[en] Mutations in the gene of RAB18, a member of Ras superfamily of small G-proteins, cause Warburg Micro Syndrome (WARBM) which is characterized by defective neurodevelopmental and ophthalmological phenotypes. Despite loss of Rab18 had been reported to induce disruption of the endoplasmic reticulum structure and neuronal cytoskeleton organization, parts of the pathogenic mechanism caused by RAB18 mutation remain unclear. From the N-ethyl-N-nitrosourea (ENU)-induced mutagenesis library, we identified a mouse line whose Rab18 was knocked out. This Rab18(-/-) mouse exhibited stomping gait, smaller testis and eyes, mimicking several features of WARBM. Rab18(-/-) mice were obviously less sensitive to pain and touch than WT mice. Histological examinations on Rab18(-/-) mice revealed progressive axonal degeneration in the optic nerves, dorsal column of the spinal cord and sensory roots of the spinal nerves while the motor roots were spared. All the behavioral and pathological changes that resulted from abnormalities in the sensory axons were prevented by introducing an extra copy of Rab18 transgene in Rab18(-/-) mice. Our results reveal that sensory axonal degeneration is the primary cause of stomping gait and progressive weakness of the hind limbs in Rab18(-/-) mice, and optic nerve degeneration should be the major pathology of progressive optic atrophy in children with WARBM. Our results indicate that the sensory nervous system is more vulnerable to Rab18 deficiency and WARBM is not only a neurodevelopmental but also neurodegenerative disease.
Disciplines :
Genetics & genetic processes
Author, co-author :
Cheng, Chih-Ya; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
Wu, Jaw-Ching; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, Institute of Clinical Medicine and Cancer Research Center, National Yang-Ming University, Taipei, Taiwan, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
Tsai, Jin-Wu; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
Nian, Fang-Shin ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Molecular Regulation of Neurogenesis ; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
Wu, Pei-Chun; Brain Research Center, National Yang-Ming University, Taipei, Taiwan, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
Kao, Lung-Sen; Brain Research Center, National Yang-Ming University, Taipei, Taiwan, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
Fann, Ming-Ji; Brain Research Center, National Yang-Ming University, Taipei, Taiwan, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
Tsai, Shih-Jen; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
Liou, Ying-Jay; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
Tai, Chin-Yin; Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
Hong, Chen-Jee; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan. Electronic address: cjhong007@gmail.com
Language :
English
Title :
ENU mutagenesis identifies mice modeling Warburg Micro Syndrome with sensory axon degeneration caused by a deletion in Rab18.
This work was supported by grants from the National Science Council Taiwan (NSC 102-2314-B-075-005-MY3 ), the Taipei Veterans General Hospital ( V103E9-004 and V102C-173 ), and the Ministry of Education Taiwan , Aim for the Top University Plan ( 104AC-B6 ).
Abdel-Salam G.M., Hassan N.A., Kayed H.F., Aligianis I.A. Phenotypic variability in Micro syndrome: report of new cases. Genet. Couns. 2007, 18:423-435.
Adler L.E., Olincy A., Waldo M., Harris J.G., Griffith J., et al. Schizophrenia, sensory gating, and nicotinic receptors. Schizophr. Bull. 1998, 24:189-202.
Aligianis I.A., Johnson C.A., Gissen P., Chen D., Hampshire D., et al. Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nat. Genet. 2005, 37:221-223.
Ayalew M., Le-Niculescu H., Levey D.F., Jain N., Changala B., et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol. Psychiatry 2012, 17:887-905.
Balling R. ENU mutagenesis: analyzing gene function in mice. Annu. Rev. Genomics Hum. Genet. 2001, 2:463-492.
Bem D., Yoshimura S., Nunes-Bastos R., Bond F.C., Kurian M.A., et al. Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am. J. Hum. Genet. 2011, 88:499-507.
Borck G., Wunram H., Steiert A., Volk A.E., Korber F., et al. A homozygous RAB3GAP2 mutation causes Warburg Micro syndrome. Hum. Genet. 2011, 129:45-50.
Butler P.D., Schechter I., Zemon V., Schwartz S.G., Greenstein V.C., et al. Dysfunction of early-stage visual processing in schizophrenia. Am. J. Psychiatry 2001, 158:1126-1133.
Campbell W.W., DeJong R.N. DeJong's the Neurologic Examination/William W. Campbell 2013, xii. Lippincott Williams & Wilkins, Philadelphia, PA, (819 p. p.).
Carpanini S.M., McKie L., Thomson D., Wright A.K., Gordon S.L., et al. A novel mouse model of Warburg Micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. Dis. Model. Mech. 2014, 7:711-722.
Chen C.C., Tung Y.Y., Chang C. A lifespan MRI evaluation of ventricular enlargement in normal aging mice. Neurobiol. Aging 2011, 32:2299-2307.
Corbeel L., Freson K. Rab proteins and Rab-associated proteins: major actors in the mechanism of protein-trafficking disorders. Eur. J. Pediatr. 2008, 167:723-729.
De Vos K.J., Grierson A.J., Ackerley S., Miller C.C. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 2008, 31:151-173.
Derbent M., Agras P.I., Gedik S., Oto S., Alehan F., et al. Congenital cataract, microphthalmia, hypoplasia of corpus callosum and hypogenitalism: report and review of Micro syndrome. Am. J. Med. Genet. A 2004, 128A:232-234.
Doyle K.M., Kennedy D., Gorman A.M., Gupta S., Healy S.J., et al. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J. Cell. Mol. Med. 2011, 15:2025-2039.
Ferguson M.C., Nayyar T., Deutch A.Y., Ansah T.A. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease. Neuropharmacology 2010, 59:31-36.
Fernyhough P., Gallagher A., Averill S.A., Priestley J.V., Hounsom L., et al. Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy. Diabetes 1999, 48:881-889.
Foxe J.J., Doniger G.M., Javitt D.C. Early visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping. Neuroreport 2001, 12:3815-3820.
Fredericks C.M., Saladin L.K. Pathophysiology of the Motor Systems: Principles and Clinical Presentations 1996, xxvii. F.A. Davis, Philadelphia, (594 p. p.).
Gerondopoulos A., Bastos R.N., Yoshimura S., Anderson R., Carpanini S., et al. Rab18 and a Rab18 GEF complex are required for normal ER structure. J. Cell Biol. 2014, 205:707-720.
Goldman J.E., Yen S.H. Cytoskeletal protein abnormalities in neurodegenerative diseases. Ann. Neurol. 1986, 19:209-223.
Goody R.S., Rak A., Alexandrov K. The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cell. Mol. Life Sci. 2005, 62:1657-1670.
Greenough W.T., Black J.E., Wallace C.S. Experience and brain development. Child Dev. 1987, 58:539-559.
Haas A.K., Yoshimura S., Stephens D.J., Preisinger C., Fuchs E., et al. Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J. Cell Sci. 2007, 120:2997-3010.
Handley M.T., Morris-Rosendahl D.J., Brown S., Macdonald F., Hardy C., et al. Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in Warburg micro syndrome and Martsolf syndrome. Hum. Mutat. 2013, 34:686-696.
Hensch T.K. Critical period regulation. Annu. Rev. Neurosci. 2004, 27:549-579.
Hrabe de Angelis M.H., Flaswinkel H., Fuchs H., Rathkolb B., Soewarto D., et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet. 2000, 25:444-447.
Javitt D.C., Liederman E., Cienfuegos A., Shelley A.M. Panmodal processing imprecision as a basis for dysfunction of transient memory storage systems in schizophrenia. Schizophr. Bull. 1999, 25:763-775.
Jurinke C., van den Boom D., Cantor C.R., Koster H. The use of MassARRAY technology for high throughput genotyping. Adv. Biochem. Eng. Biotechnol. 2002, 77:57-74.
Katz L.C., Shatz C.J. Synaptic activity and the construction of cortical circuits. Science 1996, 274:1133-1138.
Lee M.K., Cleveland D.W. Neurofilament function and dysfunction: involvement in axonal growth and neuronal disease. Curr. Opin. Cell Biol. 1994, 6:34-40.
Liegel R.P., Handley M.T., Ronchetti A., Brown S., Langemeyer L., et al. Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am. J. Hum. Genet. 2013, 93:1001-1014.
Lindholm D., Wootz H., Korhonen L. ER stress and neurodegenerative diseases. Cell Death Differ. 2006, 13:385-392.
Lippincott Williams & Wilkins Portable Signs & Symptoms 2008, iv. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, (604 p. p.).
Millecamps S., Julien J.P. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 2013, 14:161-176.
Morfini G.A., Burns M., Binder L.I., Kanaan N.M., LaPointe N., et al. Axonal transport defects in neurodegenerative diseases. J. Neurosci. 2009, 29:12776-12786.
Neuhaus I.M., Beier D.R. Efficient localization of mutations by interval haplotype analysis. Mamm. Genome 1998, 9:150-154.
Pollanen M.S., Dickson D.W., Bergeron C. Pathology and biology of the Lewy body. J. Neuropathol. Exp. Neurol. 1993, 52:183-191.
Ross L.A., Saint-Amour D., Leavitt V.M., Molholm S., Javitt D.C., et al. Impaired multisensory processing in schizophrenia: deficits in the visual enhancement of speech comprehension under noisy environmental conditions. Schizophr. Res. 2007, 97:173-183.
Sakane A., Manabe S., Ishizaki H., Tanaka-Okamoto M., Kiyokage E., et al. Rab3 GTPase-activating protein regulates synaptic transmission and plasticity through the inactivation of Rab3. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:10029-10034.
Sanchez-Morla E.M., Garcia-Jimenez M.A., Barabash A., Martinez-Vizcaino V., Mena J., et al. P50 sensory gating deficit is a common marker of vulnerability to bipolar disorder and schizophrenia. Acta Psychiatr. Scand. 2008, 117:313-318.
Scott J.N., Clark A.W., Zochodne D.W. Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons. Brain 1999, 122(Pt 11):2109-2118.
Sklan E.H., Serrano R.L., Einav S., Pfeffer S.R., Lambright D.G., et al. TBC1D20 is a Rab1 GTPase-activating protein that mediates hepatitis C virus replication. J. Biol. Chem. 2007, 282:36354-36361.
Solovyova N., Veselovsky N., Toescu E.C., Verkhratsky A. Ca(2+) dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca(2+)-induced Ca(2+) release triggered by physiological Ca(2+) entry. EMBO J. 2002, 21:622-630.
Takai Y., Sasaki T., Matozaki T. Small GTP-binding proteins. Physiol. Rev. 2001, 81:153-208.
Vazquez-Martinez R., Cruz-Garcia D., Duran-Prado M., Peinado J.R., Castano J.P., et al. Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules. Traffic 2007, 8:867-882.
Verkhratsky A., Fernyhough P. Mitochondrial malfunction and Ca2+ dyshomeostasis drive neuronal pathology in diabetes. Cell Calcium 2008, 44:112-122.
Warburg M., Sjo O., Fledelius H.C., Pedersen S.A. Autosomal recessive microcephaly, microcornea, congenital cataract, mental retardation, optic atrophy, and hypogenitalism. Micro syndrome. Am. J. Dis. Child. 1993, 147:1309-1312.
Weber J.S., Salinger A., Justice M.J. Optimal N-ethyl-N-nitrosourea (ENU) doses for inbred mouse strains. Genesis 2000, 26:230-233.
Wells R.D., Warren S.T., Sarmiento M. Genetic Instabilities and Neurological Diseases 2006, xv. Elsevier, Amsterdam; Boston, (766 p. p.).