5555/19982200471.
Love M, Anders S, Huber W. Differential analysis of count data—the DESeq2 package. Genome Biol. 2014:15:10–1186. http://dx.doi.org/10.1186/s13059-014-0550-8.
Lucchini V, Galov A, Randi E. Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol Ecol. 2004:13(3):523–536. https://doi.org/10.1046/j.1365-294X.2004.02077.x.
Malnic B, Hirono J, Sato T, Buck LB. Combinatorial receptor codes for odors. Cell. 1999:96(5):713–723. https://doi.org/10.1016/S0092-8674(00)80581-4.
Marshall DA, Blumer L, Moulton DG. Odor detection curves for n-pentanoic acid in dogs and humans. Chem Senses. 1981:6(4):445–453. https://doi.org/10.1093/chemse/6.4.445.
Montague MJ, Li G, Gandolfi B, Khan R, Aken BL, Searle SMJ, Minx P, Hillier LW, Koboldt DC, Davis BW, et al. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc Natl Acad Sci U S A. 2014:111(48): 17230–17235. https://doi.org/10.1073/pnas.1410083111.
Morrill K, Hekman J, Li X, McClure J, Logan B, Goodman L, Gao M, Dong Y, Alonso M, Carmichael E, et al. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science. 2022:376(6592): eabk0639. https://doi.org/10.1126/science.abk0639.
Negus V. Ace hold the comparative anatomy and physiology of the nose and paranasal sinuses. E & S Livingstone; 1958.
Niimura Y. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics. 2012:13(2): 103–114. https://doi.org/10.2174/138920212799860706.
Niimura Y. Identification of olfactory receptor genes from mammalian genome sequences. Methods Mol Biol. 2013:1003:39–49. https://doi.org/10.1007/978-1-62703-377-0_3.
Niimura Y, Matsui A, Touhara K. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. 2014:24:1485–1496.
Niimura Y, Matsui A, Touhara K. Corrigendum: extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. 2015:25:926. https://doi.org/10.1101/gr.169532.113.
Niimura Y, Matsui A, Touhara K. Acceleration of olfactory receptor gene loss in primate evolution: possible link to anatomical change in sensory systems and dietary transition. Mol Biol Evol. 2018:35(6):1437–1450. https://doi.org/10.1093/molbev/ msy042.
Niimura Y, Nei M. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet. 2006:51(6): 505–517. https://doi.org/10.1007/s10038-006-0391-8.
Niimura Y, Nei M. Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One. 2007:2(8):e708. https://doi.org/10.1371/journal.pone.0000708.
Niskanen AK, Kennedy LJ, Ruokonen M, Kojola I, Lohi H, Isomursu M, Jansson E, Pyhäjärvi T, Aspi J. Balancing selection and heterozygote advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population. Mol Ecol. 2014:23(4):875–889. https://doi.org/10.1111/mec.12647.
Nowak RM. Walker’s mammals of the world. Baltimore, Maryland: Johns Hopkins University Press; 1991.
Parker HG, Dreger DL, Rimbault M, Davis BW, Mullen AB, Carpintero-Ramirez G, Ostrander EA. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Rep. 2017:19(4):697–708. https://doi.org/10.1016/j.celrep.2017.03.079.
Pemberton N. The bloodhound’s nose knows? Dogs and detection in Anglo-American culture. Endeavour. 2013:37(4):196–208. https://doi.org/10.1016/j.endeavour.2013.06.007.
Pihlström H, Fortelius M, Hemilä S, Forsman R, Reuter T. Scaling of mammalian ethmoid bones can predict olfactory organ size and performance. Proc Biol Sci. 2005:272(1566):957–962. https://doi.org/10.1098/rspb.2004.2993.
Pilot M, Greco C, vonHoldt BM, Ję drzejewska B, Randi E, Ję drzejewski W, Sidorovich VE, Ostrander EA, Wayne RK. Genome-wide signatures of population bottlenecks and diversifying selection in European wolves. Heredity (Edinb). 2014:112(4):428–442. https://doi.org/10.1038/hdy.2013.122.
Ploshnitsa AI, Goltsman ME, Macdonald DW, Kennedy LJ, Sommer S. Impact of historical founder effects and a recent bottleneck on MHC variability in commander Arctic foxes (Vulpes lagopus). Ecol Evol. 2012:2(1):165–180. https://doi.org/10.1002/ece3.42.
Polgár Z, Kinnunen M, Újváry D, Miklósi Á, Gácsi M. A test of canine olfactory capacity: comparing Various dog breeds and wolves in a natural detection task. PLoS One. 2016:11(5):e0154087. https://doi.org/10.1371/journal.pone.0154087.
Quignon P, Giraud M, Rimbault M, Lavigne P, Tacher S, Morin E, Retout E, Valin A-S, Lindblad-Toh K, Nicolas J, et al. The dog and rat olfactory receptor repertoires. Genome Biol. 2005:6(10): R83. https://doi.org/10.1186/gb-2005-6-10-r83.
Quignon P, Rimbault M, Robin S, Galibert F. Genetics of canine olfaction and receptor diversity. Mamm Genome. 2012:23(1-2): 132–143. https://doi.org/10.1007/s00335-011-9371-1.
Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012:28(18):i333–i339. https://doi.org/10.1093/bioinformatics/bts378.
Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, Vilo J. G:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016:44(W1):W83–W89. https://doi.org/10.1093/nar/gkw199.
Reimand J, Kull M, Peterson H, Hansen J, Vilo J. G:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007:35(suppl_2):W193–W200. https://doi.org/10.1093/nar/gkm226.
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015:43(7):e47. https://doi.org/10.1093/nar/gkv007.
Rizvanovic A, Amundin M, Laska M. Olfactory discrimination ability of Asian elephants (Elephas maximus) for structurally related odorants. Chem Senses. 2013:38(2):107–118. https://doi.org/10.1093/chemse/bjs097.
Roberts T, McGreevy P, Valenzuela M. Human induced rotation and reorganization of the brain of domestic dogs. PLoS One. 2010:5(7):e11946. https://doi.org/10.1371/journal.pone.0011946.
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010:11(3): R25. https://doi.org/10.1186/gb-2010-11-3-r25.
Rocznik D, Sinn DL, Thomas S, Gosling SD. Criterion analysis and content validity for standardized behavioral tests in a detector-dog breeding program. J Forensic Sci. 2015:60(s1):S213–S221. https://doi.org/10.1111/1556-4029.12626.
Rooney NJ, Morant S, Guest C. Investigation into the value of trained glycaemia alert dogs to clients with type I diabetes. PLoS One. 2013:8(8):e69921. https://doi.org/10.1371/journal.pone.0069921.
Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD. Odor coding by a mammalian receptor repertoire. Sci Signal. 2009:2(60):ra9–ra9. https://doi.org/10.1126/scisignal.2000016.
Sastre N, Vilà C, Salinas M, Bologov VV, Urios V, Sánchez A, Francino O, Ramírez O. Signatures of demographic bottlenecks in European wolf populations. Conserv Genet. 2011:12(3):701–712. https://doi.org/10.1007/s10592-010-0177-6.
Savolainen P, Leitner T, Wilton AN, Matisoo-Smith E, Lundeberg J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc Natl Acad Sci U S A. 2004:101(33):12387–12390. https://doi.org/10.1073/pnas.0401814101.
Schoenebeck JJ, Hutchinson SA, Byers A, Beale HC, Carrington B, Faden DL, Rimbault M, Decker B, Kidd JM, Sood R, et al. Variation of BMP3 contributes to dog breed skull diversity. PLoS Genet. 2012:8(8):e1002849. https://doi.org/10.1371/journal.pgen.1002849.
Schoenebeck JJ, Ostrander EA. The genetics of canine skull shape variation. Genetics. 2013:193(2):317–325. https://doi.org/10.1534/genetics.112.145284.
Smith PA. The sniff test. Science. 2021:374(6565):251–255. https://doi.org/10.1126/science.acx9321.
Stone HR, McGreevy PD, Starling MJ, Forkman B. Associations between domestic-dog morphology and behaviour scores in the dog mentality assessment. PLoS One. 2016:11(2):e0149403. https://doi.org/10.1371/journal.pone.0149403.
Sykes N, Beirne P, Horowitz A, Jones I, Kalof L, Karlsson E, King T, Litwak H, McDonald RA, Murphy LJ, et al. Humanity’s best friend: a dog-centric approach to addressing global challenges. Animals (Basel). 2020:10(3):502. https://doi.org/10.3390/ani10030502.
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013:43(1):11.10.1–11.10.33. https://doi.org/10.1002/0471250953. bi1110s43.
Van Valkenburgh B, Curtis A, Samuels JX, Bird D, Fulkerson B, Meachen-Samuels J, Slater GJ. Aquatic adaptations in the nose of carnivorans: evidence from the turbinates. J Anat. 2011:218(3): 298–310. https://doi.org/10.1111/j.1469-7580.2010.01329.x.
Vonholdt BM, Driscoll CA. Origins of the dog: genetic insights into dog domestication. The domestic dog, its evolution, behaviour and interactions with people. Cambridge: Cambridge University Press; 2017. p. 22–41.
Vonholdt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, Degenhardt JD, Boyko AR, Earl DA, Auton A, et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature. 2010:464(7290):898–902. https://doi.org/10.1038/nature08837.
Wackermannová M, Pinc L, Jebavý L. Olfactory sensitivity in mammalian species. Physiol Res. 2016:65:369–390. https://doi.org/10.33549/physiolres.932955.
Walker DB, Walker JC, Cavnar PJ, Taylor JL, Pickel DH, Hall SB, Suarez JC. Naturalistic quantification of canine olfactory sensitivity. Appl Anim Behav Sci. 2006:97(2-4):241–254. https://doi.org/10.1016/j.applanim.2005.07.009.
Wayne RK. Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution. 1986:40(2):243–261. https://doi.org/10.2307/2408805.
Wayne RK, Ostrander EA. Lessons learned from the dog genome. Trends Genet. 2007:23(11):557–567. https://doi.org/10.1016/j.tig.2007.08.013.
Wilcox B, Walkowicz C. Atlas of dog breeds of the world. New rev. Neptune, NJ, USA: TFH Publications; 1989.
Wilson DA, Richard JS. Learning to Smell. Baltimore, MD: Johns Hopkins University Press; 2006.
Worboys M, Strange J-M, Pemberton N. The invention of the modern dog: breed and blood in Victorian Britain. Baltimore: JHU Press; 2018.
Zhang S-J, Wang G-D, Ma P, Zhang L-L, Yin T-T, Liu Y-H, Otecko NO, Wang M, Ma Y-P, Wang L, et al. Genomic regions under selection in the feralization of the dingoes. Nat Commun. 2020:11(1): 671. https://doi.org/10.1038/s41467-020-14515-6.