Cellular and Molecular Neuroscience; Epigenetics; Parkinson's disease
Abstract :
[en] Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies. To understand the early molecular changes upon loss of DJ-1, we performed transcriptomic profiling of midbrain sections from young mice. While at 3 months the transcriptomes of both male and female mice were unchanged compared to their wildtype littermates, an extensive deregulation was observed in 8 month-old males. The affected genes are involved in processes like focal adhesion, extracellular matrix interaction, and epithelial-to-mesenchymal transition (EMT), and enriched for primary target genes of NRF2. Consistently, the antioxidant response was altered specifically in the midbrain of male DJ-1 deficient mice. Many of the misregulated genes are known target genes of estrogen and retinoic acid signaling and show sex-specific expression in wildtype mice. Depletion of DJ-1 or NRF2 in male primary astrocytes recapitulated many of the in vivo changes, including downregulation of CYP1B1, an enzyme involved in estrogen and retinoic acid metabolism. Interestingly, knock-down of CYP1B1 led to gene expression changes in focal adhesion and EMT in primary male astrocytes. Finally, male iPSC-derived astrocytes with loss of function mutation in the PARK7 gene also showed changes in the EMT pathway and NRF2 target genes. Taken together, our data indicate that loss of Park7 leads to sex-specific gene expression changes through astrocytic alterations in the NRF2-CYP1B1 axis, suggesting higher sensitivity of males to loss of DJ-1.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Helgueta Romero, Sergio ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Molecular Regulation of Neurogenesis ; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg ; Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg
Heurtaux, Tony; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg ; Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg
Sciortino, Alessia; Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
Gui, Yujuan; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
Ohnmacht, Jochen ; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg ; Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
Mencke, Pauline; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
Boussaad, Ibrahim ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
Halder, Rashi; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
Garcia, Pierre ; Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
Krüger, Rejko ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg ; Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg ; Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
Mittelbronn, Michel; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg ; Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg ; Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg ; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
Buttini, Manuel; Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
Sauter, Thomas; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
Sinkkonen, Lasse ; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg. lasse.sinkkonen@uni.lu
We would like to thank Drs Aur\u00E9lien Ginolhac and Anthoula Gaigneaux for their support with bioinformatic analysis and and Dr Djalil Coowar (Animal Facility of University of Luxembourg) for help with breeding of experimental mice. The computational analysis presented in this paper were carried out using the HPC facilities of the University of Luxembourg. SH and AS were supported by the FNR within the PARK-QC DTU (PRIDE 17/12244779/PARK-QC). Pauline Mencke was supported by FNR AFR funding (AFR PhD 12447024). MM would like to thank the Luxembourg National Research Fond (FNR) for the PEARL grant P16/BM/11192868. Work of RK is supported by the Fonds National de Recherche (FNR) Luxembourg within the following projects: National Centre for Excellence in Research on Parkinson\u2019s disease (NCER-PD), MotaSYN [12719684], MAMaSyn, MiRisk [C17/BM/11676395]. JO was supported by the Post Doc Grant from the Fondation Pelican de Mie et Pierre Hippert-Faber. LS is supported by the grants from Fondation Pelican de Mie et Pierre Hippert-Faber, Luxembourg Rotary Foundation, and Institute of Advanced Studies of University of Luxembourg.
N. Lev D. Roncevich D. Ickowicz E. Melamed D. Offen Role of DJ-1 in Parkinson’s disease J. Mol. Neurosci. 29 215 225 17085780 10.1385/JMN:29:3:215
M. Rodriguez C. Rodriguez-Sabate I. Morales A. Sanchez M. Sabate Parkinson’s disease as a result of aging Aging Cell 14 293 308 25677794 4406659 10.1111/acel.12312
T. Pringsheim N. Jette A. Frolkis T.D.L. Steeves The prevalence of Parkinson’s disease: a systematic review and meta-analysis Mov. Disord. 29 1583 1590 24976103 10.1002/mds.25945
Moisan, F., Kab, S. & Mohamed, F. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J. Neurol. Neurosurg. Psychiatry87, 952–7 (2016)
G.E. Alexander Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder Dialogues Clin. Neurosci. 6 259 22033559 3181806 10.31887/DCNS.2004.6.3/galexander
N.A. Haelterman et al. A mitocentric view of Parkinson’s disease Annu. Rev. Neurosci. 37 137 24821430 4659514 10.1146/annurev-neuro-071013-014317
A.H.V. Schapira Mitochondrial pathology in Parkinson’s disease Mt. Sinai J. Med. 78 872 881 22069211 10.1002/msj.20303
W. Dauer S. Przedborski Parkinson’s disease: mechanisms and models Neuron 39 889 909 12971891 10.1016/S0896-6273(03)00568-3
Heurtaux, T. et al. Normal and pathological NRF2 signalling in the central nervous system. Antioxidants (Basel)11, 1426 (2022).
J.W. Xiu J.D. Hayes C.J. Henderson C.R. Wolf Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha Proc. Natl Acad. Sci. USA 104 19589 19594 10.1073/pnas.0709483104
K.M. Smith N. Dahodwala Sex differences in Parkinson’s disease and other movement disorders Exp. Neurol. 259 44 56 24681088 10.1016/j.expneurol.2014.03.010
M. Le Saux T. Di Paolo Influence of oestrogenic compounds on monoamine transporters in rat striatum J. Neuroendocrinol. 18 25 32 16451217 10.1111/j.1365-2826.2005.01380.x
V. Bonifati et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism Science (1979) 299 256 259
I. Boussaad et al. A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson’s disease Sci. Transl. Med 12 3960 10.1126/scitranslmed.aau3960
Klein, C. & Westenberger, A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2, a008888 (2012).
C.M. Clements R.S. McNally B.J. Conti T.W. Mak J.P.Y. Ting DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2 Proc. Natl Acad. Sci. USA 103 15091 17015834 1586179 10.1073/pnas.0607260103
M.S. Goldberg et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1 Neuron 45 489 496 15721235 10.1016/j.neuron.2005.01.041
Hauser, D. N., Primiani, C. T., Langston, R. G., Kumaran, R. & Cookson, M. R. The polg mutator phenotype does not cause dopaminergic neurodegeneration in DJ-1-deficient mice. eNeuro 2, ENEURO.0075-14.2015 (2015).
R.H. Kim et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress Proc. Natl Acad. Sci. USA 102 5215 5220 15784737 555037 10.1073/pnas.0501282102
E. Andres-Mateos et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase Proc. Natl Acad. Sci. USA 104 14807 14812 17766438 1976193 10.1073/pnas.0703219104
T.T. Pham et al. DJ-1-deficient mice show less TH-positive neurons in the ventral tegmental area and exhibit non-motoric behavioural impairments Genes Brain Behav. 9 305 317 20039949 10.1111/j.1601-183X.2009.00559.x
M.W.C. Rousseaux et al. Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease Proc. Natl Acad. Sci. USA 109 15918 15923 23019375 3465410 10.1073/pnas.1205102109
Y. Kang J. Massagué Epithelial-mesenchymal transitions: twist in development and metastasis Cell 118 277 279 15294153 10.1016/j.cell.2004.07.011
A. Lachmann et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments Bioinformatics 26 2438 2444 20709693 2944209 10.1093/bioinformatics/btq466
M.-K. Kwak et al. Modulation of gene expression by cancer chemopreventive dithiolethiones through the keap1-Nrf2 pathway J. Biol. Chem. 278 8135 8145 12506115 10.1074/jbc.M211898200
M.M. McCarthy Estradiol and the developing brain Physiol. Rev. 88 91 124 18195084 10.1152/physrev.00010.2007
S. Hua R. Kittler K.P. White Genomic antagonism between retinoic acid and estrogen signaling in breast cancer Cell 137 1259 1271 19563758 3374131 10.1016/j.cell.2009.04.043
B. Gegenhuber M.V. Wu R. Bronstein J. Tollkuhn Gene regulation by gonadal hormone receptors underlies brain sex differences Nature 2022 606 153 159
L. Muskhelishvili P.A. Thompson D.F. Kusewitt C. Wang F.F. Kadlubar In situ hybridization and imunohistochemical analysis of cytochrome P450 1B1 expression in human normal Tissues J. Histochem. Cytochem. 49 229 236 11156691 10.1177/002215540104900210
T.C. Roeske C. Scharff C.R. Olson A. Nshdejan C.V. Mello Long-distance retinoid signaling in the zebra finch brain PLoS ONE 9 e111722 25393898 4230966 10.1371/journal.pone.0111722
Hartz, P., Fehlmann, T., Wagenpfeil, G., Unger, M. M. & Bernhardt, R. A CYPome-wide study reveals new potential players in the pathogenesis of Parkinson’s disease. Front Pharmacol. 13, 1094265 (2023).
Petkova-Kirova, P. et al. SNPs in cytochrome P450 genes decide on the fate of individuals with genetic predisposition to Parkinson’s disease. Front Pharmacol.14, 1244516 (2023).
S. Shin et al. NRF2 modulates Aryl mydrocarbon receptor signaling: influence on adipogenesis Mol. Cell Biol. 27 7188 7197 17709388 2168916 10.1128/MCB.00915-07
Y. Zhang et al. An RNA-sequencing transcriptome and splicing database ofg lia, neurons, and vascular cells of the cerebral cortex J. Neurosci. 34 11929 11947 25186741 4152602 10.1523/JNEUROSCI.1860-14.2014
P. Mencke et al. DJ-1 mediates regulation of metabolism and immune response in Parkinsons disease astrocytes and Glioblastoma cells bioRxiv 2024. 10 621212
M.C. Kander Y. Cui Z. Liu Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases J. Cell Mol. Med. 21 1024 27957792 10.1111/jcmm.13038
R. Hering et al. Novel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease (PARK7) Hum. Mutat. 24 321 329 15365989 10.1002/humu.20089
A. Delaidelli et al. α-Synuclein pathology in Parkinson disease activates homeostatic NRF2 anti-oxidant response Acta Neuropathol. Commun. 9 105 34092244 8183088 10.1186/s40478-021-01209-3
Magrinelli, F. et al. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis. 2016, 9832839 (2016).
H. Gao et al. DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy J. Mol. Biol. 423 232 248 22898350 10.1016/j.jmb.2012.06.034
C.Y. Tsai et al. Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes Int J. Cardiol. 168 1286 1297 23453443 10.1016/j.ijcard.2012.12.004
S.Y. Yang M.C. Pyo M.H. Nam K.W. Lee ERK/Nrf2 pathway activation by caffeic acid in HepG2 cells alleviates its hepatocellular damage caused by t-butylhydroperoxide-induced oxidative stress BMC Complement Alter. Med. 19 1 13 10.1186/s12906-019-2551-3
M.S. Choi et al. Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in Parkinson’s disease models J. Neurosci. 34 15123 15131 25378175 4220036 10.1523/JNEUROSCI.4751-13.2014
S. Luo et al. Akt phosphorylates NQO1 and triggers its degradation, abolishing its antioxidative activities in Parkinson’s disease J. Neurosci. 39 7291 7305 31358653 6759025 10.1523/JNEUROSCI.0625-19.2019
C.J. Schmidlin M.B. Dodson L. Madhavan D.D. Zhang Redox regulation by NRF2 in aging and disease Free Radic. Biol. Med. 134 702 707 30654017 6588470 10.1016/j.freeradbiomed.2019.01.016
M.S. Uddin et al. Autophagy and Alzheimer’s disease: from molecular mechanisms to therapeutic implications Front Aging Neurosci. 10 4 10.3389/fnagi.2018.00004
A.T. Dinkova-Kostova R.V. Kostov A.G. Kazantsev The role of Nrf2 signaling in counteracting neurodegenerative diseases FEBS J. 285 3576 3590 29323772 6221096 10.1111/febs.14379
A. Anandhan et al. NRF2 loss accentuates Parkinsonian pathology and behavioral dysfunction in human α-synuclein overexpressing mice Aging Dis. 12 964 982 34221542 8219498 10.14336/AD.2021.0511
L. Gan M.R. Vargas D.A. Johnson J.A. Johnson Astrocyte-specific overexpression of Nrf2 Ddlays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model J. Neurosci. 32 17775 17787 23223297 3539799 10.1523/JNEUROSCI.3049-12.2012
N.C. Burton T.W. Kensler T.R. Guilarte In vivo modulation of the Parkinsonian phenotype by Nrf2 Neurotoxicology 27 1094 1100 16959318 10.1016/j.neuro.2006.07.019
T.L. Palenski C.M. Sorenson C.R. Jefcoate N. Sheibani Lack of Cyp1b1 promotes the proliferative and migratory phenotype of perivascular supporting cells Lab. Investig. 93 646 662 23568032 10.1038/labinvest.2013.55
A.L. Vivinetto et al. Zeb2 is a regulator of astrogliosis and functional recovery after CNS injury Cell Rep. 31 32610135 7416489 10.1016/j.celrep.2020.107834 107834
Stern, S. et al. Reduced synaptic activity and dysregulated extracellular matrix pathways in midbrain neurons from Parkinson’s disease patients. NPJ Parkinsons Dis.8, 103 (2022).
F. Jin et al. DJ–1 promotes cell proliferation and tumor metastasis in esophageal squamous cell carcinoma via the Wnt/β–catenin signaling pathway Int J. Oncol. 56 1115 1128 32319588 7115355
H. Sawada et al. Estradiol protects mesencephalic dopaminergic neurons from oxidative stress-induced neuronal death J. Neurosci. Res. 54 707 719 9843162 10.1002/(SICI)1097-4547(19981201)54:5<707::AID-JNR16>3.0.CO;2-T
J. Wang P.S. Green J.W. Simpkins Estradiol protects against ATP depletion, mitochondrial membrane potential decline and the generation of reactive oxygen species induced by 3-nitroproprionic acid in SK-N-SH human neuroblastoma cells J. Neurochem. 77 804 811 11331409 10.1046/j.1471-4159.2001.00271.x
L. Hirsch N. Jette A. Frolkis T. Steeves T. Pringsheim The incidence of Parkinson’s disease: a systematic review and meta-analysis Neuroepidemiology 46 292 300 27105081 10.1159/000445751
C.M. Lopes-Ramos et al. Sex differences in gene expression and regulatory networks across 29 human tissues Cell Rep. 31 32579922 7898458 10.1016/j.celrep.2020.107795 107795
Saunders-Pullman, R. et al. Role of endogenous and exogenous hormone exposure on the risk of Parkinson disease. Annu. Am. Acad. Neurol. 23, S23 (2009).
P. Ragonese et al. Risk of Parkinson disease in women: effect of reproductive characteristics Neurology 62 2010 2014 15184606 10.1212/WNL.62.11.2010
E. Cereda M. Barichella E. Cassani R. Caccialanza G. Pezzoli Reproductive factors and clinical features of Parkinson’s disease Parkinsonism Relat. Disord. 19 1094 1099 23931933 10.1016/j.parkreldis.2013.07.020
H.J. Roeder E.C. Leira Effects of the menstrual cycle on neurological disorders Curr. Neurol. Neurosci. Rep. 21 1 10 10.1007/s11910-021-01115-0
K.L. Tsang S.L. Ho S.K. Lo Estrogen improves motor disability in parkinsonian postmenopausal women with motor fluctuations Neurology 54 2292 2298 10881255 10.1212/WNL.54.12.2292
L.-C. Tranchevent R. Halder E. Glaab Systems level analysis of sex-dependent gene expression changes in Parkinson’s disease NPJ Parkinsons Dis. 9 8 36681675 9867746 10.1038/s41531-023-00446-8
R.H. Lurie L.C. Platanias Mechanisms of type-I- and type-II-interferon-mediated signalling Nat. Rev. Immunol. 2005 5 375 386
I. Fernández D.M. Tiago V. Laizé M. Leonor Cancela E. Gisbert Retinoic acid differentially affects in vitro proliferation, differentiation and mineralization of two fish bone-derived cell lines: different gene expression of nuclear receptors and ECM proteins J. Steroid. Biochem. Mol. Biol. 140 34 43 24291400 10.1016/j.jsbmb.2013.11.012
J. Cui et al. All-trans retinoic acid inhibits proliferation, migration, invasion and induces differentiation of hepa1-6 cells through reversing EMT in vitro Int. J. Oncol. 48 349 357 26548461 10.3892/ijo.2015.3235
Rigiracciolo, D. C. et al. Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells. J. Exp. Clin. Cancer Res.38, 58 (2019).
A.N. Carrera M.K.O. Grant B.N. Zordoky CYP1B1 as a therapeutic target in cardio-oncology Clin. Sci. 134 2897 2927 10.1042/CS20200310
Luo, J. TGF-β as a key modulator of astrocyte reactivity: disease relevance and therapeutic implications. Biomedicines10, 1206 (2022).
Q.S. Chen et al. Schisandrin B attenuates CCI4-induced liver fibrosis in rats by regulation of NrF2-ARE and TgF-β/smad signaling pathways Drug Des. Devel Ther. 11 2179 2191 28794616 5538685 10.2147/DDDT.S137507
C.J. Oh et al. Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling PLoS ONE 7 e45870 23056222 3466265 10.1371/journal.pone.0045870
C. Sun S. Li D. Li Sulforaphane mitigates muscle fibrosis in mdx mice via Nrf2-mediated inhibition of TGF-β/Smad signaling J. Appl. Physiol. 120 377 390 26494449 10.1152/japplphysiol.00721.2015
L.P. Diniz I. Matias M. Siqueira J. Stipursky F.C.A. Gomes Astrocytes and the TGF-β1 pathway in the healthy and diseased brain: a double-edged sword Mol. Neurobiol. 2018 56 56 4653 4679
M.D. Muñoz N. de la Fuente A. Sánchez‐capelo TGF-β/Smad3 signalling modulates GABA neurotransmission: implications in Parkinson’s disease Int. J. Mol. Sci. 2020 21 590 10.3390/ijms21020590
E. Roussa O. Von Bohlen Und Halbach K. Krieglstein TGF-beta in dopamine neuron development, maintenance and neuroprotection Adv. Exp. Med. Biol. 651 81 90 19731553 10.1007/978-1-4419-0322-8_8
S. Karunakaran et al. Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson’s disease: protection by alpha-lipoic acid FASEB J. 21 2226 2236 17369508 10.1096/fj.06-7580com
Palm, T. et al. Rapid and robust generation of long-term self-renewing human neural stem cells with the ability to generate mature astroglia. Sci. Rep.5, 16321 (2015).
S. Chuma N. Nakatsuji Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signaling Dev. Biol. 229 468 479 11203703 10.1006/dbio.2000.9989
Andrews, S. FastQC: a Quality Control Tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes9, 88 (2016).
E. Kopylova L. Noé H. Touzet SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data Bioinformatics 28 3211 3217 23071270 10.1093/bioinformatics/bts611
A. Dobin et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics 29 15 21 23104886 10.1093/bioinformatics/bts635
M.D. Adams et al. The genome sequence of Drosophila melanogaster Science (1979) 287 2185 2195
Y. Liao G.K. Smyth W. Shi featureCounts: an efficient general purpose program for assigning sequence reads to genomic features Bioinformatics 30 923 930 24227677 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics14, 128 (2013).
M.V. Kuleshov et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update Nucleic Acids Res. 44 W90 W97 27141961 4987924 10.1093/nar/gkw377
Xie, Z. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 1, e90 (2021).
A. Krämer J. Green J. Pollard S. Tugendreich Causal analysis approaches in ingenuity pathway analysis Bioinformatics 30 523 530 24336805 10.1093/bioinformatics/btt703
Hoenen, C. et al. Alpha-synuclein proteins promote pro-inflammatory cascades in microglia: stronger effects of the A53T mutant. PLoS ONE11, e0162717 (2016).