K+ channel; P-glycoprotein; catecholamines; epilepsy; mechanism; mortality; renin-angiotensin system; sudden unexpected death in epilepsy; Neurology; Neurology (clinical)
Abstract :
[en] Sudden unexpected death in epilepsy (SUDEP) is defined as a sudden, unexpected, non-traumatic, non-drowning death in a person with epilepsy. SUDEP is generally considered to result from seizure-related cardiac dysfunction, respiratory depression, autonomic nervous dysfunction, or brain dysfunction. Frequency of generalized tonic clonic seizures (GTCS), prone posture, and refractory epilepsy are considered risk factors. SUDEP has also been associated with inherited cardiac ion channel disease and severe obstructive sleep apnea. Most previous studies of SUDEP mechanisms have focused on cardiac and respiratory dysfunction and imbalance of the neural regulatory system. Cardiac-related mechanisms include reduction in heart rate variability and prolongation of QT interval, which can lead to arrhythmias. Laryngospasm and amygdala activation may cause obstructive and central apnea, respectively. Neural mechanisms include impairment of 5-HT and adenosine neuromodulation. The research to date regarding molecular mechanisms of SUDEP is relatively limited. Most studies have focused on p-glycoprotein, catecholamines, potassium channels, and the renin-angiotensin system, all of which affect cardiac and respiratory function.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Sun, Xinyi ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique ; School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
Lv, Yehui; School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China ; Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
Lin, Jian; Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China ; Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
Language :
English
Title :
The mechanism of sudden unexpected death in epilepsy: A mini review.
This work was funded by the Shanghai Sailing Plan (21YF1418800), the National Innovative Foundation Project for Students (202210262058) and the Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science (KF1902).
Shankar R Donner EJ McLean B Nashef L Tomson T. Sudden unexpected death in epilepsy (SUDEP): what every neurologist should know. Epileptic Disord. (2017) 19:1–9. 10.1684/epd.2017.089128218059
Ge Y Ding D Zhang Q Yang B Wang T Li B et al. Incidence of sudden unexpected death in epilepsy in community-based cohort in China. Epilepsy Behav. (2017) 76:76–83. 10.1016/j.yebeh.2017.08.02428958777
Zhao H Long L Xiao B. Advances in sudden unexpected death in epilepsy. Acta Neurol Scand. (2022) 146:716–22. 10.1111/ane.1371536358030
Garg D Sharma S. Sudden unexpected death in epilepsy (SUDEP): what pediatricians need to know. Indian Pediatr. (2020) 57:890–94. 10.1007/s13312-020-1986-433089801
Bernardi J Aromolaran KA Aromolaran AS. Neurological disorders and risk of arrhythmia. Int J Mol Sci. (2020) 22:188. 10.3390/ijms2201018833375447
Ryvlin P Rheims S Lhatoo SD. Risks and predictive biomarkers of sudden unexpected death in epilepsy patient. Curr Opin Neurol. (2019) 32:205–12. 10.1097/WCO.000000000000066830694923
O'Neal TB Shrestha S Singh H Osagie I Ben-Okafor K Cornett EM et al. Sudden unexpected death in epilepsy. Neurol Int. (2022) 14:600–13. 10.3390/neurolint1403004835893283
Shorvon S Tomson T. Sudden unexpected death in epilepsy. Lancet. (2011) 378:2028–38. 10.1016/S0140-6736(11)60176-121737136
Ali A Wu S Issa NP Rose S Towle VL Warnke P et al. Association of sleep with sudden unexpected death in epilepsy. Epilepsy Behav. (2017) 76:1–6. 10.1016/j.yebeh.2017.08.02130246243
Oguz Akarsu E Sahin E Ozel Yildiz S Bebek N Gurses C Baykan B. Peri-ictal prone position is associated with independent risk factors for sudden unexpected death in epilepsy: a controlled video-EEG monitoring Unit Study. Clin EEG Neurosci. (2018) 49:197–205. 10.1177/155005941773338528958162
Liebenthal JA Wu S Rose S Ebersole JS Tao JX. Association of prone position with sudden unexpected death in epilepsy. Neurology. (2015) 84:703–9. 10.1212/WNL.000000000000126026688874
Barot N Nei M. Autonomic aspects of sudden unexpected death in epilepsy (SUDEP). Clin Auton Res. (2019) 29:151–60. 10.1007/s10286-018-0576-130456432
Ellis SP Szabo CA. Sudden unexpected death in epilepsy: incidence, risk factors, and proposed mechanisms. Am J Forensic Med Pathol. (2018) 39:98–102. 10.1097/PAF.000000000000039429596066
Mastrangelo M Esposito D. Paediatric sudden unexpected death in epilepsy: from pathophysiology to prevention. Seizure. (2022) 101:83–95. 10.1016/j.seizure.2022.07.02035933970
Asadi-Pooya AA Sperling MR. Clinical features of sudden unexpected death in epilepsy. J Clin Neurophysiol. (2009) 26:297–301. 10.1097/WNP.0b013e3181b7f12930246243
Manolis TA Manolis AA Melita H Manolis AS. Sudden unexpected death in epilepsy: the neuro-cardio-respiratory connection. Seizure. (2019) 64:65–73. 10.1016/j.seizure.2018.12.00730566897
Chahal CAA Salloum MN Alahdab F Gottwald JA Tester DJ Anwer LA et al. Systematic review of the genetics of sudden unexpected death in epilepsy: potential overlap with sudden cardiac death and arrhythmia-related genes. J Am Heart Assoc. (2020) 9:e012264. 10.1161/JAHA.119.01226431865891
Bleakley LE Soh MS Bagnall RD Sadleir LG Gooley S Semsarian C et al. Are variants causing cardiac arrhythmia risk factors in sudden unexpected death in epilepsy? Front Neurol. (2020) 11:925. 10.3389/fneur.2020.0092533013630
Cheng JY. Risk of sudden unexpected death in people with epilepsy and obstructive sleep apnea. Epilepsy Res. (2021) 176:106729. 10.1016/j.eplepsyres.2021.10672934352639
Somboon T Grigg-Damberger MM Foldvary-Schaefer N. Epilepsy and sleep-related breathing disturbances. Chest. (2019) 156:172–81. 10.1016/j.chest.2019.01.01630711481
Allen LA Harper RM Lhatoo S Lemieux L Diehl B. Neuroimaging of sudden unexpected death in epilepsy (SUDEP): insights from structural and resting-state functional MRI studies. Front Neurol. (2019) 10:185. 10.3389/fneur.2019.0018530891003
Patodia S Paradiso B Ellis M Somani A Sisodiya SM Devinsky O et al. Characterisation of medullary astrocytic populations in respiratory nuclei and alterations in sudden unexpected death in epilepsy. Epilepsy Res. (2019) 157:106213. 10.1016/j.eplepsyres.2019.10621331610338
Allen LA Vos SB Kumar R Ogren JA Harper RK Winston GP et al. Cerebellar, limbic, and midbrain volume alterations in sudden unexpected death in epilepsy. Epilepsia. (2019) 60:718–29. 10.1111/epi.1468930868560
Allen LA Harper RM Guye M Kumar R Ogren JA Vos SB et al. Altered brain connectivity in sudden unexpected death in epilepsy (SUDEP) revealed using resting-state fMRI. Neuroimage Clin. (2019) 24:102060. 10.1016/j.nicl.2019.10206031722289
Costagliola G Orsini A Coll M Brugada R Parisi P Striano P. The brain-heart interaction in epilepsy: implications for diagnosis, therapy, and SUDEP prevention. Ann Clin Transl Neurol. (2021) 8:1557–68. 10.1002/acn3.5138234047488
Goldberger JJ Challapalli S Tung R Parker MA Kadish AH. Relationship of heart rate variability to parasympathetic effect. Circulation. (2001) 103:1977–83. 10.1161/01.CIR.103.15.197711306527
Myers KA Sivathamboo S Perucca P. Heart rate variability measurement in epilepsy: how can we move from research to clinical practice? Epilepsia. (2018) 59:2169–78. 10.1111/epi.1458730345509
DeGiorgio CM Miller P Meymandi S Chin A Epps J Gordon S et al. RMSSD, a measure of vagus-mediated heart rate variability, is associated with risk factors for SUDEP: the SUDEP-7 inventory. Epilepsy Behav. (2010) 19:78–81. 10.1016/j.yebeh.2010.06.01120667792
Schurr JW Grewal PK Fan R Rashba E. QT interval measurement in ventricular pacing: implications for assessment of drug effects and pro-arrhythmia risk. J Electrocardiol. (2022) 70:13–8. 10.1016/j.jelectrocard.2021.11.02934826635
Lankaputhra M Voskoboinik A. Congenital long QT syndrome: a clinician's guide. Intern Med J. (2021) 51:1999–2011. 10.1111/imj.1543734151491
van der Linde H Kreir M Teisman A Gallacher DJ. Seizure-induced Torsades de pointes: in a canine drug-induced long-QT1 model. J Pharmacol Toxicol Methods. (2021) 111:107086. 10.1016/j.vascn.2021.10708634119674
Haddad PM Anderson IM. Antipsychotic-related QTc prolongation, torsade de pointes and sudden death. Drugs. (2002) 62:1649–71. 10.2165/00003495-200262110-0000612109926
Pansani AP Ghazale PP Dos Santos EG Dos Santos Borges K Gomes KP Lacerda IS et al. The number and periodicity of seizures induce cardiac remodeling and changes in micro-RNA expression in rats submitted to electric amygdala kindling model of epilepsy. Epilepsy Behav. (2021) 116:107784. 10.1016/j.yebeh.2021.10778433548915
Nascimento FA Tseng ZH Palmiere C Maleszewski JJ Shiomi T McCrillis A et al. Pulmonary and cardiac pathology in sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav. (2017) 73:119–25. 10.1016/j.yebeh.2017.05.01328633090
Budde RB Arafat MA Pederson DJ Lovick TA Jefferys JGR Irazoqui PP. Acid reflux induced laryngospasm as a potential mechanism of sudden death in epilepsy. Epilepsy Res. (2018) 148:23–31. 10.1016/j.eplepsyres.2018.10.00330336367
Nakase K Kollmar R Lazar J Arjomandi H Sundaram K Silverman J et al. Laryngospasm, central and obstructive apnea during seizures: defining pathophysiology for sudden death in a rat model. Epilepsy Res. (2016) 128:126–39. 10.1016/j.eplepsyres.2016.08.00427835782
Tavee J Morris H. Severe postictal laryngospasm as a potential mechanism for sudden unexpected death in epilepsy: a near-miss in an EMU. Epilepsia. (2008) 49:2113–7. 10.1111/j.1528-1167.2008.01781.x18801039
Mandal R Budde R Lawlor GL Irazoqui P. Utilizing multimodal imaging to visualize potential mechanism for sudden death in epilepsy. Epilepsy Behav. (2021) 122:108124. 10.1016/j.yebeh.2021.10812434237676
Nobis WP González Otárula KA Templer JW Gerard EE VanHaerents S Lane G et al. The effect of seizure spread to the amygdala on respiration and onset of ictal central apnea. J Neurosurg. (2019) 132:1313–23. 10.3171/2019.1.JNS18315730952127
Nobis WP Schuele S Templer JW Zhou G Lane G Rosenow JM et al. Amygdala-stimulation-induced apnea is attention and nasal-breathing dependent. Ann Neurol. (2018) 83:460–71. 10.1002/ana.2517829420859
Dlouhy BJ Gehlbach BK Kreple CJ Kawasaki H Oya H Buzza C et al. Breathing inhibited when seizures spread to the amygdala and upon amygdala stimulation. J Neurosci. (2015) 35:10281–9. 10.1523/JNEUROSCI.0888-15.201526180203
Rhone AE Kovach CK Harmata GI Sullivan AW Tranel D Ciliberto MA et al. A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight. (2020) 5:852. 10.1172/jci.insight.13485232163374
Marincovich A Bravo E Dlouhy B Richerson GB. Amygdala lesions reduce seizure-induced respiratory arrest in DBA/1 mice. Epilepsy Behav. (2021) 121:106440. 10.1016/j.yebeh.2019.07.04131399338
Park K Kanth K Bajwa S Girgis F Shahlaie K Seyal M. Seizure-related apneas have an inconsistent linkage to amygdala seizure spread. Epilepsia. (2020) 61:1253–60. 10.1111/epi.1651832391925
Du Y He GY Yao L Ren P Pang L Wang WD. Forensic analysis of 9 cases of sudden unexpected death in epilepsy. Fa Yi Xue Za Zhi. (2022) 38:490–94. 10.12116/j.issn.1004-5619.2020.40061636426693
Romero-Osorio OM Abaunza-Camacho JF Sandoval-Briceno D. Postictal pulmonary oedema: a review of the literature. Rev Neurol. (2019) 68:339–45. 10.33588/rn.6808.201835630963531
Mahdavi Y Surges R Nikoubashman O Olaciregui Dague K Brokmann JC Willmes K et al. Neurogenic pulmonary edema following seizures: a retrospective computed tomography study. Epilepsy Behav. (2019) 94:112–17. 10.1016/j.yebeh.2019.02.00630901571
Kennedy JD Hardin KA Parikh P Li CS Seyal M. Pulmonary edema following generalized tonic clonic seizures is directly associated with seizure duration. Seizure. (2015) 27:19–24. 10.1016/j.seizure.2015.02.02325844030
Ruthirago D Julayanont P Karukote A Shehabeldin M Nugent K. Sudden unexpected death in epilepsy: ongoing challenges in finding mechanisms and prevention. Int J Neurosci. (2018) 128:1052–60. 10.1080/00207454.2018.146678029667458
Hodges MR Richerson GB. The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. J Appl Physiol. (2010) 108:1425–32. 10.1152/japplphysiol.01270.200920133432
Zhang H Zhao H Zeng C Van Dort C Faingold CL Taylor NE et al. Optogenetic activation of 5-HT neurons in the dorsal raphe suppresses seizure-induced respiratory arrest and produces anticonvulsant effect in the DBA/1 mouse SUDEP model. Neurobiol Dis. (2018) 110:47–58. 10.1016/j.nbd.2017.11.00329141182
Faingold CL Randall M Zeng C Peng S Long X Feng HJ. Serotonergic agents act on 5-HT(3) receptors in the brain to block seizure-induced respiratory arrest in the DBA/1 mouse model of SUDEP. Epilepsy Behav. (2016) 64:166–70. 10.1016/j.yebeh.2016.09.03427743549
Tupal S Faingold CL. Serotonin 5-HT(4) receptors play a critical role in the action of fenfluramine to block seizure-induced sudden death in a mouse model of SUDEP. Epilepsy Res. (2021) 177:106777. 10.1016/j.eplepsyres.2021.10677734601387
Lin WH Huang HP Lin MX Chen SG Lv XC Che CH et al. Seizure-induced 5-HT release and chronic impairment of serotonergic function in rats. Neurosci Lett. (2013) 534:1–6. 10.1016/j.neulet.2012.12.00723276638
Purnell B Murugan M Jani R Boison D. The good, the bad, and the deadly: adenosinergic mechanisms underlying sudden unexpected death in epilepsy. Front Neurosci. (2021) 15:708304. 10.3389/fnins.2021.70830434321997
Faingold CL Randall M Kommajosyula SP. Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine. Epilepsy Res. (2016) 124:49–54. 10.1016/j.eplepsyres.2016.05.00727259068
Klaft ZJ Hollnagel JO Salar S Calişkan G Schulz SB Schneider UC et al. Adenosine A1 receptor-mediated suppression of carbamazepine-resistant seizure-like events in human neocortical slices. Epilepsia. (2016) 57:746–56. 10.1111/epi.1336027087530
Patodia S Paradiso B Garcia M Ellis M Diehl B Thom M et al. Adenosine kinase and adenosine receptors A(1) R and A(2A) R in temporal lobe epilepsy and hippocampal sclerosis and association with risk factors for SUDEP. Epilepsia. (2020) 61:787–97. 10.1111/epi.1648732243580
Auzmendi J Buchholz B Salguero J Canellas C Kelly J Men P et al. Pilocarpine-induced status epilepticus is associated with p-glycoprotein induction in cardiomyocytes, electrocardiographic changes, and sudden death. Pharmaceuticals. (2018) 11:21. 10.3390/ph1101002129462915
Czornyj L Auzmendi J Lazarowski A. Transporter hypothesis in pharmacoresistant epilepsies. Is it at the central or peripheral level? Epilepsia Open. (2022) 7:S34–46. 10.1002/epi4.1253734542938
Auzmendi J Akyuz E Lazarowski A. The role of P-glycoprotein (P-gp) and inwardly rectifying potassium (Kir) channels in sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav. (2021) 121:106590. 10.1016/j.yebeh.2019.10659031706919
Hawkes MA Hocker SE. Systemic complications following status epilepticus. Curr Neurol Neurosci Rep. (2018) 18:7. 10.1007/s11910-018-0815-929417304
Du Y Demillard LJ Ren J. Catecholamine-induced cardiotoxicity: a critical element in the pathophysiology of stroke-induced heart injury. Life Sci. (2021) 287:120106. 10.1016/j.lfs.2021.12010634756930
Zhao H Zhang H Schoen FJ Schachter SC Feng HJ. Repeated generalized seizures can produce calcified cardiac lesions in DBA/1 mice. Epilepsy Behav. (2019) 95:169–74. 10.1016/j.yebeh.2019.04.01031063933
Verrier RL Pang TD Nearing BD Schachter SC. The epileptic heart: concept and clinical evidence. Epilepsy Behav. (2020) 105:106946. 10.1016/j.yebeh.2020.10694632109857
D'Adamo MC Liantonio A Rolland JF Pessia M Imbrici P. Kv11 channelopathies: pathophysiological mechanisms and therapeutic approaches. Int J Mol Sci. (2020) 21:935. 10.3390/ijms2108293532331416
Glasscock E. Kv1.1 channel subunits in the control of neurocardiac function. Channels. (2019) 13:299–307. 10.1080/19336950.2019.163586431250689
Dhaibar HA Hamilton KA Glasscock E. Kv11 subunits localize to cardiorespiratory brain networks in mice where their absence induces astrogliosis and microgliosis. Mol Cell Neurosci. (2021) 113:103615. 10.1016/j.mcn.2021.10361533901631
Mulkey DK Hawkins VE Hawryluk JM Takakura AC Moreira TS Tzingounis AV. Molecular underpinnings of ventral surface chemoreceptor function: focus on KCNQ channels. J Physiol. (2015) 593:1075–81. 10.1113/jphysiol.2014.28650025603782
Thouta S Zhang Y Garcia E Snutch TP. K(v)11 channels mediate network excitability and feed-forward inhibition in local amygdala circuits. Sci Rep. (2021) 11:15180. 10.1038/s41598-021-94633-334312446
Dhaibar H Gautier NM Chernyshev OY Dominic P Glasscock E. Cardiorespiratory profiling reveals primary breathing dysfunction in Kcna1-null mice: implications for sudden unexpected death in epilepsy. Neurobiol Dis. (2019) 127:502–11. 10.1016/j.nbd.2019.04.00630974168
Glasscock E Yoo JW Chen TT Klassen TL Noebels JL. Kv11 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J Neurosci. (2010) 30:5167–75. 10.1523/JNEUROSCI.5591-09.201020392939
Lai YC Li N Lawrence W Wang S Levine A Burchhardt DM et al. Myocardial remodeling and susceptibility to ventricular tachycardia in a model of chronic epilepsy. Epilepsia Open. (2018) 3:213–23. 10.1002/epi4.1210729881800
Gross C Yao X Engel T Tiwari D Xing L Rowley S et al. MicroRNA-mediated downregulation of the potassium channel Kv42 contributes to seizure onset. Cell Rep. (2016) 17:37–45. 10.1016/j.celrep.2016.08.07427681419
Barnwell LF Lugo JN Lee WL Willis SE Gertz SJ Hrachovy RA et al. Kv42 knockout mice demonstrate increased susceptibility to convulsant stimulation. Epilepsia. (2009) 50:1741–51. 10.1111/j.1528-1167.2009.02086.x19453702
Tiwari D Brager DH Rymer JK Bunk AT White AR Elsayed NA et al. MicroRNA inhibition upregulates hippocampal A-type potassium current and reduces seizure frequency in a mouse model of epilepsy. Neurobiol Dis. (2019) 130:104508. 10.1016/j.nbd.2019.10450831212067
Szczurkowska PJ Polonis K Becari C Hoffmann M Narkiewicz K Chrostowska M. Epilepsy and hypertension: the possible link for sudden unexpected death in epilepsy? Cardiol J. (2021) 28:330–35. 10.5603/CJ.a2019.009531565791
Kusmirowska K Kowalski A Rebas E. Angiotensins as neuromodulators. Postepy Biochem. (2012) 58:478–84.
Ramos AJ. Brain angiotensin system: a new promise in the management of epilepsy? Clin Sci. (2021) 135:725–30. 10.1042/CS2020129633729497
Pereira MG Becari C Oliveira JA Salgado MC Garcia-Cairasco N Costa-Neto CM. Inhibition of the renin-angiotensin system prevents seizures in a rat model of epilepsy. Clin Sci. (2010) 119:477–82. 10.1042/CS2010005320533906
Pereira MG Souza LL Becari C Duarte DA Camacho FR Oliveira JA et al. Angiotensin II-independent angiotensin-(1-7) formation in rat hippocampus: involvement of thimet oligopeptidase. Hypertension. (2013) 62:879–85. 10.1161/HYPERTENSIONAHA.113.0161324041943
Gouveia TL Frangiotti MI de Brito JM de Castro Neto EF Sakata MM Febba AC et al. The levels of renin-angiotensin related components are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Neurochem Int. (2012) 61:54–62. 10.1016/j.neuint.2012.04.01222542773
Biggs EN Budde R Jefferys JGR Irazoqui PP. Ictal activation of oxygen-conserving reflexes as a mechanism for sudden death in epilepsy. Epilepsia. (2021) 62:752–64. 10.1111/epi.1683133570173
Biggs EN Budde RB Jefferys JGR Irazoqui PP. Carotid body stimulation as a potential intervention in sudden death in epilepsy. Epilepsy Behav. (2022) 136:108918. 10.1016/j.yebeh.2022.10891836202052
Totola LT Malheiros-Lima MR Delfino-Pereira P Del Vecchio F Souza FC Takakura AC et al. Amygdala rapid kindling impairs breathing in response to chemoreflex activation. Brain Res. (2019) 1718:159–68. 10.1016/j.brainres.2019.05.01531100215
Nass RD Wagner M Surges R Holdenrieder S. Time courses of HMGB1 and other inflammatory markers after generalized convulsive seizures. Epilepsy Res. (2020) 162:106301. 10.1016/j.eplepsyres.2020.10630132126476
Barranco R Caputo F Molinelli A Ventura F. Review on post-mortem diagnosis in suspected SUDEP: Currently still a difficult task for Forensic Pathologists. J Forensic Leg Med. (2020) 70:101920. 10.1016/j.jflm.2020.10192032090969