biologging; conservation; human‐modified landscapes; modelling; movement ecology; Ecology, Evolution, Behavior and Systematics; Animal Science and Zoology
Abstract :
[en] Predicting animal movements and spatial distributions is crucial for our comprehension of ecological processes and provides key evidence for conserving and managing populations, species and ecosystems. Notwithstanding considerable progress in movement ecology in recent decades, developing robust predictions for rapidly changing environments remains challenging. To accurately predict the effects of anthropogenic change, it is important to first identify the defining features of human-modified environments and their consequences on the drivers of animal movement. We review and discuss these features within the movement ecology framework, describing relationships between external environment, internal state, navigation and motion capacity. Developing robust predictions under novel situations requires models moving beyond purely correlative approaches to a dynamical systems perspective. This requires increased mechanistic modelling, using functional parameters derived from first principles of animal movement and decision-making. Theory and empirical observations should be better integrated by using experimental approaches. Models should be fitted to new and historic data gathered across a wide range of contrasting environmental conditions. We need therefore a targeted and supervised approach to data collection, increasing the range of studied taxa and carefully considering issues of scale and bias, and mechanistic modelling. Thus, we caution against the indiscriminate non-supervised use of citizen science data, AI and machine learning models. We highlight the challenges and opportunities of incorporating movement predictions into management actions and policy. Rewilding and translocation schemes offer exciting opportunities to collect data from novel environments, enabling tests of model predictions across varied contexts and scales. Adaptive management frameworks in particular, based on a stepwise iterative process, including predictions and refinements, provide exciting opportunities of mutual benefit to movement ecology and conservation. In conclusion, movement ecology is on the verge of transforming from a descriptive to a predictive science. This is a timely progression, given that robust predictions under rapidly changing environmental conditions are now more urgently needed than ever for evidence-based management and policy decisions. Our key aim now is not to describe the existing data as well as possible, but rather to understand the underlying mechanisms and develop models with reliable predictive ability in novel situations.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Gomez, Sara ; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
English, Holly M ; School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
Bejarano Alegre, Vanesa ; Spatial Ecology and Conservation Lab (LEEC), Department of Biodiversity, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, São Paulo, Brazil
Blackwell, Paul G ; School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
Bracken, Anna M ; School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
Bray, Eloise; School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
Evans, Luke C ; School of Biological Sciences, University of Reading, Reading, UK
Gan, Jelaine L; School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK ; University of the Philippines, Quezon City, Philippines
Grecian, W James ; Department of Geography, Durham University, Durham, UK
Gutmann Roberts, Catherine ; School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
Harju, Seth M ; Heron Ecological, Kingston, Idaho, USA
Hejcmanová, Pavla ; Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
Fundação de Amparo à Pesquisa do Estado de São Paulo Natural Environment Research Council Gordon and Betty Moore Foundation National Geographic Society Rural and Environment Science and Analytical Services Division
Funding text :
V.B.A. received support from the S\u00E3o Paulo Research Foundation (processes number: 2020/07586\u20104). L.C.E. was supported by the Natural Environment Research Council Grant (award number: NE/V006916/1). Z.O. was funded by the Regional Government of Andalusia and NextGenerationEU. P.H. received support from the Faculty of Tropical AgriSciences\u2014Czech University of Life Sciences Prague (award number: IGA20243107). C.J.G.R. was supported by the Natural Environment Research Council and the ARIES Doctoral Training Partnership (award number: NE/S007334/1). C.R. acknowledges funding from the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society (NGS\u201082515R\u201020). K.F.W. was supported by the Scottish Government's Rural and Environment Science and Analytical Services Division (RESAS).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abernathy, H. N., Crawford, D. A., Garrison, E. P., Chandler, R. B., Conner, M. L., Miller, K. V., & Cherry, M. J. (2019). Deer movement and resource selection during hurricane Irma: Implications for extreme climatic events and wildlife. Proceedings of the Royal Society B: Biological Sciences, 286(1916), 20192230. https://doi.org/10.1098/rspb.2019.2230
Allen, A. M., & Singh, N. J. (2016). Linking movement ecology with wildlife management and conservation. Frontiers in Ecology and Evolution, 3, 155. https://doi.org/10.3389/fevo.2015.00155
Amoroso, C. R., Kappeler, P. M., Fichtel, C., & Nunn, C. L. (2020). Water availability impacts habitat use by red-fronted lemurs (Eulemur rufifrons): An experimental and observational study. International Journal of Primatology, 41(1), 61–80. https://doi.org/10.1007/s10764-020-00136-9
Arroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F. P. L., Morante-Filho, J. C., Santos, B. A., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I. C. G., … Tscharntke, T. (2020). Designing optimal human-modified landscapes for forest biodiversity conservation. Ecology Letters, 23(9), 1404–1420. https://doi.org/10.1111/ele.13535
Auger-Méthé, M., Newman, K., Cole, D., Empacher, F., Gryba, R., King, A. A., Leos-Barajas, V., Mills Flemming, J., Nielsen, A., Petris, G., & Thomas, L. (2021). A guide to state–space modeling of ecological time series. Ecological Monographs, 91(4), e01470. https://doi.org/10.1002/ecm.1470
Avgar, T., Potts, J. R., Lewis, M. A., & Boyce, M. S. (2016). Integrated step selection analysis: Bridging the gap between resource selection and animal movement. Methods in Ecology and Evolution, 7(5), 619–630. https://doi.org/10.1111/2041-210X.12528
Barcelo-Serra, M., Cabanellas, S., Palmer, M., Bolgan, M., & Alós, J. (2021). A state-space model to derive motorboat noise effects on fish movement from acoustic tracking data. Scientific Reports, 11(1), 4765. https://doi.org/10.1038/s41598-021-84261-2
Bates, A. E., Primack, R. B., Biggar, B. S., Bird, T. J., Clinton, M. E., Command, R. J., Richards, C., Shellard, M., Geraldi, N. R., Vergara, V., Acevedo-Charry, O., Colón-Piñeiro, Z., Ocampo, D., Ocampo-Peñuela, N., Sánchez-Clavijo, L. M., Adamescu, C. M., Cheval, S., Racoviceanu, T., Adams, M. D., … Duarte, C. M. (2021). Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 263, 109175. https://doi.org/10.1016/j.biocon.2021.109175
Beever, E. A., Hall, L. E., Varner, J., Loosen, A. E., Dunham, J. B., Gahl, M. K., Smith, F. A., & Lawler, J. J. (2017). Behavioral flexibility as a mechanism for coping with climate change. Frontiers in Ecology and the Environment, 15(6), 299–308. https://doi.org/10.1002/fee.1502
Bénard, A., Lengagne, T., & Bonenfant, C. (2024). Integration of animal movement into wildlife-vehicle collision models. Ecological Modelling, 492, 110690. https://doi.org/10.1016/j.ecolmodel.2024.110690
Bender, E. A., Case, T. J., & Gilpin, M. E. (1984). Perturbation experiments in community ecology: Theory and practice. Ecology, 65(1), 1–13. https://doi.org/10.2307/1939452
Benítez-López, A., Alkemade, R., & Verweij, P. A. (2010). The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis. Biological Conservation, 143(6), 1307–1316. https://doi.org/10.1016/j.biocon.2010.02.009
Bennitt, E., Bonyongo, M. C., & Harris, S. (2018). Cape buffalo (Syncerus caffer caffer) social dynamics in a flood-pulsed environment. Behavioral Ecology, 29(1), 93–105. https://doi.org/10.1093/beheco/arx138
Berger, A., Barthel, L. M. F., Rast, W., Hofer, H., & Gras, P. (2020). Urban hedgehog Behavioural responses to temporary habitat disturbance versus permanent fragmentation. Animals, 10(11), 2109. https://doi.org/10.3390/ani10112109
Bicknell, A. W. J., Oro, D., Camphuysen, K., C. J., & Votier, S. C. (2013). Potential consequences of discard reform for seabird communities. Journal of Applied Ecology, 50(3), 649–658. https://doi.org/10.1111/1365-2664.12072
Blackwell, P. G., & Matthiopoulos, J. (2024). Joint inference for telemetry and spatial survey data. Ecology, 105(12), e4457. https://doi.org/10.1002/ecy.4457
Boughman, J. W., Brand, J. A., Brooks, R. C., Bonduriansky, R., & Wong, B. B. M. (2024). Sexual selection and speciation in the Anthropocene. Trends in Ecology & Evolution, 39(7), 654–665. https://doi.org/10.1016/j.tree.2024.02.005
Brandt, M. J., Diederichs, A., Betke, K., & Nehls, G. (2011). Responses of harbour porpoises to pile driving at the horns rev II offshore wind farm in the Danish North Sea. Marine Ecology Progress Series, 421, 205–216. https://doi.org/10.3354/meps08888
Bucci, K., Tulio, M., & Rochman, C. M. (2020). What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecological Applications, 30(2), e02044. https://doi.org/10.1002/eap.2044
Burak, M. K., Ferraro, K. M., Orrick, K. D., Sommer, N. R., Ellis-Soto, D., & Schmitz, O. J. (2024). Context matters when rewilding for climate change. People and Nature, 6(2), 507–518. https://doi.org/10.1002/pan3.10609
Burton, A. C., Beirne, C., Gaynor, K. M., Sun, C., Granados, A., Allen, M. L., Alston, J. M., Alvarenga, G. C., Calderón, F. S. Á., Amir, Z., Anhalt-Depies, C., Appel, C., Arroyo-Arce, S., Balme, G., Bar-Massada, A., Barcelos, D., Barr, E., Barthelmess, E. L., Baruzzi, C., … Kays, R. (2024). Mammal responses to global changes in human activity vary by trophic group and landscape. Nature Ecology & Evolution, 8(5), 924–935. https://doi.org/10.1038/s41559-024-02363-2
Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., … Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. In Core Writing Team, H. Lee, & J. Romero (Eds.), Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. (P. Arias, M. Bustamante, I. Elgizouli, G. Flato, M. Howden, C. Méndez-Vallejo, J. J. Pereira, R. Pichs-Madruga, S. K. Rose, Y. Saheb, R. Sánchez Rodríguez, D. Ürge-Vorsatz, C. Xiao, N. Yassaa, J. Romero, J. Kim, E. F. Haites, Y. Jung, R. Stavins, … C. Péan, Eds.). Intergovernmental Panel on Climate Change (IPCC). https://doi.org/10.59327/ipcc/ar6-9789291691647
Chakravarty, P., Cozzi, G., Ozgul, A., & Aminian, K. (2019). A novel biomechanical approach for animal behaviour recognition using accelerometers. Methods in Ecology and Evolution, 10(6), 802–814. https://doi.org/10.1111/2041-210X.13172
Chambault, P., Kovacs, K. M., Lydersen, C., Shpak, O., Teilmann, J., Albertsen, C. M., & Heide-Jørgensen, M. P. (2022). Future seasonal changes in habitat for Arctic whales during predicted ocean warming. Science Advances, 8(29), eabn2422. https://doi.org/10.1126/sciadv.abn2422
Chan, W.-P., Lenoir, J., Mai, G.-S., Kuo, H.-C., Chen, I.-C., & Shen, S.-F. (2024). Climate velocities and species tracking in global mountain regions. Nature, 629(8010), 114–120. https://doi.org/10.1038/s41586-024-07264-9
Chatterjee, N., Wolfson, D., Kim, D., Velez, J., Freeman, S., Bacheler, N. M., Shertzer, K., Taylor, J. C., & Fieberg, J. (2024). Modelling individual variability in habitat selection and movement using integrated step-selection analysis. Methods in Ecology and Evolution, 15(6), 1034–1047. https://doi.org/10.1111/2041-210X.14321
Chow, P. K. Y., Uchida, K., & Koizumi, I. (2024). ‘Ripple effects’ of urban environmental characteristics on cognitive performances in Eurasian red squirrels. Journal of Animal Ecology, 93(8), 1078–1096. https://doi.org/10.1111/1365-2656.14126
Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and the Environment, 9(4), 222–228. https://doi.org/10.1890/080216
Costa-Pereira, R., Moll, R. J., Jesmer, B. R., & Jetz, W. (2022). Animal tracking moves community ecology: Opportunities and challenges. Journal of Animal Ecology, 91(7), 1334–1344. https://doi.org/10.1111/1365-2656.13698
Courbin, N., Garel, M., Marchand, P., Duparc, A., Debeffe, L., Börger, L., & Loison, A. (2022). Interacting lethal and nonlethal human activities shape complex risk tolerance behaviors in a mountain herbivore. Ecological Applications, 32(7), e2640. https://doi.org/10.1002/eap.2640
Cowie, R. H., Bouchet, P., & Fontaine, B. (2022). The sixth mass extinction: Fact, fiction or speculation? Biological Reviews, 97(2), 640–663. https://doi.org/10.1111/brv.12816
Crane, M., Silva, I., Marshall, B. M., & Strine, C. T. (2021). Lots of movement, little progress: A review of reptile home range literature. PeerJ, 9, e11742. https://doi.org/10.7717/peerj.11742
Davidson, S. C., Cagnacci, F., Newman, P., Dettki, H., Urbano, F., Desmet, P., Bajona, L., Bryant, E., Carneiro, A. P. B., Dias, M. P., Fujioka, E., Gambin, D., Hoenner, X., Hunter, C., Kato, A., Kot, C. Y., Kranstauber, B., Lam, C. H., Lepage, D., … Rutz, C. (2025). Establishing bio-logging data collections as dynamic archives of animal life on earth. Nature Ecology & Evolution, 9(2), 204–213. https://doi.org/10.1038/s41559-024-02585-4
Davoli, M., Monsarrat, S., Pedersen, R. Ø., Scussolini, P., Karger, D. N., Normand, S., & Svenning, J.-C. (2024). Megafauna diversity and functional declines in Europe from the last interglacial to the present. Global Ecology and Biogeography, 33(1), 34–47. https://doi.org/10.1111/geb.13778
Delsink, A., Vanak, A. T., Ferreira, S., & Slotow, R. (2013). Biologically relevant scales in large mammal management policies. Biological Conservation, 167, 116–126. https://doi.org/10.1016/j.biocon.2013.07.035
Dennhardt, A. J., Duerr, A. E., Brandes, D., & Katzner, T. E. (2015). Integrating citizen-science data with movement models to estimate the size of a migratory golden eagle population. Biological Conservation, 184, 68–78. https://doi.org/10.1016/j.biocon.2015.01.003
Dickie, M., Serrouya, R., McNay, R. S., & Boutin, S. (2017). Faster and farther: Wolf movement on linear features and implications for hunting behaviour. Journal of Applied Ecology, 54(1), 253–263. https://doi.org/10.1111/1365-2664.12732
Ditmer, M. A., Stoner, D. C., Francis, C. D., Barber, J. R., Forester, J. D., Choate, D. M., Ironside, K. E., Longshore, K. M., Hersey, K. R., Larsen, R. T., McMillan, B. R., Olson, D. D., Andreasen, A. M., Beckmann, J. P., Holton, P. B., Messmer, T. A., & Carter, N. H. (2021). Artificial nightlight alters the predator–prey dynamics of an apex carnivore. Ecography, 44(2), 149–161. https://doi.org/10.1111/ecog.05251
Doherty, T. S., Hays, G. C., & Driscoll, D. A. (2021). Human disturbance causes widespread disruption of animal movement. Nature Ecology & Evolution, 5(4), 513–519. https://doi.org/10.1038/s41559-020-01380-1
Dombrovski, V. C., Zhurauliou, D. V., & Ashton-Butt, A. (2022). Long-term effects of rewilding on species composition: 22 years of raptor monitoring in the Chernobyl exclusion zone. Restoration Ecology, 30(8), e13633. https://doi.org/10.1111/rec.13633
Dominoni, D. M., Halfwerk, W., Baird, E., Buxton, R. T., Fernández-Juricic, E., Fristrup, K. M., McKenna, M. F., Mennitt, D. J., Perkin, E. K., Seymoure, B. M., Stoner, D. C., Tennessen, J. B., Toth, C. A., Tyrrell, L. P., Wilson, A., Francis, C. D., Carter, N. H., & Barber, J. R. (2020). Why conservation biology can benefit from sensory ecology. Nature Ecology & Evolution, 4(4), 502–511. https://doi.org/10.1038/s41559-020-1135-4
Ducatez, S., Sayol, F., Sol, D., & Lefebvre, L. (2018). Are urban Vertebrates City specialists, artificial habitat exploiters, or environmental generalists? Integrative and Comparative Biology, 58(5), 929–938. https://doi.org/10.1093/icb/icy101
Dusenbery, D. B. (1992). Sensory ecology: How organisms acquire and respond to information. W.H. Freeman.
Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
Ellis-Soto, D., Oliver, R. Y., Brum-Bastos, V., Demšar, U., Jesmer, B., Long, J. A., Cagnacci, F., Ossi, F., Queiroz, N., Hindell, M., Kays, R., Loretto, M.-C., Mueller, T., Patchett, R., Sims, D. W., Tucker, M. A., Ropert-Coudert, Y., Rutz, C., & Jetz, W. (2023). A vision for incorporating human mobility in the study of human–wildlife interactions. Nature Ecology & Evolution, 7(9), 1362–1372. https://doi.org/10.1038/s41559-023-02125-6
Fieberg, J., Freeman, S., & Signer, J. (2024). Using lineups to evaluate goodness of fit of animal movement models. Methods in Ecology and Evolution, 15(6), 1048–1059. https://doi.org/10.1111/2041-210X.14336
Fieberg, J. R., Forester, J. D., Street, G. M., Johnson, D. H., ArchMiller, A. A., & Matthiopoulos, J. (2018). Used-habitat calibration plots: A new procedure for validating species distribution, resource selection, and step-selection models. Ecography, 41(5), 737–752. https://doi.org/10.1111/ecog.03123
Forman, R. T. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology, Evolution, and Systematics, 29, 207–231. https://doi.org/10.1146/annurev.ecolsys.29.1.207
Fortin, D., Brooke, C. F., Lamirande, P., Fritz, H., McLoughlin, P. D., & Pays, O. (2020). Quantitative spatial ecology to promote human-wildlife coexistence: A tool for integrated landscape management. Frontiers in Sustainable Food Systems, 4, 600363. https://doi.org/10.3389/fsufs.2020.600363
Fraser, K. C., Davies, K. T. A., Davy, C. M., Ford, A. T., Flockhart, D. T. T., & Martins, E. G. (2018). Tracking the conservation promise of movement ecology. Frontiers in Ecology and Evolution, 6, 150. https://doi.org/10.3389/fevo.2018.00150
Fuchs, Y. H., Edgar, G., Bates, A., Waldock, C., & Smith, R. S. (2024). Limited net poleward movement amongst Australian reef species over a decade of climate extremes. Nature Climate Change, 14, 1087–1092. https://doi.org/10.1038/s41558-024-02116-w
Fuentes, M., Van Doren, B. M., Fink, D., & Sheldon, D. (2023). BirdFlow: Learning seasonal bird movements from eBird data. Methods in Ecology and Evolution, 14(3), 923–938. https://doi.org/10.1111/2041-210X.14052
Gable, T. D., Johnson-Bice, S. M., Homkes, A. T., Fieberg, J., & Bump, J. K. (2023). Wolves alter the trajectory of forests by shaping the central place foraging behaviour of an ecosystem engineer. Proceedings of the Royal Society B: Biological Sciences, 290(2010), 20231377. https://doi.org/10.1098/rspb.2023.1377
Gaynor, K. M., Abrahms, B., Manlove, K. R., Oestreich, W. K., & Smith, J. A. (2024). Anthropogenic impacts at the interface of animal spatial and social behaviour. Philosophical Transactions of the Royal Society, B: Biological Sciences, 379(1912), 20220527. https://doi.org/10.1098/rstb.2022.0527
Gaynor, K. M., Fiorella, K. J., Gregory, G. H., Kurz, D. J., Seto, K. L., Withey, L. S., & Brashares, J. S. (2016). War and wildlife: Linking armed conflict to conservation. Frontiers in Ecology and the Environment, 14(10), 533–542. https://doi.org/10.1002/fee.1433
Gilbert, N. I., Correia, R. A., Silva, J. P., Pacheco, C., Catry, I., Atkinson, P. W., Gill, J. A., & Franco, A. M. A. (2016). Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Movement Ecology, 4(1), 7. https://doi.org/10.1186/s40462-016-0070-0
Giroux, A., Ortega, Z., Attias, N., Desbiez, A. L. J., Valle, D., Börger, L., & Rodrigues Oliveira-Santos, L. G. (2023). Activity modulation and selection for forests help giant anteaters to cope with temperature changes. Animal Behaviour, 201, 191–209. https://doi.org/10.1016/j.anbehav.2023.04.008
Griffin, A. S., Netto, K., & Peneaux, C. (2017). Neophilia, innovation and learning in an urbanized world: A critical evaluation of mixed findings. Current Opinion in Behavioral Sciences, 16, 15–22. https://doi.org/10.1016/j.cobeha.2017.01.004
Guerra, A. S., Bui, A., Klope, M., Orr, D. A., Shaffer, S. A., & Young, H. S. (2022). Leaving more than footprints: Anthropogenic nutrient subsidies to a protected area. Ecosphere, 13(12), e4371. https://doi.org/10.1002/ecs2.4371
Gutmann Roberts, C., Hindes, A. M., & Britton, J. R. (2019). Factors influencing individual movements and behaviours of invasive European barbel Barbus barbus in a regulated river. Hydrobiologia, 830(1), 213–228. https://doi.org/10.1007/s10750-018-3864-9
Hale, R., & Swearer, S. E. (2016). Ecological traps: Current evidence and future directions. Proceedings of the Royal Society B: Biological Sciences, 283(1824), 20152647. https://doi.org/10.1098/rspb.2015.2647
Halfwerk, W., & Slabbekoorn, H. (2015). Pollution going multimodal: The complex impact of the human-altered sensory environment on animal perception and performance. Biology Letters, 11(4), 20141051. https://doi.org/10.1098/rsbl.2014.1051
Harju, S., Coates, P., Dettenmaier, S., Dinkins, J., Jackson, P., & Chenaille, M. (2021). Estimating trends of common raven populations in North America, 1966–2018. Human-Wildlife Interactions, 15(3), 248–269. https://doi.org/10.26077/c27f-e335
Harris, J., Bullock, J., Pettorelli, N., Perring, M., & Mercer, T. (2024). Novel ecosystems: The new normal? https://www.britishecologicalsociety.org/novel-ecosystems-the-new-normal/
Hastie, G. D., Lepper, P., McKnight, J. C., Milne, R., Russell, D. J. F., & Thompson, D. (2021). Acoustic risk balancing by marine mammals: Anthropogenic noise can influence the foraging decisions by seals. Journal of Applied Ecology, 58(9), 1854–1863. https://doi.org/10.1111/1365-2664.13931
Hawkes, C. (2009). Linking movement behaviour, dispersal and population processes: Is individual variation a key? Journal of Animal Ecology, 78(5), 894–906. https://doi.org/10.1111/j.1365-2656.2009.01534.x
Hays, G. C., Bailey, H., Bograd, S. J., Bowen, W. D., Campagna, C., Carmichael, R. H., Casale, P., Chiaradia, A., Costa, D. P., Cuevas, E., de Bruyn, P. J. N., Dias, M. P., Duarte, C. M., Dunn, D. C., Dutton, P. H., Esteban, N., Friedlaender, A., Goetz, K. T., Godley, B. J., … Sequeira, A. M. M. (2019). Translating marine animal tracking data into conservation policy and management. Trends in Ecology & Evolution, 34(5), 459–473. https://doi.org/10.1016/j.tree.2019.01.009
Hebblewhite, M., & Merrill, E. H. (2009). Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology, 90(12), 3445–3454. https://doi.org/10.1890/08-2090.1
Herbert-Read, J. E., Kremer, L., Bruintjes, R., Radford, A. N., & Ioannou, C. C. (2017). Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals. Proceedings of the Royal Society B: Biological Sciences, 284(1863), 20171627. https://doi.org/10.1098/rspb.2017.1627
Hertel, A. G., Niemelä, P. T., Dingemanse, N. J., & Mueller, T. (2020). A guide for studying among-individual behavioral variation from movement data in the wild. Movement Ecology, 8(1), 30. https://doi.org/10.1186/s40462-020-00216-8
Hobbs, R. J., Arico, S., Aronson, J., Baron, J. S., Bridgewater, P., Cramer, V. A., Epstein, P. R., Ewel, J. J., Klink, C. A., Lugo, A. E., Norton, D., Ojima, D., Richardson, D. M., Sanderson, E. W., Valladares, F., Vilà, M., Zamora, R., & Zobel, M. (2006). Novel ecosystems: Theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 15(1), 1–7. https://doi.org/10.1111/j.1466-822X.2006.00212.x
Hody, J. W., & Kays, R. (2018). Mapping the expansion of coyotes (Canis latrans) across north and Central America. ZooKeys, 759, 81–97. https://doi.org/10.3897/zookeys.759.15149
Hoekstra, B., Bouten, W., Dokter, A., van Gasteren, H., Turnhout, C., Kranstauber, B., van Loon, E., Leijnse, H., & Shamoun-Baranes, J. (2024). Fireworks disturbance across bird communities. Frontiers in Ecology and the Environment, 22(1), e2694. https://doi.org/10.1002/fee.2694
Holton, M. D., Wilson, R. P., Teilmann, J., & Siebert, U. (2021). Animal tag technology keeps coming of age: An engineering perspective. Philosophical Transactions of the Royal Society, B: Biological Sciences, 376(1831), 20200229. https://doi.org/10.1098/rstb.2020.0229
Hussey, N. E., Kessel, S. T., Aarestrup, K., Cooke, S. J., Cowley, P. D., Fisk, A. T., Harcourt, R. G., Holland, K. N., Iverson, S. J., Kocik, J. F., Mills Flemming, J. E., & Whoriskey, F. G. (2015). Aquatic animal telemetry: A panoramic window into the underwater world. Science, 348(6240), 1255642. https://doi.org/10.1126/science.1255642
Imlay, T. L., Nickerson, D., & Horn, A. G. (2019). Temperature and breeding success for cliff swallows (Petrochelidon pyrrhonota) nesting on man-made structures: Ecological traps? Canadian Journal of Zoology, 97(5), 429–435. https://doi.org/10.1139/cjz-2018-0224
Inamine, H., Miller, A., Roxburgh, S., Buckling, A., & Shea, K. (2022). Pulse and press disturbances have different effects on transient community dynamics. The American Naturalist, 200(4), 571–583. https://doi.org/10.1086/720618
IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services (summary for policy makers). Zenodo. https://doi.org/10.5281/ZENODO.3553579
Johnson, C. J., & St-Laurent, M.-H. (2011). Unifying framework for understanding impacts of human developments on wildlife. In D. E. Naugle (Ed.), Energy development and wildlife conservation in Western North America (pp. 27–54). Island Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-022-4_3
Jones, P. F., Jakes, A. F., Vegter, S. E., & Verhage, M. S. (2022). Is it the road or the fence? Influence of linear anthropogenic features on the movement and distribution of a partially migratory ungulate. Movement Ecology, 10(1), 37. https://doi.org/10.1186/s40462-022-00336-3
Kadykalo, A. N., Buxton, R. T., Morrison, P., Anderson, C. M., Bickerton, H., Francis, C. M., Smith, A. C., & Fahrig, L. (2021). Bridging research and practice in conservation. Conservation Biology, 35(6), 1725–1737. https://doi.org/10.1111/cobi.13732
Katzner, T. E., & Arlettaz, R. (2020). Evaluating Contributions of recent tracking-based animal movement ecology to conservation management. Frontiers in Ecology and Evolution, 7, 519. https://doi.org/10.3389/fevo.2019.00519
Kays, R., Crofoot, M. C., Jetz, W., & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. Science, 348(6240), aaa2478. https://doi.org/10.1126/science.aaa2478
Kays, R., Davidson, S. C., Berger, M., Bohrer, G., Fiedler, W., Flack, A., Hirt, J., Hahn, C., Gauggel, D., Russell, B., Kölzsch, A., Lohr, A., Partecke, J., Quetting, M., Safi, K., Scharf, A., Schneider, G., Lang, I., Schaeuffelhut, F., … Wikelski, M. (2021). The Movebank system for studying global animal movement and demography. Methods in Ecology and Evolution, 13(2), 419–431. https://doi.org/10.1111/2041-210x.13767
Kemppinen, J., Lembrechts, J. J., Van Meerbeek, K., Carnicer, J., Chardon, N. I., Kardol, P., Lenoir, J., Liu, D., Maclean, I., Pergl, J., Saccone, P., Senior, R. A., Shen, T., Słowińska, S., Vandvik, V., von Oppen, J., Aalto, J., Ayalew, B., Bates, O., … De Frenne, P. (2024). Microclimate, an important part of ecology and biogeography. Global Ecology and Biogeography, 33(6), e13834. https://doi.org/10.1111/geb.13834
Klappstein, N. J., Michelot, T., Fieberg, J., Pedersen, E. J., & Mills Flemming, J. (2024). Step selection functions with non-linear and random effects. Methods in Ecology and Evolution, 15(8), 1332–1346. https://doi.org/10.1111/2041-210X.14367
Klappstein, N. J., Potts, J. R., Michelot, T., Börger, L., Pilfold, N. W., Lewis, M. A., & Derocher, A. E. (2022). Energy-based step selection analysis: Modelling the energetic drivers of animal movement and habitat use. Journal of Animal Ecology, 91(5), 946–957. https://doi.org/10.1111/1365-2656.13687
Kölzsch, A., Lameris, T. K., Müskens, G. J. D. M., Schreven, K. H. T., Buitendijk, N. H., Kruckenberg, H., Moonen, S., Heinicke, T., Cao, L., Madsen, J., Wikelski, M., & Nolet, B. A. (2023). Wild goose chase: Geese flee high and far, and with aftereffects from new Year's fireworks. Conservation Letters, 16(1), e12927. https://doi.org/10.1111/conl.12927
Kristan, W. B., & Boarman, W. I. (2007). Effects of anthropogenic developments on common raven nesting biology in the West Mojave Desert. Ecological Applications, 17(6), 1703–1713. https://doi.org/10.1890/06-1114.1
Leblond, M., Dussault, C., & Ouellet, J.-.P. (2013). Avoidance of roads by large herbivores and its relation to disturbance intensity. Journal of Zoology, 289(1), 32–40. https://doi.org/10.1111/j.1469-7998.2012.00959.x
Lempidakis, E., Shepard, E. L. C., Ross, A. N., Matsumoto, S., Koyama, S., Takeuchi, I., & Yoda, K. (2022). Pelagic seabirds reduce risk by flying into the eye of the storm. Proceedings of the National Academy of Sciences of the United States of America, 119(41), e2212925119. https://doi.org/10.1073/pnas.2212925119
Lesmerises, F., Dussault, C., & St-Laurent, M.-H. (2013). Major roadwork impacts the space use behaviour of gray wolf. Landscape and Urban Planning, 112, 18–25. https://doi.org/10.1016/j.landurbplan.2012.12.011
Levin, S. A., & Paine, R. T. (1974). Disturbance, patch formation, and community structure. Proceedings of the National Academy of Sciences of the United States of America, 71(7), 2744–2747. https://doi.org/10.1073/pnas.71.7.2744
Loss, S. R., Will, T., Loss, S. S., & Marra, P. P. (2014). Bird–building collisions in the United States: Estimates of annual mortality and species vulnerability. The Condor, 116(1), 8–23. https://doi.org/10.1650/CONDOR-13-090.1
Loss, S. R., Will, T., & Marra, P. P. (2013). Estimates of bird collision mortality at wind facilities in the contiguous United States. Biological Conservation, 168, 201–209. https://doi.org/10.1016/j.biocon.2013.10.007
Lustenhouwer, N., Moerman, F., Altermatt, F., Bassar, R. D., Bocedi, G., Bonte, D., Dey, S., Fronhofer, E. A., Da Rocha, É. G., Giometto, A., Lancaster, L. T., Prather, R. B., Saastamoinen, M., Travis, J. M. J., Urquhart, C. A., Weiss-Lehman, C., Williams, J. L., Börger, L., & Berger, D. (2023). Experimental evolution of dispersal: Unifying theory, experiments and natural systems. Journal of Animal Ecology, 92(6), 1113–1123. https://doi.org/10.1111/1365-2656.13930
Ma, D., Abrahms, B., Allgeier, J., Newbold, T., Weeks, B. C., & Carter, N. H. (2024). Global expansion of human-wildlife overlap in the 21st century. Science Advances, 10(34), eadp7706. https://doi.org/10.1126/sciadv.adp7706
Macdonald, D. W., & Johnson, D. D. P. (2015). Patchwork planet: The resource dispersion hypothesis, society, and the ecology of life. Journal of Zoology, 295(2), 75–107. https://doi.org/10.1111/jzo.12202
Maes, S. L., Perring, M. P., Cohen, R., Akinnifesi, F. K., Bargués-Tobella, A., Bastin, J.-F., Bauters, M., Bernardino, P. N., Brancalion, P. H. S., Bullock, J. M., Ellison, D., Fayolle, A., Fremout, T., Gann, G. D., Hishe, H., Holmgren, M., Ilstedt, U., Mahy, G., Messier, C., … Muys, B. (2024). Explore before you restore: Incorporating complex systems thinking in ecosystem restoration. Journal of Applied Ecology, 61(5), 922–939. https://doi.org/10.1111/1365-2664.14614
Malishev, M., & Kramer-Schadt, S. (2021). Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales. Ecological Modelling, 441, 109413. https://doi.org/10.1016/j.ecolmodel.2020.109413
Manly, B. F. J., McDonald, L. L., & Thomas, T. (2002). Review of resource selection by animals: Statistical design and analysis for field studies - second edition. Journal of Animal Ecology, 63(3), 745–746. https://doi.org/10.2307/5247
Månsson, J., Eriksson, L., Hodgson, I., Elmberg, J., Bunnefeld, N., Hessel, R., Johansson, M., Liljebäck, N., Nilsson, L., Olsson, C., Pärt, T., Sandström, C., Tombre, I., & Redpath, S. M. (2023). Understanding and overcoming obstacles in adaptive management. Trends in Ecology & Evolution, 38(1), 55–71. https://doi.org/10.1016/j.tree.2022.08.009
Marshall, B. M., Crane, M., Silva, I., Strine, C. T., Jones, M. D., Hodges, C. W., Suwanwaree, P., Artchawakom, T., Waengsothorn, S., & Goode, M. (2020). No room to roam: King cobras reduce movement in agriculture. Movement Ecology, 8(1), 33. https://doi.org/10.1186/s40462-020-00219-5
Masden, E. A., Haydon, D. T., Fox, A. D., Furness, R. W., Bullman, R., & Desholm, M. (2009). Barriers to movement: Impacts of wind farms on migrating birds. ICES Journal of Marine Science, 66(4), 746–753. https://doi.org/10.1093/icesjms/fsp031
Matthiopoulos, J. (2003). The use of space by animals as a function of accessibility and preference. Ecological Modelling, 159(2), 239–268. https://doi.org/10.1016/S0304-3800(02)00293-4
Matthiopoulos, J. (2022). Defining, estimating, and understanding the fundamental niches of complex animals in heterogeneous environments. Ecological Monographs, 92(4), e1545. https://doi.org/10.1002/ecm.1545
Matthiopoulos, J., Hebblewhite, M., Aarts, G., & Fieberg, J. (2011). Generalized functional responses for species distributions. Ecology, 92(3), 583–589. https://doi.org/10.1890/10-0751.1
McClintock, B. T., & Michelot, T. (2018). momentuHMM: R package for generalized hidden Markov models of animal movement. Methods in Ecology and Evolution, 9(6), 1518–1530. https://doi.org/10.1111/2041-210X.12995
McCrea, R., King, R., Graham, L., & Börger, L. (2023). Realising the promise of large data and complex models. Methods in Ecology and Evolution, 14(1), 4–11. https://doi.org/10.1111/2041-210X.14050
McGowan, J., Beger, M., Lewison, R. L., Harcourt, R., Campbell, H., Priest, M., Dwyer, R. G., Lin, H.-Y., Lentini, P., Dudgeon, C., McMahon, C., Watts, M., & Possingham, H. P. (2017). Integrating research using animal-borne telemetry with the needs of conservation management. Journal of Applied Ecology, 54(2), 423–429. https://doi.org/10.1111/1365-2664.12755
McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127(3), 247–260. https://doi.org/10.1016/j.biocon.2005.09.005
Meisingset, E. L., Loe, L. E., Brekkum, Ø., Bischof, R., Rivrud, I. M., Lande, U. S., Zimmermann, B., Veiberg, V., & Mysterud, A. (2018). Spatial mismatch between management units and movement ecology of a partially migratory ungulate. Journal of Applied Ecology, 55(2), 745–753. https://doi.org/10.1111/1365-2664.13003
Mensinger, M. A., Hawkes, J. P., Goulette, G. S., Mortelliti, A., Blomberg, E. J., & Zydlewski, J. D. (2024). Dams facilitate predation during Atlantic salmon (Salmo salar) smolt migration. Canadian Journal of Fisheries and Aquatic Sciences, 81(1), 38–51. https://doi.org/10.1139/cjfas-2023-0175
Merkle, J. A., Potts, J. R., & Fortin, D. (2017). Energy benefits and emergent space use patterns of an empirically parameterized model of memory-based patch selection. Oikos, 126(2), 185–195. https://doi.org/10.1111/oik.03356
Michelot, T., Blackwell, P. G., Chamaillé-Jammes, S., & Matthiopoulos, J. (2020). Inference in MCMC step selection models. Biometrics, 76(2), 438–447. https://doi.org/10.1111/biom.13170
Michelot, T., Blackwell, P. G., & Matthiopoulos, J. (2019). Linking resource selection and step selection models for habitat preferences in animals. Ecology, 100(1), e02452. https://doi.org/10.1002/ecy.2452
Michelot, T., Gloaguen, P., Blackwell, P. G., & Étienne, M.-P. (2019). The Langevin diffusion as a continuous-time model of animal movement and habitat selection. Methods in Ecology and Evolution, 10(11), 1894–1907. https://doi.org/10.1111/2041-210X.13275
Milner, J. E., Blackwell, P. G., & Niu, M. (2021). Modelling and inference for the movement of interacting animals. Methods in Ecology and Evolution, 12(1), 54–69. https://doi.org/10.1111/2041-210X.13468
Moorcroft, P. R., Lewis, M. A., & Crabtree, R. L. (2006). Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone. Proceedings of the Royal Society B: Biological Sciences, 273(1594), 1651–1659. https://doi.org/10.1098/rspb.2005.3439
Muff, S., Signer, J., & Fieberg, J. (2020). Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. Journal of Animal Ecology, 89(1), 80–92. https://doi.org/10.1111/1365-2656.13087
Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., & Smouse, P. E. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19052–19059. https://doi.org/10.1073/pnas.0800375105
Nathan, R., Monk, C. T., Arlinghaus, R., Adam, T., Alós, J., Assaf, M., Baktoft, H., Beardsworth, C. E., Bertram, M. G., Bijleveld, A. I., Brodin, T., Brooks, J. L., Campos-Candela, A., Cooke, S. J., Gjelland, K. Ø., Gupte, P. R., Harel, R., Hellström, G., Jeltsch, F., … Jarić, I. (2022). Big-data approaches lead to an increased understanding of the ecology of animal movement. Science, 375(6582), eabg1780. https://doi.org/10.1126/science.abg1780
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50. https://doi.org/10.1038/nature14324
Newman, K., King, R., Elvira, V., de Valpine, P., McCrea, R. S., & Morgan, B. J. T. (2023). State-space models for ecological time-series data: Practical model-fitting. Methods in Ecology and Evolution, 14(1), 26–42. https://doi.org/10.1111/2041-210X.13833
Newman, R., & Noy, I. (2023). The global costs of extreme weather that are attributable to climate change. Nature Communications, 14(1), 6103. https://doi.org/10.1038/s41467-023-41888-1
Newsome, S. D., Ralls, K., Van Horn Job, C., Fogel, M. L., & Cypher, B. L. (2010). Stable isotopes evaluate exploitation of anthropogenic foods by the endangered San Joaquin kit fox (Vulpes macrotis mutica). Journal of Mammalogy, 91(6), 1313–1321. https://doi.org/10.1644/09-MAMM-A-362.1
Niebuhr, B. B., Sant'Ana, D., Panzacchi, M., van Moorter, B., Sandström, P., Morato, R. G., & Skarin, A. (2022). Renewable energy infrastructure impacts biodiversity beyond the area it occupies. Proceedings of the National Academy of Sciences of the United States of America, 119(48), e2208815119. https://doi.org/10.1073/pnas.2208815119
Nimmo, D. G., Avitabile, S., Banks, S. C., Bliege Bird, R., Callister, K., Clarke, M. F., Dickman, C. R., Doherty, T. S., Driscoll, D. A., Greenville, A. C., Haslem, A., Kelly, L. T., Kenny, S. A., Lahoz-Monfort, J. J., Lee, C., Leonard, S., Moore, H., Newsome, T. M., Parr, C. L., … Bennett, A. F. (2019). Animal movements in fire-prone landscapes. Biological Reviews, 94(3), 981–998. https://doi.org/10.1111/brv.12486
Nisi, A. C., Benson, J. F., & Wilmers, C. C. (2022). Puma responses to unreliable human cues suggest an ecological trap in a fragmented landscape. Oikos, 2022(5), e09051. https://doi.org/10.1111/oik.09051
Niu, M., Blackwell, P. G., & Skarin, A. (2016). Modeling interdependent animal movement in continuous time. Biometrics, 72(2), 315–324. https://doi.org/10.1111/biom.12454
Nuijten, R. J. M., Katzner, T. E., Allen, A. M., Bijleveld, A. I., Boorsma, T., Börger, L., Cagnacci, F., Hart, T., Henley, M. A., Herren, R. M., Kok, E. M. A., Maree, B., Nebe, B., Shohami, D., Vogel, S. M., Walker, P., Heitkönig, I. M. A., & Milner-Gulland, E. J. (2023). Priorities for translating goodwill between movement ecologists and conservation practitioners into effective collaboration. Conservation Science and Practice, 5(1), e12870. https://doi.org/10.1111/csp2.12870
Oliver, R., Chapman, M., Ellis-Soto, D., Brum-Bastos, V., Cagnacci, F., Long, J., Loretto, M.-C., Patchett, R. B., & Rutz, C. (2024). Access to human-mobility data is essential for building a sustainable future. Cell Reports Sustainability, 1(4), 100077. https://doi.org/10.1016/j.crsus.2024.100077
Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S., & Martínez-Abraín, A. (2013). Ecological and evolutionary implications of food subsidies from humans. Ecology Letters, 16(12), 1501–1514. https://doi.org/10.1111/ele.12187
Owen, M. A., Swaisgood, R. R., & Blumstein, D. T. (2017). Contextual influences on animal decision-making: Significance for behavior-based wildlife conservation and management. Integrative Zoology, 12(1), 32–48. https://doi.org/10.1111/1749-4877.12235
Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O., & Matthiopoulos, J. (2008). State–space models of individual animal movement. Trends in Ecology & Evolution, 23(2), 87–94. https://doi.org/10.1016/j.tree.2007.10.009
Pereira, H. M., Martins, I. S., Rosa, I. M. D., Kim, H., Leadley, P., Popp, A., van Vuuren, D. P., Hurtt, G., Quoss, L., Arneth, A., Baisero, D., Bakkenes, M., Chaplin-Kramer, R., Chini, L., Di Marco, M., Ferrier, S., Fujimori, S., Guerra, C. A., Harfoot, M., … Alkemade, R. (2024). Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science, 384(6694), 458–465. https://doi.org/10.1126/science.adn3441
Perona, A. M., Urios, V., & López-López, P. (2019). Holidays? Not for all. Eagles have larger home ranges on holidays as a consequence of human disturbance. Biological Conservation, 231, 59–66. https://doi.org/10.1016/j.biocon.2019.01.010
Pfaller, J. B., Goforth, K. M., Gil, M. A., Savoca, M. S., & Lohmann, K. J. (2020). Odors from marine plastic debris elicit foraging behavior in sea turtles. Current Biology, 30(5), R213–R214. https://doi.org/10.1016/j.cub.2020.01.071
Plummer, K. E., Hale, J. D., O'Callaghan, M. J., Sadler, J. P., & Siriwardena, G. M. (2016). Investigating the impact of street lighting changes on garden moth communities. Journal of Urban Ecology, 2(1), juw004. https://doi.org/10.1093/jue/juw004
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. A., & Richardson, A. J. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3(10), 919–925. https://doi.org/10.1038/nclimate1958
Potts, J. R., & Börger, L. (2023). How to scale up from animal movement decisions to spatiotemporal patterns: An approach via step selection. Journal of Animal Ecology, 92(1), 16–29. https://doi.org/10.1111/1365-2656.13832
Potts, J. R., Börger, L., Strickland, B. K., & Street, G. M. (2022). Assessing the predictive power of step selection functions: How social and environmental interactions affect animal space use. Methods in Ecology and Evolution, 13(8), 1805–1818. https://doi.org/10.1111/2041-210X.13904
Potts, J. R., & Lewis, M. A. (2014). How do animal territories form and change? Lessons from 20 years of mechanistic modelling. Proceedings of the Royal Society B: Biological Sciences, 281(1784), 20140231. https://doi.org/10.1098/rspb.2014.0231
Potts, J. R., & Schlägel, U. E. (2020). Parametrizing diffusion-taxis equations from animal movement trajectories using step selection analysis. Methods in Ecology and Evolution, 11(9), 1092–1105. https://doi.org/10.1111/2041-210X.13406
Ranc, N., Moorcroft, P. R., Ossi, F., & Cagnacci, F. (2021). Experimental evidence of memory-based foraging decisions in a large wild mammal. Proceedings of the National Academy of Sciences of the United States of America, 118(15), e2014856118. https://doi.org/10.1073/pnas.2014856118
Ratnayake, M. N., Amarathunga, D. C., Zaman, A., Dyer, A. G., & Dorin, A. (2022). Spatial monitoring and insect behavioural analysis using computer vision for precision pollination. International Journal of Computer Vision, 131(3), 591–606. https://doi.org/10.1007/s11263-022-01715-4
Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., Drüke, M., Fetzer, I., Bala, G., von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Nogués-Bravo, D., … Rockström, J. (2023). Earth beyond six of nine planetary boundaries. Science Advances, 9(37), eadh2458. https://doi.org/10.1126/sciadv.adh2458
Rieber, C. J., Hefley, T. J., & Haukos, D. A. (2024). Treed gaussian processes for animal movement modeling. Ecology and Evolution, 14(6), e11447. https://doi.org/10.1002/ece3.11447
Rilov, G., Canning-Clode, J., & Guy-Haim, T. (2024). Ecological impacts of invasive ecosystem engineers: A global perspective across terrestrial and aquatic systems. Functional Ecology, 38(1), 37–51. https://doi.org/10.1111/1365-2435.14406
Rinella, M. J., Strong, D. J., & Vermeire, L. T. (2020). Omitted variable bias in studies of plant interactions. Ecology, 101(6), e03020. https://doi.org/10.1002/ecy.3020
Riotte-Lambert, L., & Matthiopoulos, J. (2020). Environmental predictability as a cause and consequence of animal movement. Trends in Ecology & Evolution, 35(2), 163–174. https://doi.org/10.1016/j.tree.2019.09.009
Rolland, R. M., Parks, S. E., Hunt, K. E., Castellote, M., Corkeron, P. J., Nowacek, D. P., Wasser, S. K., & Kraus, S. D. (2012). Evidence that ship noise increases stress in right whales. Proceedings of the Royal Society B: Biological Sciences, 279(1737), 2363–2368. https://doi.org/10.1098/rspb.2011.2429
Romano, M. D., Piatt, J. F., & Roby, D. D. (2006). Testing the junk-food hypothesis on marine birds: Effects of prey type on growth and development. Waterbirds, 29(4), 407–414. https://doi.org/10.1675/1524-4695(2006)29[407:TTJHOM]2.0.CO;2
Rueda-Uribe, C., Herrera-Alsina, L., Lancaster, L. T., Capellini, I., Layton, K. K. S., & Travis, J. M. J. (2024). Citizen science data reveal altitudinal movement and seasonal ecosystem use by hummingbirds in the Andes Mountains. Ecography, 2024(3), e06735. https://doi.org/10.1111/ecog.06735
Russell, C. J. G., Franco, A. M. A., Atkinson, P. W., Väli, Ü., & Ashton-Butt, A. (2024). Active European warzone impacts raptor migration. Current Biology, 34(10), 2272–2277.e2. https://doi.org/10.1016/j.cub.2024.04.047
Rutz, C. (2022a). Register animal-tracking tags to boost conservation. Nature, 609(7926), 221. https://doi.org/10.1038/d41586-022-02821-6
Rutz, C. (2022b). Studying pauses and pulses in human mobility and their environmental impacts. Nature Reviews Earth and Environment, 3(3), 157–159. https://doi.org/10.1038/s43017-022-00276-x
Rutz, C., Loretto, M.-C., Bates, A. E., Davidson, S. C., Duarte, C. M., Jetz, W., Johnson, M., Kato, A., Kays, R., Mueller, T., Primack, R. B., Ropert-Coudert, Y., Tucker, M. A., Wikelski, M., & Cagnacci, F. (2020). COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nature Ecology & Evolution, 4(9), 1156–1159. https://doi.org/10.1038/s41559-020-1237-z
Sarkar, R., & Bhadra, A. (2022). How do animals navigate the urban jungle? A review of cognition in urban-adapted animals. Current Opinion in Behavioral Sciences, 46, 101177. https://doi.org/10.1016/j.cobeha.2022.101177
Schaub, A., Ostwald, J., & Siemers, B. M. (2008). Foraging bats avoid noise. Journal of Experimental Biology, 211(19), 3174–3180. https://doi.org/10.1242/jeb.022863
Schlaepfer, M. A., Runge, M. C., & Sherman, P. W. (2002). Ecological and evolutionary traps. Trends in Ecology & Evolution, 17(10), 474–480. https://doi.org/10.1016/S0169-5347(02)02580-6
Schlägel, U. E., Signer, J., Herde, A., Eden, S., Jeltsch, F., Eccard, J. A., & Dammhahn, M. (2019). Estimating interactions between individuals from concurrent animal movements. Methods in Ecology and Evolution, 10(8), 1234–1245. https://doi.org/10.1111/2041-210X.13235
Schmitz, O. J., Sylvén, M., Atwood, T. B., Bakker, E. S., Berzaghi, F., Brodie, J. F., Cromsigt, J. P. G. M., Davies, A. B., Leroux, S. J., Schepers, F. J., Smith, F. A., Stark, S., Svenning, J.-C., Tilker, A., & Ylänne, H. (2023). Trophic rewilding can expand natural climate solutions. Nature Climate Change, 13(4), 324–333. https://doi.org/10.1038/s41558-023-01631-6
Schoen, J. M., DeFries, R., & Cushman, S. (2025). Open-source, environmentally dynamic machine learning models demonstrate behavior-dependent utilization of mixed-use landscapes by jaguars (Panthera onca). Biological Conservation, 302, 110978. https://doi.org/10.1016/j.biocon.2025.110978
Selier, J., Slotow, R., & Di Minin, E. (2015). Large mammal distribution in a Transfrontier landscape: Trade-offs between resource availability and human disturbance. Biotropica, 47(3), 389–397. https://doi.org/10.1111/btp.12217
Serra-Medeiros, S., Ortega, Z., Antunes, P. C., Miraglia Herrera, H., & Oliveira-Santos, L. G. R. (2021). Space use and activity of capybaras in an urban area. Journal of Mammalogy, 102(3), 814–825. https://doi.org/10.1093/jmammal/gyab005
Shaw, A. K. (2020). Causes and consequences of individual variation in animal movement. Movement Ecology, 8(1), 12. https://doi.org/10.1186/s40462-020-0197-x
Shepard, E. L. C., & Lambertucci, S. A. (2013). From daily movements to population distributions: Weather affects competitive ability in a guild of soaring birds. Journal of the Royal Society Interface, 10(88), 20130612. https://doi.org/10.1098/rsif.2013.0612
Shepard, E. L. C., Williamson, C., & Windsor, S. P. (2016). Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living. Philosophical Transactions of the Royal Society, B: Biological Sciences, 371(1704), 20150394. https://doi.org/10.1098/rstb.2015.0394
Shepard, E. L. C., Wilson, R. P., Rees, W. G., Grundy, E., Lambertucci, S. A., & Vosper, S. B. (2013). Energy landscapes shape animal movement ecology. The American Naturalist, 182(3), 298–312. https://doi.org/10.1086/671257
Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E., & Hope, D. (2006). From patterns to emerging processes in mechanistic urban ecology. Trends in Ecology & Evolution, 21(4), 186–191. https://doi.org/10.1016/j.tree.2005.11.019
Signer, J., Fieberg, J., Reineking, B., Schlägel, U., Smith, B., Balkenhol, N., & Avgar, T. (2024). Simulating animal space use from fitted integrated step-selection functions (iSSF). Methods in Ecology and Evolution, 15(1), 43–50. https://doi.org/10.1111/2041-210X.14263
Sih, A. (2013). Understanding variation in behavioural responses to human-induced rapid environmental change: A conceptual overview. Animal Behaviour, 85(5), 1077–1088. https://doi.org/10.1016/j.anbehav.2013.02.017
Silovský, V., Landler, L., Faltusová, M., Börger, L., Burda, H., Holton, M., Lagner, O., Malkemper, E. P., Olejarz, A., Spießberger, M., Váchal, A., & Ježek, M. (2024). A GPS assisted translocation experiment to study the homing behavior of red deer. Scientific Reports, 14(1), 6770. https://doi.org/10.1038/s41598-024-56951-0
Simonis, A. E., Brownell, R. L., Thayre, B. J., Trickey, J. S., Oleson, E. M., Huntington, R., & Baumann-Pickering, S. (2020). Co-occurrence of beaked whale strandings and naval sonar in the Mariana Islands, Western Pacific. Proceedings of the Royal Society B: Biological Sciences, 287(1921), 20200070. https://doi.org/10.1098/rspb.2020.0070
Skarin, A., Nellemann, C., Rönnegård, L., Sandström, P., & Lundqvist, H. (2015). Wind farm construction impacts reindeer migration and movement corridors. Landscape Ecology, 30(8), 1527–1540. https://doi.org/10.1007/s10980-015-0210-8
Soriano-Redondo, A., Bearhop, S., Cleasby, I. R., Lock, L., Votier, S. C., & Hilton, G. M. (2016). Ecological responses to extreme flooding events: A Case study with a reintroduced Bird. Scientific Reports, 6(1), 28595. https://doi.org/10.1038/srep28595
Spelt, A., Williamson, C., Shamoun-Baranes, J., Shepard, E., Rock, P., & Windsor, S. (2019). Habitat use of urban-nesting lesser black-backed gulls during the breeding season. Scientific Reports, 9(1), 10527. https://doi.org/10.1038/s41598-019-46890-6
Strum, S. C. (2010). The development of primate raiding: Implications for management and conservation. International Journal of Primatology, 31(1), 133–156. https://doi.org/10.1007/s10764-009-9387-5
Sueur, C. (2023). A deep learning model to unlock secrets of animal movement and behaviour. Peer community in Ecology, 1, 100531. https://doi.org/10.24072/pci.ecology.100531
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2(9), 686–690. https://doi.org/10.1038/nclimate1539
Suraci, J. P., Clinchy, M., Zanette, L. Y., & Wilmers, C. C. (2019). Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecology Letters, 22(10), 1578–1586. https://doi.org/10.1111/ele.13344
Svenning, J.-C., Buitenwerf, R., & Le Roux, E. (2024). Trophic rewilding as a restoration approach under emerging novel biosphere conditions. Current Biology, 34(9), R435–R451. https://doi.org/10.1016/j.cub.2024.02.044
Svenning, J.-C., McGeoch, M. A., Normand, S., Ordonez, A., & Riede, F. (2024). Navigating ecological novelty towards planetary stewardship: Challenges and opportunities in biodiversity dynamics in a transforming biosphere. Philosophical Transactions of the Royal Society, B: Biological Sciences, 379(1902), 20230008. https://doi.org/10.1098/rstb.2023.0008
Symons, S. C., & Diamond, A. W. (2019). Short-term tracking tag attachment disrupts chick provisioning by Atlantic puffins Fratercula arctica and razorbills Alca torda. Bird Study, 66(1), 53–63. https://doi.org/10.1080/00063657.2019.1612850
te Velde, K., Mairo, A., Peeters, E. T. H. M., Winter, H. V., Tudorache, C., & Slabbekoorn, H. (2024). Natural soundscapes of lowland river habitats and the potential threat of urban noise pollution to migratory fish. Environmental Pollution, 359, 124517. https://doi.org/10.1016/j.envpol.2024.124517
Trombulak, S. C., & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14(1), 18–30. https://doi.org/10.1046/j.1523-1739.2000.99084.x
Tucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van Moorter, B., Alberts, S. C., Ali, A. H., Allen, A. M., Attias, N., Avgar, T., Bartlam-Brooks, H., Bayarbaatar, B., Belant, J. L., Bertassoni, A., Beyer, D., Bidner, L., van Beest, F. M., Blake, S., Blaum, N., … Mueller, T. (2018). Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 359(6374), 466–469. https://doi.org/10.1126/science.aam9712
Tucker, M. A., Schipper, A. M., Adams, T. S. F., Attias, N., Avgar, T., Babic, N. L., Barker, K. J., Bastille-Rousseau, G., Behr, D. M., Belant, J. L., Beyer, D. E., Blaum, N., Blount, J. D., Bockmühl, D., Pires Boulhosa, R. L., Brown, M. B., Buuveibaatar, B., Cagnacci, F., Calabrese, J. M., … Mueller, T. (2023). Behavioral responses of terrestrial mammals to COVID-19 lockdowns. Science, 380(6649), 1059–1064. https://doi.org/10.1126/science.abo6499
Tuia, D., Kellenberger, B., Beery, S., Costelloe, B. R., Zuffi, S., Risse, B., Mathis, A., Mathis, M. W., van Langevelde, F., Burghardt, T., Kays, R., Klinck, H., Wikelski, M., Couzin, I. D., van Horn, G., Crofoot, M. C., Stewart, C. V., & Berger-Wolf, T. (2022). Perspectives in machine learning for wildlife conservation. Nature Communications, 13(1), 792. https://doi.org/10.1038/s41467-022-27980-y
Tuomainen, U., & Candolin, U. (2011). Behavioural responses to human-induced environmental change. Biological Reviews, 86(3), 640–657. https://doi.org/10.1111/j.1469-185X.2010.00164.x
Tuxbury, S. M., & Salmon, M. (2005). Competitive interactions between artificial lighting and natural cues during seafinding by hatchling marine turtles. Biological Conservation, 121(2), 311–316. https://doi.org/10.1016/j.biocon.2004.04.022
Uyeda, L. T., Iskandar, E., Kyes, R. C., & Wirsing, A. J. (2015). Encounter rates, agonistic interactions, and social hierarchy among garbage-feeding water monitor lizards (Varanus salvator bivittatus) on Tinjil Island, Indonesia. Herpetological Conservation and Biology, 10(2), 753–764.
van der Ree, R., Smith, D. J., & Grilo, C. (2015). The ecological effects of linear infrastructure and traffic. In R. T. T. Forman (Ed.), Handbook of road ecology (pp. 1–9). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118568170.ch1
van Klink, R., August, T., Bas, Y., Bodesheim, P., Bonn, A., Fossøy, F., Høye, T. T., Jongejans, E., Menz, M. H. M., Miraldo, A., Roslin, T., Roy, H. E., Ruczyński, I., Schigel, D., Schäffler, L., Sheard, J. K., Svenningsen, C., Tschan, G. F., Wäldchen, J., … Bowler, D. E. (2022). Emerging technologies revolutionise insect ecology and monitoring. Trends in Ecology & Evolution, 37(10), 872–885. https://doi.org/10.1016/j.tree.2022.06.001
Vedor, M., Queiroz, N., Mucientes, G., Couto, A., da Costa, I., dos Santos, A., Vandeperre, F., Fontes, J., Afonso, P., Rosa, R., Humphries, N. E., & Sims, D. W. (2021). Climate-driven deoxygenation elevates fishing vulnerability for the ocean's widest ranging shark. eLife, 10, e62508. https://doi.org/10.7554/eLife.62508
Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., & Watson, J. E. M. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7(1), 12558. https://doi.org/10.1038/ncomms12558
Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., Pergl, J., Schaffner, U., Sun, Y., & Pyšek, P. (2011). Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14(7), 702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x
Wacher, T., Amin, R., Newby, J., Hatcha, M. H., Abeye, K., Ali, H., Bourtchiakbé, S. Z., & Banlongar, F. N. (2023). Gazelle–livestock interactions and impact of water resource development in the Ouadi Rimé–Ouadi Achim reserve, Chad. Oryx, 57(2), 205–215. https://doi.org/10.1017/S0030605321001629
Webster, M. M., & Rutz, C. (2020). How STRANGE are your study animals? Nature, 582(7812), 337–340. https://doi.org/10.1038/d41586-020-01751-5
Werner, K. M., Haslob, H., Reichel, A. F., Gimpel, A., & Stelzenmüller, V. (2024). Offshore wind farm foundations as artificial reefs: The devil is in the detail. Fisheries Research, 272, 106937. https://doi.org/10.1016/j.fishres.2024.106937
Whyte, K. F., Russell, D. J. F., Sparling, C. E., Binnerts, B., & Hastie, G. D. (2020). Estimating the effects of pile driving sounds on seals: Pitfalls and possibilitiesa. The Journal of the Acoustical Society of America, 147(6), 3948–3958. https://doi.org/10.1121/10.0001408
Wijeyakulasuriya, D. A., Eisenhauer, E. W., Shaby, B. A., & Hanks, E. M. (2020). Machine learning for modeling animal movement. PLoS One, 15(7), e0235750. https://doi.org/10.1371/journal.pone.0235750
Williams, B. K., & Brown, E. D. (2024). Managing ecosystems with resist–accept–direct (RAD). Methods in Ecology and Evolution, 15(5), 796–805. https://doi.org/10.1111/2041-210X.14309
Williams, H. J., Taylor, L. A., Benhamou, S., Bijleveld, A. I., Clay, T. A., de Grissac, S., Demšar, U., English, H. M., Franconi, N., Gómez-Laich, A., Griffiths, R. C., Kay, W. P., Morales, J. M., Potts, J. R., Rogerson, K. F., Rutz, C., Spelt, A., Trevail, A. M., Wilson, R. P., & Börger, L. (2020). Optimizing the use of biologgers for movement ecology research. The Journal of Animal Ecology, 89(1), 186–206. https://doi.org/10.1111/1365-2656.13094
Williamson, M. J., Tebbs, E. J., Curnick, D. J., Ferretti, F., Carlisle, A. B., Chapple, T. K., Schallert, R. J., Tickler, D. M., Block, B. A., & Jacoby, D. M. P. (2024). Environmental stress reduces shark residency to coral reefs. Communications Biology, 7(1), 1–12. https://doi.org/10.1038/s42003-024-06707-3
Yanco, S. W., Rutz, C., Abrahms, B., Cooper, N. W., Marra, P. P., Mueller, T., Weeks, B. C., Wikelski, M., & Oliver, R. Y. (2025). Tracking individual animals can reveal the mechanisms of species loss. Trends in Ecology & Evolution, 40(1), 47–56. https://doi.org/10.1016/j.tree.2024.09.008
Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S., Fielding, A. H., Bamford, A. J., Ban, S., Barbosa, A. M., Dormann, C. F., Elith, J., Embling, C. B., Ervin, G. N., Fisher, R., Gould, S., Graf, R. F., Gregr, E. J., Halpin, P. N., … Sequeira, A. M. M. (2018). Outstanding challenges in the transferability of ecological models. Trends in Ecology & Evolution, 33(10), 790–802. https://doi.org/10.1016/j.tree.2018.08.001
Yirga, G., Leirs, H., Iongh, H. H. D., Asmelash, T., Gebrehiwot, K., Deckers, J., & Bauer, H. (2015). Spotted hyena (Crocuta crocuta) concentrate around urban waste dumps across Tigray, northern Ethiopia. Wildlife Research, 42(7), 563–569. https://doi.org/10.1071/WR14228
Yun, J., Shin, W., Kim, J., Thorne, J. H., & Song, Y. (2024). Citizen-science data identifies the daily movement patterns and habitat associations of a nocturnal urban-invading bird species (Corvus frugilegus). Urban Ecosystems, 27(5), 1407–1416. https://doi.org/10.1007/s11252-024-01508-2
Zanette, L. Y., Frizzelle, N. R., Clinchy, M., Peel, M. J. S., Keller, C. B., Huebner, S. E., & Packer, C. (2023). Fear of the human “super predator” pervades the south African savanna. Current Biology, 33(21), 4689–4696.e4. https://doi.org/10.1016/j.cub.2023.08.089
Zeller, K. A., Ditmer, M. A., Squires, J. R., Rice, W. L., Wilder, J., DeLong, D., Egan, A., Pennington, N., Wang, C. A., Plucinski, J., & Barber, J. R. (2024). Experimental recreationist noise alters behavior and space use of wildlife. Current Biology, 34(13), 2997–3004.e3. https://doi.org/10.1016/j.cub.2024.05.030
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.