GARP mRNA; LRRC32; cancer; glycoprotein A repetitions predominant (GARP); lymph node; metastases; transforming growth factor beta 1 (TGF-β1); tumor microenvironment; Oncology; Cancer Research
Abstract :
[en] Several types of cancer spread through the lymphatic system via the sentinel lymph nodes (LNs). Such LN-draining primary tumors, modified by tumor factors, lead to the formation of a metastatic niche associated with an increased number of Foxp3+ regulatory T cells (Tregs). These cells are expected to contribute to the elaboration of an immune-suppressive environment. Activated Tregs express glycoprotein A repetitions predominant (GARP), which binds and presents latent transforming growth factor beta 1 (TGF-β1) at their surface. GARP is also expressed by other non-immune cell types poorly described in LNs. Here, we mapped GARP expression in non-immune cells in human and mouse metastatic LNs. The mining of available (human and murine) scRNA-Seq datasets revealed GARP expression by blood (BEC)/lymphatic (LEC) endothelial, fibroblastic, and perivascular cells. Consistently, through immunostaining and in situ RNA hybridization approaches, GARP was detected in and around blood and lymphatic vessels, in (αSMA+) fibroblasts, and in perivascular cells associated with an abundant matrix. Strikingly, GARP was detected in LECs forming the subcapsular sinus and high endothelial venules (HEVs), two vascular structures localized at the interface between LNs and the afferent lymphatic and blood vessels. Altogether, we here provide the first distribution maps for GARP in human and murine LNs.
Disciplines :
Oncology
Author, co-author :
Rouaud, Loïc ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
Baudin, Louis ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
Gautier, Marine ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire ; Université Côte d'Azur, CNRS UMR7275, IPMC, 06560 Valbonne, France
Van Meerbeeck, Pierre; de Duve Institute, UCLouvain, 1200 Brussels, Belgium
Feyereisen, Emilie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
Blacher, Silvia ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
van Baren, Nicolas ; de Duve Institute, UCLouvain, 1200 Brussels, Belgium
Kridelka, Frédéric ; Université de Liège - ULiège > Département des sciences cliniques > Gynécologie-Obstétrique
Lucas, Sophie; de Duve Institute, UCLouvain, 1200 Brussels, Belgium ; WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
Noël, Agnès ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire ; WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
Language :
English
Title :
Spatial Distribution of Non-Immune Cells Expressing Glycoprotein A Repetitions Predominant in Human and Murine Metastatic Lymph Nodes.
EOS - The Excellence Of Science Program F.R.S.-FNRS - Fonds de la Recherche Scientifique Fondation contre le Cancer ULiège FSR - Université de Liège. Fonds spéciaux pour la recherche Fondation Léon Fredericq FWB - Wallonia-Brussels Federation Télévie
Funding text :
This research was funded by the FWO and F.R.S.-FNRS under the Excellence of Science programme (EOS No. 0.0037.22) and supported by grants from the Fonds de la Recherche Scientifique-FNRS (F.R.S.-FNRS, Belgium), the FNRS PDR-Télévie (7.8511.19, 7.6534.21 and 7.8508.21), the Fondation contre le Cancer (foundation of public interest, Belgium; grants 2020-107 for FK, 2022-181 for A.N.; 2020-079 for S.L.), the Fonds spéciaux de la Recherche (University of Liège), the Fondation Hospitalo Universitaire Léon Fredericq (FHULF, University of Liège), the Fondation Salus Sanguinis, the Walloon Region through the FRFS-WELBIO (WELBIO: Walloon Excellence in Life Sciences and Biotechnology, WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium) strategic research programme (grant CR-2019A-02 and CR-2019A-02R), and the Wallonia-Brussels Federation (grant for Concerted Research Actions No. 19/23-21 “INovLYMPHATIC”). L.R. and P.V.M. were supported by FNRS-télévie grants.
Chatterjee G. Pai T. Hardiman T. Avery-Kiejda K. Scott R.J. Spencer J. Pinder S.E. Grigoriadis A. Molecular Patterns of Cancer Colonisation in Lymph Nodes of Breast Cancer Patients Breast Cancer Res. 2018 20 143 10.1186/s13058-018-1070-3 30458865
Balsat C. Blacher S. Herfs M. Van de Velde M. Signolle N. Sauthier P. Pottier C. Gofflot S. De Cuypere M. Delvenne P. et al. A Specific Immune and Lymphatic Profile Characterizes the Pre-Metastatic State of the Sentinel Lymph Node in Patients with Early Cervical Cancer Oncoimmunology 2017 6 e1265718 10.1080/2162402X.2016.1265718 28344873
Wakisaka N. Hasegawa Y. Yoshimoto S. Miura K. Shiotani A. Yokoyama J. Sugasawa M. Moriyama-Kita M. Endo K. Yoshizaki T. Primary Tumor-Secreted Lymphangiogenic Factors Induce Pre-Metastatic Lymphvascular Niche Formation at Sentinel Lymph Nodes in Oral Squamous Cell Carcinoma PLoS ONE 2015 10 e0144056 10.1371/journal.pone.0144056 26630663
Tammela T. Alitalo K. Lymphangiogenesis: Molecular Mechanisms and Future Promise Cell 2010 140 460 476 10.1016/j.cell.2010.01.045 20178740
Maus R.L.G. Jakub J.W. Hieken T.J. Nevala W.K. Christensen T.A. Sutor S.L. Flotte T.J. Markovic S.N. Identification of Novel, Immune-Mediating Extracellular Vesicles in Human Lymphatic Effluent Draining Primary Cutaneous Melanoma OncoImmunology 2019 8 e1667742 10.1080/2162402X.2019.1667742 31741769
Cho J.K. Hyun S.H. Choi N. Kim M.J. Padera T.P. Choi J.Y. Jeong H.S. Significance of Lymph Node Metastasis in Cancer Dissemination of Head and Neck Cancer Transl. Oncol. 2015 8 119 125 10.1016/j.tranon.2015.03.001 25926078
Stacker S.A. Williams S.P. Karnezis T. Shayan R. Fox S.B. Achen M.G. Lymphangiogenesis and Lymphatic Vessel Remodelling in Cancer Nat. Rev. Cancer 2014 14 159 172 10.1038/nrc3677
Brown M. Assen F.P. Leithner A. Abe J. Schachner H. Asfour G. Bago-Horvath Z. Stein J.V. Uhrin P. Sixt M. et al. Lymph Node Blood Vessels Provide Exit Routes for Metastatic Tumor Cell Dissemination in Mice Science 2018 359 1408 1411 10.1126/science.aal3662
Padera T.P. Meijer E.F.J. Munn L.L. The Lymphatic System in Disease Processes and Cancer Progression Annu. Rev. Biomed. Eng. 2016 18 125 158 10.1146/annurev-bioeng-112315-031200
Sleeman J.P. The Lymph Node Pre-Metastatic Niche J. Mol. Med. 2015 93 1173 1184 10.1007/s00109-015-1351-6
Kaplan R.N. Riba R.D. Zacharoulis S. Bramley A.H. Vincent L. Costa C. MacDonald D.D. Jin D.K. Shido K. Kerns S.A. et al. VEGFR1-Positive Haematopoietic Bone Marrow Progenitors Initiate the Pre-Metastatic Niche Nature 2005 438 820 827 10.1038/nature04186 16341007
Peinado H. Zhang H. Matei I.R. Costa-Silva B. Hoshino A. Rodrigues G. Psaila B. Kaplan R.N. Bromberg J.F. Kang Y. et al. Pre-Metastatic Niches: Organ-Specific Homes for Metastases Nat. Rev. Cancer 2017 17 302 317 10.1038/nrc.2017.6 28303905
Psaila B. Lyden D. The Metastatic Niche: Adapting the Foreign Soil Nat. Rev. Cancer 2009 9 285 293 10.1038/nrc2621 19308068
Hirakawa S. Kodama S. Kunstfeld R. Kajiya K. Brown L.F. Detmar M. VEGF-A Induces Tumor and Sentinel Lymph Node Lymphangiogenesis and Promotes Lymphatic Metastasis J. Exp. Med. 2005 201 1089 1099 10.1084/jem.20041896 15809353
Hirakawa S. Brown L.F. Kodama S. Paavonen K. Alitalo K. Detmar M. VEGF-C–Induced Lymphangiogenesis in Sentinel Lymph Nodes Promotes Tumor Metastasis to Distant Sites Blood 2007 109 1010 1017 10.1182/blood-2006-05-021758 17032920
Gillot L. Lebeau A. Baudin L. Pottier C. Louis T. Durré T. Longuespée R. Mazzucchelli G. Nizet C. Blacher S. et al. Periostin in Lymph Node Pre-Metastatic Niches Governs Lymphatic Endothelial Cell Functions and Metastatic Colonization Cell. Mol. Life Sci. 2022 79 295 10.1007/s00018-022-04262-w 35567669
De Streel G. Lucas S. Targeting Immunosuppression by TGF-Β1 for Cancer Immunotherapy Biochem. Pharmacol. 2021 192 114697 10.1016/j.bcp.2021.114697
Travis M.A. Sheppard D. TGF-β Activation and Function in Immunity Annu. Rev. Immunol. 2014 32 51 82 10.1146/annurev-immunol-032713-120257
Liénart S. Merceron R. Vanderaa C. Lambert F. Colau D. Stockis J. Van Der Woning B. De Haard H. Saunders M. Coulie P.G. et al. Structural Basis of Latent TGF-Β1 Presentation and Activation by GARP on Human Regulatory T Cells Science 2018 362 952 956 10.1126/science.aau2909
Cuende J. Liénart S. Dedobbeleer O. Van Der Woning B. De Boeck G. Stockis J. Huygens C. Colau D. Somja J. Delvenne P. et al. Monoclonal Antibodies against GARP/TGF-Β1 Complexes Inhibit the Immunosuppressive Activity of Human Regulatory T Cells In Vivo Sci. Transl. Med. 2015 7 284ra56 10.1126/scitranslmed.aaa1983
Zimmer N. Trzeciak E.R. Graefen B. Satoh K. Tuettenberg A. GARP as a Therapeutic Target for the Modulation of Regulatory T Cells in Cancer and Autoimmunity Front. Immunol. 2022 13 928450 10.3389/fimmu.2022.928450 35898500
Tran D.Q. Andersson J. Wang R. Ramsey H. Unutmaz D. Shevach E.M. GARP (LRRC32) Is Essential for the Surface Expression of Latent TGF-Beta on Platelets and Activated FOXP3+ Regulatory T Cells Proc. Natl. Acad. Sci. USA 2009 106 13445 13450 10.1073/pnas.0901944106 19651619
Dedobbeleer O. Stockis J. Van Der Woning B. Coulie P.G. Lucas S. Cutting Edge: Active TGF-Β1 Released from GARP/TGF-Β1 Complexes on the Surface of Stimulated Human B Lymphocytes Increases Class-Switch Recombination and Production of IgA J. Immunol. 2017 199 391 396 10.4049/jimmunol.1601882 28607112
Zhang X. Sharma P. Maschmeyer P. Hu Y. Lou M. Kim J. Fujii H. Unutmaz D. Schwabe R.F. Winau F. GARP on Hepatic Stellate Cells Is Essential for the Development of Liver Fibrosis J. Hepatol. 2023 79 1214 1225 10.1016/j.jhep.2023.05.043 37348791
Bertrand C. Van Meerbeeck P. De Streel G. Vaherto-Bleeckx N. Benhaddi F. Rouaud L. Noël A. Coulie P.G. Van Baren N. Lucas S. Combined Blockade of GARP:TGF-Β1 and PD-1 Increases Infiltration of T Cells and Density of Pericyte-Covered GARP+ Blood Vessels in Mouse MC38 Tumors Front. Immunol. 2021 12 704050 10.3389/fimmu.2021.704050 34386010
Vermeersch E. Denorme F. Maes W. De Meyer S.F. Vanhoorelbeke K. Edwards J. Shevach E.M. Unutmaz D. Fujii H. Deckmyn H. et al. The Role of Platelet and Endothelial GARP in Thrombosis and Hemostasis PLoS ONE 2017 12 e0173329 10.1371/journal.pone.0173329 28278197
Gillot L. Baudin L. Rouaud L. Kridelka F. Noël A. The Pre-Metastatic Niche in Lymph Nodes: Formation and Characteristics Cell. Mol. Life Sci. 2021 78 5987 6002 10.1007/s00018-021-03873-z
Miyasaka M. Hata E. Tohya K. Hayasaka H. Lymphocyte Recirculation Encyclopedia of Immunobiology Elsevier Amsterdam, The Netherlands 2016 486 492 978-0-08-092152-5
Acton S.E. Onder L. Novkovic M. Martinez V.G. Ludewig B. Communication, Construction, and Fluid Control: Lymphoid Organ Fibroblastic Reticular Cell and Conduit Networks Trends Immunol. 2021 42 782 794 10.1016/j.it.2021.07.003
Rodda L.B. Lu E. Bennett M.L. Sokol C.L. Wang X. Luther S.A. Barres B.A. Luster A.D. Ye C.J. Cyster J.G. Single-Cell RNA Sequencing of Lymph Node Stromal Cells Reveals Niche-Associated Heterogeneity Immunity 2018 48 1014 1028.e6 10.1016/j.immuni.2018.04.006
Abe Y. Sakata-Yanagimoto M. Fujisawa M. Miyoshi H. Suehara Y. Hattori K. Kusakabe M. Sakamoto T. Nishikii H. Nguyen T.B. et al. A Single-Cell Atlas of Non-Haematopoietic Cells in Human Lymph Nodes and Lymphoma Reveals a Landscape of Stromal Remodelling Nat. Cell Biol. 2022 24 565 578 10.1038/s41556-022-00866-3
Takeda A. Hollmén M. Dermadi D. Pan J. Brulois K.F. Kaukonen R. Lönnberg T. Boström P. Koskivuo I. Irjala H. et al. Single-Cell Survey of Human Lymphatics Unveils Marked Endothelial Cell Heterogeneity and Mechanisms of Homing for Neutrophils Immunity 2019 51 561 572.e5 10.1016/j.immuni.2019.06.027 31402260
Xiang M. Grosso R.A. Takeda A. Pan J. Bekkhus T. Brulois K. Dermadi D. Nordling S. Vanlandewijck M. Jalkanen S. et al. A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature Front. Cardiovasc. Med. 2020 7 52 10.3389/fcvm.2020.00052 32426372
Fujimoto N. He Y. D’Addio M. Tacconi C. Detmar M. Dieterich L.C. Single-Cell Mapping Reveals New Markers and Functions of Lymphatic Endothelial Cells in Lymph Nodes PLoS Biol. 2020 18 e3000704 10.1371/journal.pbio.3000704 32251437
Li L. Shirkey M.W. Zhang T. Piao W. Li X. Zhao J. Mei Z. Guo Y. Saxena V. Kensiski A. et al. Lymph Node Fibroblastic Reticular Cells Preserve a Tolerogenic Niche in Allograft Transplantation through Laminin A4 J. Clin. Investig. 2022 132 e156994 10.1172/JCI156994 35775481
Stockis J. Colau D. Coulie P.G. Lucas S. Membrane Protein GARP Is a Receptor for Latent TGF-β on the Surface of Activated Human Treg: Cellular Immune Response Eur. J. Immunol. 2009 39 3315 3322 10.1002/eji.200939684 19750484
Bankhead P. Loughrey M.B. Fernández J.A. Dombrowski Y. McArt D.G. Dunne P.D. McQuaid S. Gray R.T. Murray L.J. Coleman H.G. et al. QuPath: Open Source Software for Digital Pathology Image Analysis Sci. Rep. 2017 7 16878 10.1038/s41598-017-17204-5 29203879
Chang J.E. Turley S.J. Stromal Infrastructure of the Lymph Node and Coordination of Immunity Trends Immunol. 2015 36 30 39 10.1016/j.it.2014.11.003
Van De Velde M. García-Caballero M. Durré T. Kridelka F. Noël A. Ear Sponge Assay: A Method to Investigate Angiogenesis and Lymphangiogenesis in Mice Proteases and Cancer Cal S. Obaya A.J. Methods in Molecular Biology Springer New York, NY, USA 2018 Volume 1731 223 233 978-1-4939-7594-5
De Streel G. Bertrand C. Chalon N. Liénart S. Bricard O. Lecomte S. Devreux J. Gaignage M. De Boeck G. Mariën L. et al. Selective Inhibition of TGF-Β1 Produced by GARP-Expressing Tregs Overcomes Resistance to PD-1/PD-L1 Blockade in Cancer Nat. Commun. 2020 11 4545 10.1038/s41467-020-17811-3
Lahimchi M.R. Eslami M. Yousefi B. New Insight into GARP Striking Role in Cancer Progression: Application for Cancer Therapy Med. Oncol. 2022 40 33 10.1007/s12032-022-01881-y
Jalkanen S. Salmi M. Lymphatic Endothelial Cells of the Lymph Node Nat. Rev. Immunol. 2020 20 566 578 10.1038/s41577-020-0281-x
Gerli M.F.M. Moyle L.A. Benedetti S. Ferrari G. Ucuncu E. Ragazzi M. Constantinou C. Louca I. Sakai H. Ala P. et al. Combined Notch and PDGF Signaling Enhances Migration and Expression of Stem Cell Markers While Inducing Perivascular Cell Features in Muscle Satellite Cells Stem Cell Rep. 2019 12 461 473 10.1016/j.stemcr.2019.01.007 30745033
Flintoff-Dye N.L. Welser J. Rooney J. Scowen P. Tamowski S. Hatton W. Burkin D.J. Role for the A7β1 Integrin in Vascular Development and Integrity Dev. Dyn. 2005 234 11 21 10.1002/dvdy.20462 16003770
Hahn S.A. Stahl H.F. Becker C. Correll A. Schneider F.-J. Tuettenberg A. Jonuleit H. Soluble GARP Has Potent Antiinflammatory and Immunomodulatory Impact on Human CD4+ T Cells Blood 2013 122 1182 1191 10.1182/blood-2012-12-474478 23818544
Wang R. Zhu J. Dong X. Shi M. Lu C. Springer T.A. GARP Regulates the Bioavailability and Activation of TGFβ Mol. Biol. Cell 2012 23 1129 1139 10.1091/mbc.e11-12-1018 22278742
Metelli A. Wu B.X. Riesenberg B. Guglietta S. Huck J.D. Mills C. Li A. Rachidi S. Krieg C. Rubinstein M.P. et al. Thrombin Contributes to Cancer Immune Evasion via Proteolysis of Platelet-Bound GARP to Activate LTGF-β Sci. Transl. Med. 2020 12 eaay4860 10.1126/scitranslmed.aay4860 31915300
Lecomte S. Devreux J. de Streel G. van Baren N. Havelange V. Schröder D. Vaherto N. Vanhaver C. Vanderaa C. Dupuis N. et al. Therapeutic Activity of GARP:TGF-Β1 Blockade in Murine Primary Myelofibrosis Blood 2023 141 490 502 10.1182/blood.2022017097 36322928
Wallace C.H. Wu B.X. Salem M. Ansa-Addo E.A. Metelli A. Sun S. Gilkeson G. Shlomchik M.J. Liu B. Li Z. B Lymphocytes Confer Immune Tolerance via Cell Surface GARP-TGF-β Complex JCI Insight 2018 3 e99863 10.1172/jci.insight.99863
Carrillo-Gálvez A.B. Quintero J.E. Rodríguez R. Menéndez S.T. Victoria González M. Blanco-Lorenzo V. Allonca E. De Araújo Farias V. González-Correa J.E. Erill-Sagalés N. et al. GARP Promotes the Proliferation and Therapeutic Resistance of Bone Sarcoma Cancer Cells through the Activation of TGF-β Cell Death Dis. 2020 11 985 10.1038/s41419-020-03197-z