Alantolactone induces apoptosis and improves chemosensitivity of pancreatic cancer cells by impairment of autophagy-lysosome pathway via targeting TFEB.
He, Ruizhi; Shi, Xiuhui; Zhou, Minet al.
2018 • In Toxicology and Applied Pharmacology, 356, p. 159 - 171
[en] The lysosome is emerging as a central regulator of the autophagic process, which plays a critical role in tumor growth and chemoresistance. Alantolactone, which is a natural compound produced by Inula helenium, has been shown to induce apoptosis in numerous cancer types. However, the mechanism by which alantolactone regulates apoptosis is still poorly understood. In this work, we observed that alantolactone caused the accumulation of autophagosomes due to impaired autophagic degradation and substantially inhibited the activity and expression of CTSB/CTSD proteins that when depleted caused lysosomal dysfunction. Furthermore, we found that alantolactone inhibited the proliferation of pancreatic cancer cells in vitro and in vivo and enhanced the chemosensitivity of pancreatic cancer cells to oxaliplatin. In addition, a reduction in TFEB levels was a critical event in the apoptosis and cell death caused by alantolactone. Our data demonstrated that alantolactone, which impaired autophagic degradation, was a pharmacological inhibitor of autophagy in pancreatic cancer cells and markedly enhanced the chemosensitivity of pancreatic cancer cells to oxaliplatin.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
He, Ruizhi ; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
Shi, Xiuhui ; Université de Liège - ULiège > Département de pharmacie ; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
Zhou, Min; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
Zhao, Yan; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
Pan, Shutao; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
Zhao, Chunle; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
Guo, Xingjun; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
Wang, Min; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
Li, Xu; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China. Electronic address: kuai_1985@hotmail.com
Qin, Renyi; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China. Electronic address: ryqin@tjh.tjmu.edu.cn
Language :
English
Title :
Alantolactone induces apoptosis and improves chemosensitivity of pancreatic cancer cells by impairment of autophagy-lysosome pathway via targeting TFEB.
NSCF - National Natural Science Foundation of China
Funding text :
This study was supported by the National Natural Science Foundation of China (No. 81502633 to Xu Li, No. 81773160 to Min Wang, No. 81772950 to Renyi Qin).
Agarwal, A., Mahfouz, R.Z., Sharma, R.K., Sarkar, O., Mangrola, D., Mathur, P.P., Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod. Biol. Endocrinol., 7, 2009, 143.
Amaravadi, R., Kimmelman, A.C., White, E., Recent insights into the function of autophagy in cancer. Genes Dev. 30 (2016), 1913–1930.
Aveleira, C.A., Botelho, M., Carmo-Silva, S., Pascoal, J.F., Neuropeptide Y Stimulates Autophagy in Hypothalamic Neurons. vol. 112, 2015, E1642–E1651.
Barth, S., Glick, D., Macleod, K.F., Autophagy: assays and artifacts. J. Pathol. 221 (2010), 117–124.
Bhattacharya, A., Eissa, N.T., Autophagy as a stress response pathway in the immune system. Int. Rev. Immunol. 34 (2015), 382–402.
Bullock, A., Stuart, K., Jacobus, S., Abrams, T., Wadlow, R., Goldstein, M., Miksad, R., Capecitabine and oxaliplatin as first and second line treatment for locally advanced and metastatic pancreatic ductal adenocarcinoma. J. Gastrointest. Oncol. 8 (2017), 945–952.
Cadwell, K., Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat. Rev. Immunol. 16 (2016), 661–675.
Choi, A.M., Ryter, S.W., Levine, B., Autophagy in human health and disease. N. Engl. J. Med. 368 (2013), 651–662.
Chun, J., Li, R.J., Cheng, M.S., Kim, Y.S., Alantolactone selectively suppresses STAT3 activation and exhibits potent anticancer activity in MDA-MB-231 cells. Cancer Lett. 357 (2015), 393–403.
Crescenzi, E., Chiaviello, A., Canti, G., Reddi, E., Veneziani, B.M., Palumbo, G., Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299). Mol. Cancer Ther. 5 (2006), 776–785.
Ding, Z.B., Hui, B., Shi, Y.H., Zhou, J., Peng, Y.F., Gu, C.Y., Yang, H., Shi, G.M., Ke, A.W., Wang, X.Y., Song, K., Dai, Z., Shen, Y.H., Fan, J., Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation. Clin. Cancer Res. 17 (2011), 6229–6238.
Fitzwalter, B.E., Thorburn, A., Recent insights into cell death and autophagy. FEBS J. 282 (2015), 4279–4288.
Fitzwalter, B.E., Towers, C.G., Sullivan, K.D., Andrysik, Z., Hoh, M., Ludwig, M., O'Prey, J., Ryan, K.M., Espinosa, J.M., Morgan, M.J., Thorburn, A., Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev. Cell 44 (2018), 555–565 (e553).
Itakura, E., Kishi-Itakura, C., Mizushima, N., The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151 (2012), 1256–1269.
Kim, M., Song, K., Kim, Y.S., Alantolactone improves palmitate-induced glucose intolerance and inflammation in both lean and obese states in vitro: adipocyte and adipocyte-macrophage co-culture system. Int. Immunopharmacol. 49 (2017), 187–194.
Kimmelman, A.C., White, E., Autophagy and tumor metabolism. Cell Metab. 25 (2017), 1037–1043.
Klionsky, D.J., Baehrecke, E.H., Brumell, J.H., Chu, C.T., Codogno, P., Cuervo, A.M., Debnath, J., Deretic, V., Elazar, Z., Eskelinen, E.L., Finkbeiner, S., Fueyo-Margareto, J., Gewirtz, D., Jaattela, M., Kroemer, G., Levine, B., Melia, T.J., Mizushima, N., Rubinsztein, D.C., Simonsen, A., et al. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7 (2011), 1273–1294.
Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, K., Adhihetty, P.J., Adler, S.G., Agam, G., Agarwal, R., Aghi, M.K., Agnello, M., Agostinis, P., Aguilar, P.V., Aguirre-Ghiso, J., Airoldi, E.M., et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12 (2016), 1–222.
Levy, J.M.M., Towers, C.G., Thorburn, A., Targeting autophagy in cancer. Nat. Rev. Cancer 17 (2017), 528–542.
Li, X., Zhu, F., Jiang, J., Sun, C., Zhong, Q., Shen, M., Wang, X., Tian, R., Shi, C., Xu, M., Peng, F., Guo, X., Hu, J., Ye, D., Wang, M., Qin, R., Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells. Autophagy 12 (2016), 1521–1537.
Medina, D.L., Fraldi, A., Bouche, V., Annunziata, F., Mansueto, G., Spampanato, C., Puri, C., Pignata, A., Martina, J.A., Sardiello, M., Palmieri, M., Polishchuk, R., Puertollano, R., Ballabio, A., Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21 (2011), 421–430.
Middleton, G., Palmer, D.H., Greenhalf, W., Ghaneh, P., Jackson, R., Cox, T., Evans, A., Shaw, V.E., Wadsley, J., Valle, J.W., Propper, D., Wasan, H., Falk, S., Cunningham, D., Coxon, F., Ross, P., Madhusudan, S., Wadd, N., Corrie, P., Hickish, T., et al. Vandetanib plus gemcitabine versus placebo plus gemcitabine in locally advanced or metastatic pancreatic carcinoma (ViP): a prospective, randomised, double-blind, multicentre phase 2 trial. Lancet Oncol. 18 (2017), 486–499.
Networ, T.C.G.A.R., Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32 (2017), 185–203 (e113).
Palmieri, M., Impey, S., Kang, H., di Ronza, A., Pelz, C., Sardiello, M., Ballabio, A., Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20 (2011), 3852–3866.
Rebecca, V.W., Amaravadi, R.K., Emerging strategies to effectively target autophagy in cancer. Oncogene 35 (2016), 1–11.
Rosenfeldt, M.T., O'Prey, J., Morton, J.P., Nixon, C., MacKay, G., Mrowinska, A., Au, A., Rai, T.S., Zheng, L., Ridgway, R., Adams, P.D., Anderson, K.I., Gottlieb, E., Sansom, O.J., Ryan, K.M., p53 status determines the role of autophagy in pancreatic tumour development. Nature 504 (2013), 296–300.
Settembre, C., Ballabio, A., TFEB regulates autophagy: an integrated coordination of cellular degradation and recycling processes. Autophagy 7 (2011), 1379–1381.
Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., Sardiello, M., Rubinsztein, D.C., Ballabio, A., TFEB links autophagy to lysosomal biogenesis. Science (New York, N.Y.) 332 (2011), 1429–1433.
Settembre, C., Fraldi, A., Medina, D.L., Ballabio, A., Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14 (2013), 283–296.
Song, X.B., Liu, G., Liu, F., Yan, Z.G., Wang, Z.Y., Liu, Z.P., Wang, L., Autophagy blockade and lysosomal membrane permeabilization contribute to lead-induced nephrotoxicity in primary rat proximal tubular cells. Cell Death Dis., 8, 2017, e2863.
Tang, J.J., He, Q.R., Dong, S., Guo, X., Wang, Y.G., Lei, B.L., Tian, J.M., Gao, J.M., Diversity modification and structure-activity relationships of two natural products 1beta-hydroxy alantolactone and ivangustin as potent cytotoxic agents. Sci. Rep., 8, 2018, 1722.
TCGA, Pancreatic Cancer(PAAD) Dataset. UCSC Xena, USA. https://xenabrowser.net, 2018. (Accessed 21 January 2018)
Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., Jemal, A., Global cancer statistics, 2012. CA Cancer J. Clin. 65 (2015), 87–108.
Wang, X., Yu, Z., Wang, C., Cheng, W., Tian, X., Huo, X., Wang, Y., Sun, C., Feng, L., Xing, J., Lan, Y., Sun, D., Hou, Q., Zhang, B., Ma, X., Zhang, B., Alantolactone, a natural sesquiterpene lactone, has potent antitumor activity against glioblastoma by targeting IKKbeta kinase activity and interrupting NF-kappaB/COX-2-mediated signaling cascades. J. Exp. Clin. Cancer Res., 36, 2017, 93.
White, E., The role for autophagy in cancer. J. Clin. Invest. 125 (2015), 42–46.
Yang, A., Kimmelman, A.C., Inhibition of autophagy attenuates pancreatic cancer growth independent of TP53/TRP53 status. Autophagy 10 (2014), 1683–1684.
Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., Ying, H., Bause, A., Li, Y., Stommel, J.M., Dell'antonio, G., Mautner, J., Tonon, G., Haigis, M., Shirihai, O.S., Doglioni, C., Bardeesy, N., Kimmelman, A.C., Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25 (2011), 717–729.
Zhou, J., Tan, S.H., Nicolas, V., Bauvy, C., Yang, N.D., Zhang, J., Xue, Y., Codogno, P., Shen, H.M., Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 23 (2013), 508–523.