[en] Abstract
Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are essential molecular imaging tools for the in vivo investigation of neurotransmission. Traditionally, PET and SPECT images are analysed in a univariate manner, testing for changes in radiotracer binding in regions or voxels of interest independently of each other. Over the past decade, there has been an increasing interest in the so-called molecular connectivity approach that captures relationships of molecular imaging measures in different brain regions. Targeting these inter-regional interactions within a neuroreceptor system may allow to better understand complex brain functions. In this article, we provide a comprehensive review of molecular connectivity studies in the field of neurotransmission. We examine the expanding use of molecular connectivity approaches, highlighting their applications, advantages over traditional methods, and contributions to advancing neuroscientific knowledge. A systematic search in three bibliographic databases MEDLINE, EMBASE, and Scopus on July 14, 2023 was conducted. A second search was rerun on April 4, 2024. Molecular imaging studies examining functional interactions across brain regions were included based on predefined inclusion and exclusion criteria. Thirty-nine studies were included in the scoping review. Studies were categorised based on the primary neurotransmitter system being targeted: dopamine, serotonin, opioid, muscarinic, glutamate, and synaptic density. The most investigated system was the dopaminergic and the most investigated disease was Parkinson’s disease (PD). This review highlighted the diverse applications and methodologies in molecular connectivity research, particularly for neurodegenerative diseases and psychiatric disorders. Molecular connectivity research offers significant advantages over traditional methods, providing deeper insights into brain function and disease mechanisms. As the field continues to evolve, embracing these advanced methodologies will be essential to understand the complexities of the human brain and improve the robustness and applicability of research findings in clinical settings.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Severino, Mario ; Department of Information Engineering, University of Padua, Padua, Italy
Peretti, Débora Elisa; Laboratory of Neuroimaging and Innovative Molecular Tracers, University of Geneva, Geneva, Switzerland
Bardiau, Marjorie ; Université de Liège - ULiège > CARE "ULiège Library" > ULiège Library : Santé
Cavaliere, Carlo ; Université de Liège - ULiège > GIGA ; IRCCS SYNLAB SDN, Naples, Italy
Doyen, Matthieu; Université de Lorraine, IADI, INSERM U1254, Nancy, France
Gonzalez-Escamilla, Gabriel; Department of Neurology, Focus Program Translational Neuroscience, Rhine-Main, Neuroscience Network, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
Horowitz, Tatiana; Department of Nuclear Medicine, Timone Hospital, AP-HM, Aix Marseille Univ, CERIMED, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
Nørgaard, Martin; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark ; Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
Perez, Jhony Alejandro Mejia; Memory and Aging Centre, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
Perovnik, Matej; Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
Rullmann, Michael; Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
Steenken, Dilara; Department of Nuclear Medicine, TUM School of Medicine and Health, Munich, Germany
Talmasov, Daniel; Departments of Neurology and Psychiatry, Columbia University Irving Medical Centre, New York, NY, United states
Tang, Chunmeng; Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
Volpi, Tommaso; Department of Radiology and Biomedical Imaging, PET Centre, Yale University, New Haven, CT, United States
Xu, Zhilei; Division of Neuro, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
Bertoldo, Alessandra; Department of Information Engineering, University of Padua, Padua, Italy ; Padova Neuroscience Centre, University of Padua, Padua, Italy
Calhoun, Vince D.; Tri-Institutional Centre for Translational Research in Neuroimaging and Data Science (TRenDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, United States
Caminiti, Silvia Paola; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
Di, Xin; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United states
Habeck, Christian; Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Centre, New York, NY, United States
Jamadar, Sharna; School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia ; Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
Perani, Daniela; Vita-Salute San Raffaele University, Milan, Italy
Sala, Arianna ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Sossi, Vesna; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
Yakushev, Igor; Department of Nuclear Medicine, TUM School of Medicine and Health, Munich, Germany
Pereira, Joana B.; Division of Neuro, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
Veronese, Mattia; Department of Information Engineering, University of Padua, Padua, Italy ; Department of Neuroimaging, King’s College London, London, United Kingdom
Ametamey, S. M., Honer, M., & Schubiger, P. A. (2008). Molecular Imaging with PET. Chemical Reviews, 108(5), 1501–1516. https://doi.org/10.1021/cr0782426
Ashok, A. H., Myers, J., Reis Marques, T., Rabiner, E. A., & Howes, O. D. (2019). Reduced mu opioid receptor availability in schizophrenia revealed with [11C]-carfentanil positron emission tomographic Imaging. Nature Communications, 10(1), 4493. https://doi.org/10.1038/s41467-019-12366-4
Bega, D., Kuo, P. H., Chalkidou, A., Grzeda, M. T., Macmillan, T., Brand, C., Sheikh, Z. H., & Antonini, A. (2021). Clinical utility of DaTscan in patients with suspected Parkinsonian syndrome: A systematic review and meta-analysis. Npj Parkinson’s Disease, 7(1), 43. https://doi.org/10.1038/s41531-021-00185-8
Bennett, M. V. L., & Zukin, R. S. (2004). Electrical coupling and neuronal synchronization in the mammalian brain. Neuron, 41(4), 495–511. https://doi.org/10.1016/S0896-6273(04)00043-1
Bini, J., Sanchez-Rangel, E., Gallezot, J.-D., Naganawa, M., Nabulsi, N., Lim, K., Najafzadeh, S., Shirali, A., Ropchan, J., Matuskey, D., Huang, Y., Herold, K. C., Harris, P. E., Sherwin, R. S., Carson, R. E., & Cline, G. W. (2020). PET imaging of pancreatic dopamine D2 and D3 receptor density with 11C-(+)-PHNO in type 1 diabetes. Journal of Nuclear Medicine, 61(4), 570–576. https://doi.org/10.2967/jnumed.119.234013
Boccalini, C., Carli, G., Pilotto, A., Padovani, A., & Perani, D. (2022). Gender differences in dopaminergic system dysfunction in de novo Parkinson’s disease clinical subtypes. Neurobiology of Disease, 167, 105668. https://doi.org/10.1016/j.nbd.2022.105668
Boccalini, C., Nicastro, N., Perani, D., & Garibotto, V. (2024). Distinctive clinical and imaging trajectories in SWEDD and Parkinson’s disease patients. NeuroImage: Clinical, 42, 103592. https://doi.org/10.1016/j.nicl.2024.103592
Boccalini, C., Nicastro, N., Peretti, D. E., Caminiti, S. P., Perani, D., & Garibotto, V. (2023). Sex differences in dementia with Lewy bodies: An imaging study of neurotransmission pathways. European Journal of Nuclear Medicine and Molecular Imaging, 50(7), 2036–2046. https://doi.org/10.1007/s00259-023-06132-4
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575
Calhoun, V. D., Liu, J., & Adalı, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 45(1), S163–S172. https://doi.org/10.1016/j.neuroimage.2008.10.057
Caminiti, S. P., Pilotto, A., Premi, E., Galli, A., Ferrari, E., Gipponi, S., Cottini, E., Paghera, B., Perani, D., & Padovani, A. (2023). Dopaminergic connectivity reconfiguration in the dementia with Lewy bodies continuum. Parkinsonism & Related Disorders, 108, 105288. https://doi.org/10.1016/j.parkreldis.2023.105288
Caminiti, S. P., Presotto, L., Baroncini, D., Garibotto, V., Moresco, R. M., Gianolli, L., Volonté, M. A., Antonini, A., & Perani, D. (2017). Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson’s disease. NeuroImage: Clinical, 14, 734–740. https://doi.org/10.1016/j.nicl.2017.03.011
Carson, R. E., Naganawa, M., Toyonaga, T., Koohsari, S., Yang, Y., Chen, M.-K., Matuskey, D., & Finnema, S. J. (2022). Imaging of Synaptic Density in Neurodegenerative Disorders. Journal of Nuclear Medicine, 63(Suppl. 1), 60S–67S. https://doi.org/10.2967/jnumed.121.263201
Cervenka, S., Varrone, A., Fransén, E., Halldin, C., & Farde, L. (2010). PET studies of D2‐receptor binding in striatal and extrastriatal brain regions: Biochemical support in vivo for separate dopaminergic systems in humans. Synapse, 64(6), 478–485. https://doi.org/10.1002/syn.20765
Chen, G., Adleman, N. E., Saad, Z. S., Leibenluft, E., & Cox, R. W. (2014). Applications of multivariate modeling to neuroimaging group analysis: A comprehensive alternative to univariate general linear model. NeuroImage, 99, 571–588. https://doi.org/10.1016/j.neuroimage.2014.06.027
Clark, C. M., & Stoessl, A. J. (1986). Glucose use correlations: A matter of inference. Journal of Cerebral Blood Flow & Metabolism, 6(4), 511–512. https://doi.org/10.1038/jcbfm.1986.87
Colloby, S. J., Nathan, P. J., Bakker, G., Lawson, R. A., Yarnall, A. J., Burn, D. J., O’Brien, J. T., & Taylor, J. (2021). Spatial covariance of cholinergic muscarinic M1/M4 receptors in Parkinson’s disease. Movement Disorders, 36(8), 1879–1888. https://doi.org/10.1002/mds.28564
Colloby, S. J., Nathan, P. J., McKeith, I. G., Bakker, G., O’Brien, J. T., & Taylor, J.-P. (2020). Cholinergic muscarinic M1/M4 receptor networks in dementia with Lewy bodies. Brain Communications, 2(2), fcaa098. https://doi.org/10.1093/braincomms/fcaa098
Darcourt, J., Booij, J., Tatsch, K., Varrone, A., Vander Borght, T., Kapucu, Ö. L., Någren, K., Nobili, F., Walker, Z., & Van Laere, K. (2010). EANM procedure guidelines for brain neurotransmission SPECT using 123I-labelled dopamine transporter ligands, version 2. European Journal of Nuclear Medicine and Molecular Imaging, 37(2), 443–450. https://doi.org/10.1007/s00259-009-1267-x
DuBois, J. M., Mathotaarachchi, S., Rousset, O. G., Sziklas, V., Sepulcre, J., Guiot, M.-C., Hall, J. A., Massarweh, G., Soucy, J.-P., Rosa-Neto, P., & Kobayashi, E. (2021). Large-scale mGluR5 network abnormalities linked to epilepsy duration in focal cortical dysplasia. NeuroImage: Clinical, 29, 102552. https://doi.org/10.1016/j.nicl.2020.102552
Fang, X. T., Toyonaga, T., Hillmer, A. T., Matuskey, D., Holmes, S. E., Radhakrishnan, R., Mecca, A. P., van Dyck, C. H., D’Souza, D. C., Esterlis, I., Worhunsky, P. D., & Carson, R. E. (2021). Identifying brain networks in synaptic density PET (11C-UCB-J) with independent component analysis. NeuroImage, 237, 118167. https://doi.org/10.1016/j.neuroimage.2021.118167
Fang, X. T., Volpi, T., Holmes, S. E., Esterlis, I., Carson, R. E., & Worhunsky, P. D. (2023). Linking resting-state network fluctuations with systems of coherent synaptic density: A multimodal fMRI and 11C-UCB-J PET study. Frontiers in Human Neuroscience, 17, 1124254. https://doi.org/10.3389/fnhum.2023.1124254
Fazio, P., Ferreira, D., Svenningsson, P., Halldin, C., Farde, L., Westman, E., & Varrone, A. (2020). High-resolution PET imaging reveals subtle impairment of the serotonin transporter in an early non-depressed Parkinson’s disease cohort. European Journal of Nuclear Medicine and Molecular Imaging, 47(10), 2407–2416. https://doi.org/10.1007/s00259-020-04683-4
Fornito, A., & Bullmore, E. T. (2015). Connectomics: A new paradigm for understanding brain disease. European Neuropsychopharmacology, 25(5), 733–748. https://doi.org/10.1016/j.euroneuro.2014.02.011
Fornito, A., Zalesky, A., & Bullmore, E. (2016). Connectivity matrices and brain graphs. In A. Fornito, A. Zalesky, & E. T. Bullmore (Eds.), Fundamentals of brain network analysis (pp. 89–113). Elsevier. https://doi.org/10.1016/B978-0-12-407908-3.00003-0
Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. J. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow & Metabolism, 13(1), 5–14. https://doi.org/10.1038/jcbfm.1993.4
Fu, J. F., Klyuzhin, I., Liu, S., Shahinfard, E., Vafai, N., McKenzie, J., Neilson, N., Mabrouk, R., Sacheli, M. A., Wile, D., McKeown, M. J., Stoessl, A. J., & Sossi, V. (2018). Investigation of serotonergic Parkinson’s disease-related covariance pattern using [11C]-DASB/PET. NeuroImage: Clinical, 19, 652–660. https://doi.org/10.1016/j.nicl.2018.05.022
Fu, J. F., Klyuzhin, I., McKenzie, J., Neilson, N., Shahinfard, E., Dinelle, K., McKeown, M. J., Stoessl, A. J., & Sossi, V. (2019). Joint pattern analysis applied to PET DAT and VMAT2 imaging reveals new insights into Parkinson’s disease induced presynaptic alterations. NeuroImage: Clinical, 23, 101856. https://doi.org/10.1016/j.nicl.2019.101856
Gentili, C., Cecchetti, L., Handjaras, G., Lettieri, G., & Cristea, I. A. (2021). The case for preregistering all region of interest (ROI) analyses in neuroimaging research. European Journal of Neuroscience, 53(2), 357–361. https://doi.org/10.1111/ejn.14954
Giovacchini, G., Lang, L., Ma, Y., Herscovitch, P., Eckelman, W. C., & Carson, R. E. (2005). Differential effects of paroxetine on raphe and cortical 5-HT1A binding: A PET study in monkeys. NeuroImage, 28(1), 238–248. https://doi.org/10.1016/j.neuroimage.2005.05.042
Goulas, A., Changeux, J.-P., Wagstyl, K., Amunts, K., Palomero-Gallagher, N., & Hilgetag, C. C. (2021). The natural axis of transmitter receptor distribution in the human cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 118(3), e2020574118. https://doi.org/10.1073/pnas.2020574118
Gunn, R. N., Gunn, S. R., & Cunningham, V. J. (2001). Positron emission tomography compartmental models. Journal of Cerebral Blood Flow & Metabolism, 21(6), 635–652. https://doi.org/10.1097/00004647-200106000-00002
Gunn, R. N., Slifstein, M., Searle, G. E., & Price, J. C. (2015). Quantitative imaging of protein targets in the human brain with PET. Physics in Medicine and Biology, 60(22), R363–R411. https://doi.org/10.1088/0031-9155/60/22/R363
Habeck, C. G. (2010). Basics of multivariate analysis in neuroimaging data. Journal of Visualized Experiments, 41, e1988. https://doi.org/10.3791/1988
Hahn, A., Haeusler, D., Kraus, C., Höflich, A. S., Kranz, G. S., Baldinger, P., Savli, M., Mitterhauser, M., Wadsak, W., Karanikas, G., Kasper, S., & Lanzenberger, R. (2014). Attenuated serotonin transporter association between dorsal raphe and ventral striatum in major depression. Human Brain Mapping, 35(8), 3857–3866. https://doi.org/10.1002/hbm.22442
Hahn, A., Lanzenberger, R., & Kasper, S. (2019). Making sense of connectivity. International Journal of Neuropsychopharmacology, 22(3), 194–207. https://doi.org/10.1093/ijnp/pyy100
Hahn, A., Lanzenberger, R., Wadsak, W., Spindelegger, C., Moser, Ui., Mien, L.-K., Mitterhauser, M., & Kasper, S. (2010). Escitalopram enhances the association of serotonin-1A autoreceptors to heteroreceptors in anxiety disorders. The Journal of Neuroscience, 30(43), 14482–14489. https://doi.org/10.1523/JNEUROSCI.2409-10.2010
Hahn, A., Reed, M. B., Pichler, V., Michenthaler, P., Rischka, L., Godbersen, G. M., Wadsak, W., Hacker, M., & Lanzenberger, R. (2021). Functional dynamics of dopamine synthesis during monetary reward and punishment processing. Journal of Cerebral Blood Flow & Metabolism, 41(11), 2973–2985. https://doi.org/10.1177/0271678X211019827
Hahn, A., Reed, M. B., Vraka, C., Godbersen, G. M., Klug, S., Komorowski, A., Falb, P., Nics, L., Traub-Weidinger, T., Hacker, M., & Lanzenberger, R. (2024). High-temporal resolution functional PET/MRI reveals coupling between human metabolic and hemodynamic brain response. European Journal of Nuclear Medicine and Molecular Imaging, 51(5), 1310–1322. https://doi.org/10.1007/s00259-023-06542-4
Hansen, J. Y., Shafiei, G., Markello, R. D., Smart, K., Cox, S. M. L., Nørgaard, M., Beliveau, V., Wu, Y., Gallezot, J.-D., Aumont, É., Servaes, S., Scala, S. G., DuBois, J. M., Wainstein, G., Bezgin, G., Funck, T., Schmitz, T. W., Spreng, R. N., Galovic, M., … Misic, B. (2022). Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nature Neuroscience, 25(11), 1569–1581. https://doi.org/10.1038/s41593-022-01186-3
Jamadar, S. D., Ward, P. G. D., Liang, E. X., Orchard, E. R., Chen, Z., & Egan, G. F. (2021). Metabolic and hemodynamic resting-state connectivity of the human brain: A high-temporal resolution simultaneous BOLD-fMRI and FDG-fPET multimodality study. Cerebral Cortex, 31(6), 2855–2867. https://doi.org/10.1093/cercor/bhaa393
Jessell, T. M., & Kandel, E. R. (1993). Synaptic transmission: A bidirectional and self-modifiable form of cell-cell communication. Cell, 72, 1–30. https://doi.org/10.1016/S0092-8674(05)80025-X
Kaasinen, V., Maguire, R. P., Hundemer, H.–P., & Leenders, K. L. (2006). Corticostriatal covariance patterns of 6–[18F]fluoro–L–dopa and [18F]fluorodeoxyglucose PET in Parkinson’s disease. Journal of Neurology, 253(3), 340–348. https://doi.org/10.1007/s00415-005-0993-7
Kim, J., Cumming, P., Son, Y., Kim, H., Joo, Y., & Kim, J. (2018). Altered connectivity between striatal and extrastriatal regions in patients with schizophrenia on maintenance antipsychotics: An [18F]fallypride PET and functional MRI study. Synapse, 72(12), e22064. https://doi.org/10.1002/syn.22064
Kim, J. S., Ichise, M., Sangare, J., & Innis, R. B. (2006). PET imaging of serotonin transporters with [11C]DASB: Test-retest reproducibility using a multilinear reference tissue parametric imaging method. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 47(2), 208–214. https://doi.org/10.1016/j.neuroimage.2006.04.150
Kimura, Y., Kato, T., Ito, K., & Ichise, M. (2020). SPECT and PET of the brain. In H. Ahmadzadehfar, H. J. Biersack, L. Freeman, & L. Zuckier (Eds.), Clinical nuclear medicine (pp. 211–231). Springer International Publishing. https://doi.org/10.1007/978-3-030-39457-8_4
Klyuzhin, I. S., Fu, J. F., Hong, A., Sacheli, M., Shenkov, N., Matarazzo, M., Rahmim, A., Stoessl, A. J., & Sossi, V. (2018). Data-driven, voxel-based analysis of brain PET images: Application of PCA and LASSO methods to visualize and quantify patterns of neurodegeneration. PLoS One, 13(11), e0206607. https://doi.org/10.1371/journal.pone.0206607
Kumar, J. S., & Mann, J. (2015). PET tracers for serotonin receptors and their applications. Central Nervous System Agents in Medicinal Chemistry, 14(2), 96–112. https://doi.org/10.2174/1871524914666141030124316
Li, H., Badawi, R. D., Cherry, S. R., Fontaine, K., He, L., Henry, S., Hillmer, A. T., Hu, L., Khattar, N., Leung, E. K., Li, T., Li, Y., Liu, C., Liu, P., Lu, Z., Majewski, S., Matuskey, D., Morris, E. D., Mulnix, T., … Carson, R. E. (2024). Performance characteristics of the NeuroEXPLORER, a next-generation human brain PET/CT imager. Journal of Nuclear Medicine, 65(8), 1320–1326. https://doi.org/10.2967/jnumed.124.267767
Li, W., Tang, Y., Peng, L., Wang, Z., Hu, S., & Gao, X. (2023). The reconfiguration pattern of individual brain metabolic connectome for Parkinson’s disease identification. MedComm, 4(4), e305. https://doi.org/10.1002/mco2.305
Luo, G., Shi, X., Jiang, L., Wu, L., Yi, C., Xian, W., Liu, Y., Wen, F., Qian, H., Chen, J., Fu, X., Liu, J., Zhang, X., & Chen, L. (2023). Effects of STN‐DBS surgery on cerebral glucose metabolism and distribution of DAT in Parkinson’s disease. Brain and Behavior, 13(8), e3172. https://doi.org/10.1002/brb3.3172
Mihaescu, A. S., Kim, J., Masellis, M., Graff‐Guerrero, A., Cho, S. S., Christopher, L., Valli, M., Díez‐Cirarda, M., Koshimori, Y., & Strafella, A. P. (2021). Graph theory analysis of the dopamine D2 receptor network in Parkinson’s disease patients with cognitive decline. Journal of Neuroscience Research, 99(3), 947–965. https://doi.org/10.1002/jnr.24760
Mintun, M. A., Raichle, M. E., Kilbourn, M. R., Wooten, G. F., & Welch, M. J. (1984). A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Annals of Neurology, 15(3), 217–227. https://doi.org/10.1002/ana.410150302
Morbelli, S., Esposito, G., Arbizu, J., Barthel, H., Boellaard, R., Bohnen, N. I., Brooks, D. J., Darcourt, J., Dickson, J. C., Douglas, D., Drzezga, A., Dubroff, J., Ekmekcioglu, O., Garibotto, V., Herscovitch, P., Kuo, P., Lammertsma, A., Pappata, S., Peñuelas, I., … Law, I. (2020). EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. European Journal of Nuclear Medicine and Molecular Imaging, 47(8), 1885–1912. https://doi.org/10.1007/s00259-020-04817-8
Nimgampalle, M., Chakravarthy, H., Sharma, S., Shree, S., Bhat, A. R., Pradeepkiran, J. A., & Devanathan, V. (2023). Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Research Reviews, 89, 101994. https://doi.org/10.1016/j.arr.2023.101994
Nørgaard, M., Ganz, M., Svarer, C., Fisher, P. M., Churchill, N. W., Beliveau, V., Grady, C., Strother, S. C., & Knudsen, G. M. (2017). Brain networks implicated in seasonal affective disorder: A neuroimaging PET study of the serotonin transporter. Frontiers in Neuroscience, 11, 614. https://doi.org/10.3389/fnins.2017.00614
Nummenmaa, L. (2022). Mapping emotions on the body. Scandinavian Journal of Pain, 22(4), 667–669. https://doi.org/10.1515/sjpain-2022-0087
Olsson, H., Halldin, C., Swahn, C.-G., & Farde, L. (1999). Quantification of [11C]FLB 457 binding to extrastriatal dopamine receptors in the human brain. Journal of Cerebral Blood Flow & Metabolism, 19(10), 1164–1173. https://doi.org/10.1097/00004647-199910000-00013
Pedersen, R., Johansson, J., Nordin, K., Rieckmann, A., Wåhlin, A., Nyberg, L., Bäckman, L., & Salami, A. (2024). Dopamine D1-receptor organization contributes to functional brain architecture. The Journal of Neuroscience, 44(11), e0621232024. https://doi.org/10.1523/JNEUROSCI.0621-23.2024
Peng, S., Tang, C., Schindlbeck, K., Rydzinski, Y., Dhawan, V., Spetsieris, P. G., Ma, Y., & Eidelberg, D. (2021). Dynamic 18F-FPCIT PET: Quantification of Parkinson disease metabolic networks and nigrostriatal dopaminergic dysfunction in a single imaging session. Journal of Nuclear Medicine, 62(12), 1775–1782. https://doi.org/10.2967/jnumed.120.257345
Pereda, A. E. (2014). Electrical synapses and their functional interactions with chemical synapses. Nature Reviews Neuroscience, 15(4), 250–263. https://doi.org/10.1038/nrn3708
Perovnik, M., Rus, T., Schindlbeck, K. A., & Eidelberg, D. (2023). Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nature Reviews Neurology, 19(2), 73–90. https://doi.org/10.1038/s41582-022-00753-3
Pillai, R. L., Zhang, M., Yang, J., Mann, J. J., Oquendo, M. A., Parsey, R. V, & DeLorenzo, C. (2019). Molecular connectivity disruptions in males with major depressive disorder. Journal of Cerebral Blood Flow & Metabolism, 39(8), 1623–1634. https://doi.org/10.1177/0271678X18764053
Politis, M. (2014). Neuroimaging in Parkinson disease: From research setting to clinical practice. Nature Reviews Neurology, 10(12), 708–722. https://doi.org/10.1038/nrneurol.2014.205
Rebelo, D., Oliveira, F., Abrunhosa, A., Januário, C., Lemos, J., & Castelo-Branco, M. (2021). A link between synaptic plasticity and reorganization of brain activity in Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 118(3), e2013962118. https://doi.org/10.1073/pnas.2013962118
Sala, A., Caminiti, S. P., Presotto, L., Pilotto, A., Liguori, C., Chiaravalloti, A., Garibotto, V., Frisoni, G. B., D’Amelio, M., Paghera, B., Schillaci, O., Mercuri, N., Padovani, A., & Perani, D. (2021). In vivo human molecular neuroimaging of dopaminergic vulnerability along the Alzheimer’s disease phases. Alzheimer’s Research & Therapy, 13(1), 187. https://doi.org/10.1186/s13195-021-00925-1
Sala, A., Lizarraga, A., Caminiti, S. P., Calhoun, V. D., Eickhoff, S. B., Habeck, C., Jamadar, S. D., Perani, D., Pereira, J. B., Veronese, M., & Yakushev, I. (2023). Brain connectomics: Time for a molecular imaging perspective?Trends in Cognitive Sciences, 27(4), 353–366. https://doi.org/10.1016/j.tics.2022.11.015
Sala, A., Lizarraga, A., Ripp, I., Cumming, P., & Yakushev, I. (2022). Static versus functional PET: Making sense of metabolic connectivity. Cerebral Cortex, 32(5), 1125–1129. https://doi.org/10.1093/cercor/bhab271
Sala, A., & Perani, D. (2019). Brain molecular connectivity in neurodegenerative diseases: Recent advances and new perspectives using positron emission tomography. Frontiers in Neuroscience, 13, 617. https://doi.org/10.3389/fnins.2019.00617
Sanchez-Catasus, C. A., Bohnen, N. I., D’Cruz, N., & Müller, M. L. T. M. (2022). Striatal acetylcholine–dopamine imbalance in Parkinson disease: In vivo neuroimaging study with dual-tracer PET and dopaminergic PET–informed correlational tractography. Journal of Nuclear Medicine, 63(3), 438–445. https://doi.org/10.2967/jnumed.121.261939
Scarpazza, C., Tognin, S., Frisciata, S., Sartori, G., & Mechelli, A. (2015). False positive rates in Voxel-based Morphometry studies of the human brain: Should we be worried?Neuroscience & Biobehavioral Reviews, 52, 49–55. https://doi.org/10.1016/j.neubiorev.2015.02.008
Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52. https://doi.org/10.1016/j.neuron.2009.03.024
Smart, K., Gallezot, J.-D., Nabulsi, N., Labaree, D., Zheng, M.-Q., Huang, Y., Carson, R. E., Hillmer, A. T., & Worhunsky, P. D. (2020). Separating dopamine D2 and D3 receptor sources of [11C]-(+)-PHNO binding potential: Independent component analysis of competitive binding. NeuroImage, 214, 116762. https://doi.org/10.1016/j.neuroimage.2020.116762
Smith, G. S., Protas, H., Kuwabara, H., Savonenko, A., Nassery, N., Gould, N. F., Kraut, M., Avramopoulos, D., Holt, D., Dannals, R. F., Nandi, A., Su, Y., Reiman, E. M., & Chen, K. (2023). Molecular imaging of the association between serotonin degeneration and beta-amyloid deposition in mild cognitive impairment. NeuroImage: Clinical, 37, 103322. https://doi.org/10.1016/j.nicl.2023.103322
Sokoloff, P., & Le Foll, B. (2017). The dopamine D3 receptor, a quarter century later. European Journal of Neuroscience, 45(1), 2–19. https://doi.org/10.1111/ejn.13390
Sonnenschein, S. F., Gomes, F. V., & Grace, A. A. (2020). Dysregulation of midbrain dopamine system and the pathophysiology of schizophrenia. Frontiers in Psychiatry, 11, 613. https://doi.org/10.3389/fpsyt.2020.00613
Spencer, B. A., Berg, E., Schmall, J. P., Omidvari, N., Leung, E. K., Abdelhafez, Y. G., Tang, S., Deng, Z., Dong, Y., Lv, Y., Bao, J., Liu, W., Li, H., Jones, T., Badawi, R. D., & Cherry, S. R. (2021). Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2-2018 with additional tests to characterize PET scanners with a long axial field of View. Journal of Nuclear Medicine, 62(6), 861–870. https://doi.org/10.2967/jnumed.120.250597
Spetsieris, P., Ma, Y., Peng, S., Ko, J. H., Dhawan, V., Tang, C. C., & Eidelberg, D. (2013). Identification of disease-related spatial covariance patterns using neuroimaging data. Journal of Visualized Experiments, 76, e50319. https://doi.org/10.3791/50319
Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42. https://doi.org/10.1371/journal.pcbi.0010042
Stoessl, A. J. (2012). Neuroimaging in Parkinson’s disease: From pathology to diagnosis. Parkinsonism & Related Disorders, 18, S55–S59. https://doi.org/10.1016/S1353-8020(11)70019-0
Strafella, A. P., Bohnen, N. I., Perlmutter, J. S., Eidelberg, D., Pavese, N., Van Eimeren, T., Piccini, P., Politis, M., Thobois, S., Ceravolo, R., Higuchi, M., Kaasinen, V., Masellis, M., Peralta, M. C., Obeso, I., Pineda-Pardo, J. Á., Cilia, R., Ballanger, B., Niethammer, M., & Stoessl, J. A. (2017). Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: New imaging frontiers. Movement Disorders, 32(2), 181–192. https://doi.org/10.1002/mds.26907
Sudhof, T. C. (2012). Calcium control of neurotransmitter release. Cold Spring Harbor Perspectives in Biology, 4(1), a011353. https://doi.org/10.1101/cshperspect.a011353
Südhof, T. C., & Malenka, R. C. (2008). Understanding synapses: Past, present, and future. Neuron, 60(3), 469–476. https://doi.org/10.1016/j.neuron.2008.10.011
Sun, T., Wang, Z., Wu, Y., Gu, F., Li, X., Bai, Y., Shen, C., Hu, Z., Liang, D., Liu, X., Zheng, H., Yang, Y., El Fakhri, G., Zhou, Y., & Wang, M. (2022). Identifying the individual metabolic abnormities from a systemic perspective using whole-body PET imaging. European Journal of Nuclear Medicine and Molecular Imaging, 49(8), 2994–3004. https://doi.org/10.1007/s00259-022-05832-7
Toyonaga, T., Smith, L. M., Finnema, S. J., Gallezot, J.-D., Naganawa, M., Bini, J., Mulnix, T., Cai, Z., Ropchan, J., Huang, Y., Strittmatter, S. M., & Carson, R. E. (2019). In vivo synaptic density imaging with 11C-UCB-J detects treatment effects of saracatinib in a mouse model of Alzheimer disease. Journal of Nuclear Medicine, 60(12), 1780–1786. https://doi.org/10.2967/jnumed.118.223867
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
Tuominen, L., Nummenmaa, L., Keltikangas‐Järvinen, L., Raitakari, O., & Hietala, J. (2014). Mapping neurotransmitter networks with PET: An example on serotonin and opioid systems. Human Brain Mapping, 35(5), 1875–1884. https://doi.org/10.1002/hbm.22298
Vallini, G., Silvestri, E., Volpi, T., Lee, J. J., Vlassenko, A. G., Goyal, M. S., Cecchin, D., Corbetta, M., & Bertoldo, A. (2024). Individual-level metabolic connectivity from dynamic [18F]FDG PET reveals glioma-induced impairments in brain architecture and offers novel insights beyond the SUVR clinical standard. European Journal of Nuclear Medicine and Molecular Imaging, 52, 836–850. https://doi.org/10.1007/s00259-024-06956-8
Vanicek, T., Kutzelnigg, A., Philippe, C., Sigurdardottir, H. L., James, G. M., Hahn, A., Kranz, G. S., Höflich, A., Kautzky, A., Traub-Weidinger, T., Hacker, M., Wadsak, W., Mitterhauser, M., Kasper, S., & Lanzenberger, R. (2017). Altered interregional molecular associations of the serotonin transporter in attention deficit/hyperactivity disorder assessed with PET. Human Brain Mapping, 38(2), 792–802. https://doi.org/10.1002/hbm.23418
Varrone, A., & Halldin, C. (2010). Molecular imaging of the dopamine transporter. Journal of Nuclear Medicine, 51(9), 1331–1334. https://doi.org/10.2967/jnumed.109.065656
Verger, A., Horowitz, T., Chawki, M. B., Eusebio, A., Bordonne, M., Azulay, J.-P., Girard, N., & Guedj, E. (2020). From metabolic connectivity to molecular connectivity: Application to dopaminergic pathways. European Journal of Nuclear Medicine and Molecular Imaging, 47(2), 413–424. https://doi.org/10.1007/s00259-019-04574-3
Veronese, M., Moro, L., Arcolin, M., Dipasquale, O., Rizzo, G., Expert, P., Khan, W., Fisher, P. M., Svarer, C., Bertoldo, A., Howes, O., & Turkheimer, F. E. (2019). Covariance statistics and network analysis of brain PET imaging studies. Scientific Reports, 9(1), 2496. https://doi.org/10.1038/s41598-019-39005-8
Volkow, N. D., Fowler, J. S., Gatley, S. J., Logan, J., Wang, G. J., Ding, Y. S., & Dewey, S. (1996). PET evaluation of the dopamine system of the human brain. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 37(7), 1242–1256. https://doi.org/10.1016/s0969-8051(01)00211-6
Volpi, T., Vallini, G., Silvestri, E., Francisci, M. De, Durbin, T., Corbetta, M., Lee, J. J., Vlassenko, A. G., Goyal, M. S., & Bertoldo, A. (2023). A new framework for metabolic connectivity mapping using bolus [18F]FDG PET and kinetic modeling. Journal of Cerebral Blood Flow & Metabolism, 43(11), 1905–1918. https://doi.org/10.1177/0271678X231184365
Wager, T. D., Scott, D. J., & Zubieta, J.-K. (2007). Placebo effects on human μ-opioid activity during pain. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11056–11061. https://doi.org/10.1073/pnas.0702413104
Wang, M., Jiang, J., Yan, Z., Alberts, I., Ge, J., Zhang, H., Zuo, C., Yu, J., Rominger, A., & Shi, K. (2020). Individual brain metabolic connectome indicator based on Kullback-Leibler Divergence Similarity Estimation predicts progression from mild cognitive impairment to Alzheimer’s dementia. European Journal of Nuclear Medicine and Molecular Imaging, 47(12), 2753–2764. https://doi.org/10.1007/s00259-020-04814-x
Warren, N., O’Gorman, C., Lehn, A., & Siskind, D. (2017). Dopamine dysregulation syndrome in Parkinson’s disease: A systematic review of published cases. Journal of Neurology, Neurosurgery & Psychiatry, 88(12), 1060–1064. https://doi.org/10.1136/jnnp-2017-315985
Wig, G. S. (2017). Segregated systems of human brain networks. Trends in Cognitive Sciences, 21(12), 981–996. https://doi.org/10.1016/j.tics.2017.09.006
Worhunsky, P. D., Matuskey, D., Gallezot, J.-D., Gaiser, E. C., Nabulsi, N., Angarita, G. A., Calhoun, V. D., Malison, R. T., Potenza, M. N., & Carson, R. E. (2017). Regional and source-based patterns of [11 C]-(+)-PHNO binding potential reveal concurrent alterations in dopamine D 2 and D 3 receptor availability in cocaine-use disorder. NeuroImage, 148, 343–351. https://doi.org/10.1016/j.neuroimage.2017.01.045
Xu, J., Vangveravong, S., Li, S., Fan, J., Jones, L. A., Cui, J., Wang, R., Tu, Z., Chu, W., Perlmutter, J. S., & Mach, R. H. (2013). Positron emission tomography imaging of dopamine D2 receptors using a highly selective radiolabeled D2 receptor partial agonist. NeuroImage, 71, 168–174. https://doi.org/10.1016/j.neuroimage.2013.01.007
Yakushev, I., Drzezga, A., & Habeck, C. (2017). Metabolic connectivity: Methods and applications. Current Opinion in Neurology, 30(6), 677–685. https://doi.org/10.1097/WCO.0000000000000494
Yasuno, F., Suhara, T., Okubo, Y., Ichimiya, T., Takano, A., Sudo, Y., & Inoue, M. (2005). Abnormal effective connectivity of dopamine D2 receptor binding in schizophrenia. Psychiatry Research: Neuroimaging, 138(3), 197–207. https://doi.org/10.1016/j.pscychresns.2004.04.005
Zhu, L., Ploessl, K., & Kung, H. F. (2014). PET/SPECT imaging agents for neurodegenerative diseases. Chemical Society Reviews, 43(19), 6683–6691. https://doi.org/10.1039/C3CS60430F