[en] There is currently limited knowledge regarding the involvement of long non-coding RNAs (lncRNAs) in cancer development. We aimed to identify lncRNAs with important roles in pancreatic cancer progression. We screened for lncRNAs that were differentially expressed in pancreatic cancer tissues. Among 349 differentially expressed lncRNAs, Linc01060 showed the lowest expression in pancreatic cancer tissues compared with normal pancreatic tissues. Lower Linc01060 expression in pancreatic cancer tissues was significantly associated with a poor prognosis. Linc01060 inhibited pancreatic cancer proliferation and invasion in vitro and in vivo. Vinculin overexpression inhibited Linc01060KD-mediated increases in FAK and paxillin phosphorylation, whereas vinculin knockdown reversed the Linc01060-mediated repression of FAK and inactivation of focal adhesion turnover. Vinculin knockdown also accelerated pancreatic cancer cell proliferation by upregulating ERK activity. In biological function analyses, vinculin overexpression abrogated Linc01060-mediated repression of pancreatic cancer cell proliferation and invasion, whereas vinculin counteracted the Linc01060-mediated repression of PC cell proliferation and invasion. These data demonstrate that Linc01060 plays a key role in suppressing pancreatic cancer progression by regulating vinculin expression. These findings suggest that the Linc01060-vinculin-focal adhesion axis is a therapeutic target for pancreatic cancer treatment.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Shi, Xiuhui ; Université de Liège - ULiège > Département de pharmacie ; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
Guo, Xingjun ; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
Li, Xu; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China. Electronic address: 2013tj0574@hust.edu.cn
Wang, Min; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China. Electronic address: minwang@tjh.tjmu.edu.cn
Qin, Renyi; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China. Electronic address: ryqin@tjh.tjmu.edu.cn
Language :
English
Title :
Loss of Linc01060 induces pancreatic cancer progression through vinculin-mediated focal adhesion turnover.
NSCF - National Natural Science Foundation of China
Funding text :
This study was funded by The National Natural Science Foundation of China (No. 81602475 to X.J.G., No. 81772950 to R.Y.Q., No. 81101621 to M.W., No. 81502633 to X.L).
Hackert, T., Ulrich, A., Buchler, M.W., Borderline resectable pancreatic cancer. Canc. Lett. 375 (2016), 231–237.
Siegel, R.L., Miller, K.D., Jemal, A., Cancer statistics, 2016. CA: Canc. J. Clin. 66 (2016), 7–30.
Vincent, A., Herman, J., Schulick, R., Hruban, R.H., Goggins, M., Pancreatic cancer. Lancet (London, England) 378 (2011), 607–620.
Chaudhary, A.K., Mondal, G., Kumar, V., Kattel, K., Mahato, R.I., Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Canc. Lett. 402 (2017), 1–8.
Rombouts, S.J., Vogel, J.A., van Santvoort, H.C., van Lienden, K.P., van Hillegersberg, R., Busch, O.R., Besselink, M.G., Molenaar, I.Q., Systematic review of innovative ablative therapies for the treatment of locally advanced pancreatic cancer. Br. J. Surg. 102 (2015), 182–193.
Luo, G., Liu, C., Guo, M., Long, J., Liu, Z., Xiao, Z., Jin, K., Cheng, H., Lu, Y., Ni, Q., Yu, X., CA19-9-Low&Lewis (+) pancreatic cancer: a unique subtype. Canc. Lett. 385 (2017), 46–50.
Lau, E., Non-coding RNA: zooming in on lncRNA functions. Nat. Rev. Genetics 15 (2014), 574–575.
Batista, P.J., Chang, H.Y., Long noncoding RNAs: cellular address codes in development and disease. Cell 152 (2013), 1298–1307.
Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M.J., Kenzelmann-Broz, D., Khalil, A.M., Zuk, O., Amit, I., Rabani, M., Attardi, L.D., Regev, A., Lander, E.S., Jacks, T., Rinn, J.L., A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142 (2010), 409–419.
Jiang, N., Wang, X., Xie, X., Liao, Y., Liu, N., Liu, J., Miao, N., Shen, J., Peng, T., lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Canc. Lett. 405 (2017), 46–55.
He, Y., Meng, X.M., Huang, C., Wu, B.M., Zhang, L., Lv, X.W., Li, J., Long noncoding RNAs: novel insights into hepatocelluar carcinoma. Canc. Lett. 344 (2014), 20–27.
Yang, Z., Zhou, L., Wu, L.M., Lai, M.C., Xie, H.Y., Zhang, F., Zheng, S.S., Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann. Surg Oncol. 18 (2011), 1243–1250.
Tseng, Y.Y., Moriarity, B.S., Gong, W., Akiyama, R., Tiwari, A., Kawakami, H., Ronning, P., Reuland, B., Guenther, K., Beadnell, T.C., Essig, J., Otto, G.M., O'Sullivan, M.G., Largaespada, D.A., Schwertfeger, K.L., Marahrens, Y., Kawakami, Y., Bagchi, A., PVT1 dependence in cancer with MYC copy-number increase. Nature 512 (2014), 82–86.
Gupta, R.A., Shah, N., Wang, K.C., Kim, J., Horlings, H.M., Wong, D.J., Tsai, M.C., Hung, T., Argani, P., Rinn, J.L., Wang, Y., Brzoska, P., Kong, B., Li, R., West, R.B., van de Vijver, M.J., Sukumar, S., Chang, H.Y., Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464 (2010), 1071–1076.
Tripathi, V., Ellis, J.D., Shen, Z., Song, D.Y., Pan, Q., Watt, A.T., Freier, S.M., Bennett, C.F., Sharma, A., Bubulya, P.A., Blencowe, B.J., Prasanth, S.G., Prasanth, K.V., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39 (2010), 925–938.
Kozak, M., Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44 (1986), 283–292.
Lin, M.F., Jungreis, I., Kellis, M., PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics (Oxford, England) 27 (2011), i275–282.
Kang, Y.J., Yang, D.C., Kong, L., Hou, M., Meng, Y.Q., Wei, L., Gao, G., CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 45 (2017), W12–W16.
Saunders, R.M., Holt, M.R., Jennings, L., Sutton, D.H., Barsukov, I.L., Bobkov, A., Liddington, R.C., Adamson, E.A., Dunn, G.A., Critchley, D.R., Role of vinculin in regulating focal adhesion turnover. Eur. J. Cell Biol. 85 (2006), 487–500.
Siegel, R., Naishadham, D., Jemal, A., Cancer statistics, 2013. CA: Canc. J. Clin. 63 (2013), 11–30.
Kang, M.J., Jang, J.Y., Kim, S.W., Surgical resection of pancreatic head cancer: what is the optimal extent of surgery?. Canc. Lett. 382 (2016), 259–265.
Foley, K., Kim, V., Jaffee, E., Zheng, L., Current progress in immunotherapy for pancreatic cancer. Canc. Lett. 381 (2016), 244–251.
Kota, J., Hancock, J., Kwon, J., Korc, M., Pancreatic cancer: stroma and its current and emerging targeted therapies. Canc. Lett. 391 (2017), 38–49.
Ma, J., Jemal, A., The rise and fall of cancer mortality in the USA: why does pancreatic cancer not follow the trend?. Future Oncol. (London, England) 9 (2013), 917–919.
Fink, D.M., Steele, M.M., Hollingsworth, M.A., The lymphatic system and pancreatic cancer. Canc. Lett. 381 (2016), 217–236.
Hu, B., Zhang, K., Li, S., Li, H., Yan, Z., Huang, L., Wu, J., Han, X., Jiang, W., Mulatibieke, T., Zheng, L., Wan, R., Wang, X., Hu, G., HIC1 attenuates invasion and metastasis by inhibiting the IL-6/STAT3 signalling pathway in human pancreatic cancer. Canc. Lett. 376 (2016), 387–398.
Midha, S., Chawla, S., Garg, P.K., Modifiable and non-modifiable risk factors for pancreatic cancer: a review. Canc. Lett. 381 (2016), 269–277.
Fu, Z., Chen, C., Zhou, Q., Wang, Y., Zhao, Y., Zhao, X., Li, W., Zheng, S., Ye, H., Wang, L., He, Z., Lin, Q., Li, Z., Chen, R., LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9. Canc. Lett. 410 (2017), 68–81.
Wang, Q., Zhang, J., Liu, Y., Zhang, W., Zhou, J., Duan, R., Pu, P., Kang, C., Han, L., A novel cell cycle-associated lncRNA, HOXA11-AS, is transcribed from the 5-prime end of the HOXA transcript and is a biomarker of progression in glioma. Canc. Lett. 373 (2016), 251–259.
Zhao, L., Kong, H., Sun, H., Chen, Z., Chen, B., Zhou, M., LncRNA-PVT1 promotes pancreatic cancer cells proliferation and migration through acting as a molecular sponge to regulate miR-448. J. Cell. Physiol. 233 (2018), 4044–4055.
Cai, H., Yao, J., An, Y., Chen, X., Chen, W., Wu, D., Luo, B., Yang, Y., Jiang, Y., Sun, D., He, X., LncRNA HOTAIR acts a competing endogenous RNA to control the expression of notch3 via sponging miR-613 in pancreatic cancer. Oncotarget 8 (2017), 32905–32917.
Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation. Cell 144 (2011), 646–674.
Tang, Y., Cheung, B.B., Atmadibrata, B., Marshall, G.M., Dinger, M.E., Liu, P.Y., Liu, T., The regulatory role of long noncoding RNAs in cancer. Canc. Lett. 391 (2017), 12–19.
Forrest, M.E., Khalil, A.M., Review: regulation of the cancer epigenome by long non-coding RNAs. Canc. Lett. 407 (2017), 106–112.
Xiong, G., Feng, M., Yang, G., Zheng, S., Song, X., Cao, Z., You, L., Zheng, L., Hu, Y., Zhang, T., Zhao, Y., The underlying mechanisms of non-coding RNAs in the chemoresistance of pancreatic cancer. Canc. Lett. 397 (2017), 94–102.
Wang, J., Shao, N., Ding, X., Tan, B., Song, Q., Wang, N., Jia, Y., Ling, H., Cheng, Y., Crosstalk between transforming growth factor-beta signaling pathway and long non-coding RNAs in cancer. Canc. Lett. 370 (2016), 296–301.
Schmitt, A.M., Chang, H.Y., Long noncoding RNAs in cancer pathways. Canc. Cell 29 (2016), 452–463.
Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., Horwitz, A.R., Cell migration: integrating signals from front to back. Science (New York, N.Y.) 302 (2003), 1704–1709.
Li, X., Ma, C., Zhang, L., Li, N., Zhang, X., He, J., He, R., Shao, M., Wang, J., Kang, L., Han, C., LncRNAAC132217.4, a KLF8-regulated long non-coding RNA, facilitates oral squamous cell carcinoma metastasis by upregulating IGF2 expression. Canc. Lett. 407 (2017), 45–56.
Fang, C., Qiu, S., Sun, F., Li, W., Wang, Z., Yue, B., Wu, X., Yan, D., Long non-coding RNA HNF1A-AS1 mediated repression of miR-34a/SIRT1/p53 feedback loop promotes the metastatic progression of colon cancer by functioning as a competing endogenous RNA. Canc. Lett. 410 (2017), 50–62.
Chan, K.K., Leung, C.O., Wong, C.C., Ho, D.W., Chok, K.S., Lai, C.L., Ng, I.O., Lo, R.C., Secretory Stanniocalcin 1 promotes metastasis of hepatocellular carcinoma through activation of JNK signaling pathway. Canc. Lett. 403 (2017), 330–338.
Huttenlocher, A., Sandborg, R.R., Horwitz, A.F., Adhesion in cell migration. Curr. Opin. Cell Biol. 7 (1995), 697–706.
Mitra, S.K., Hanson, D.A., Schlaepfer, D.D., Focal adhesion kinase: in command and control of cell motility, Nature reviews. Mol. Cell Biol. 6 (2005), 56–68.
Webb, D.J., Donais, K., Whitmore, L.A., Thomas, S.M., Turner, C.E., Parsons, J.T., Horwitz, A.F., FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 6 (2004), 154–161.
Easley, C.A.t, Brown, C.M., Horwitz, A.F., Tombes, R.M., CaMK-II promotes focal adhesion turnover and cell motility by inducing tyrosine dephosphorylation of FAK and paxillin. Cell Motil. Cytoskeleton 65 (2008), 662–674.
Hagel, M., George, E.L., Kim, A., Tamimi, R., Opitz, S.L., Turner, C.E., Imamoto, A., Thomas, S.M., The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol. Cell Biol. 22 (2002), 901–915.
Jockusch, B.M., Rudiger, M., Crosstalk between cell adhesion molecules: vinculin as a paradigm for regulation by conformation. Trends Cell Biol. 6 (1996), 311–315.
Xu, W., Coll, J.L., Adamson, E.D., Rescue of the mutant phenotype by reexpression of full-length vinculin in null F9 cells; effects on cell locomotion by domain deleted vinculin. J. Cell Sci. 111:Pt 11 (1998), 1535–1544.
Watabe-Uchida, M., Uchida, N., Imamura, Y., Nagafuchi, A., Fujimoto, K., Uemura, T., Vermeulen, S., van Roy, F., Adamson, E.D., Takeichi, M., alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J. Cell Biol. 142 (1998), 847–857.
Faghihi, M.A., Modarresi, F., Khalil, A.M., Wood, D.E., Sahagan, B.G., Morgan, T.E., Finch, C.E., St Laurent, G. 3rd, Kenny, P.J., Wahlestedt, C., Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med. 14 (2008), 723–730.
Yoon, J.H., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J.L., De, S., Huarte, M., Zhan, M., Becker, K.G., Gorospe, M., LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47 (2012), 648–655.