Huang, C.-W.; Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
Lee, K.-Y.; Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
Lin, P.-T.; Chang Gung University, College of Medicine, Taoyuan, Taiwan
Nian, Fang-Shin ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Molecular Regulation of Neurogenesis ; Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ; Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
Cheng, Haw-Yuan ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
Chang, C.-H.; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
Liao, C.-Y.; Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
Thornton CA. Myotonic dystrophy. Neurol Clin. 2014;32(3):705-719, viii. doi:10.1016/j.ncl.2014.04.011
Wenninger S, Montagnese F, Schoser B. Core clinical phenotypes in myotonic dystrophies. Front Neurol. 2018;9:303. doi:10.3389/fneur.2018.00303
Johnson NE, Butterfield RJ, Mayne K, et al. Population-based prevalence of myotonic dystrophy type 1 using genetic analysis of statewide blood screening program. Neurology. 2021;96(7):e1045-e1053. doi:10.1212/WNL.0000000000011425
Turner C, Hilton-Jones D. Myotonic dystrophy: diagnosis, management and new therapies. Curr Opin Neurol. 2014;27(5):599-606. doi:10.1097/WCO.0000000000000128
Gourdon G, Meola G. Myotonic dystrophies: state of the art of new therapeutic developments for the CNS. Front Cell Neurosci. 2017;11:101. doi:10.3389/fncel.2017.00101
Fu YH, Pizzuti A, Fenwick RG Jr, et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science. 1992;255(5049):1256-1258. doi:10.1126/science.1546326
Liquori CL, Ricker K, Moseley ML, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001;293(5531):864-867. doi:10.1126/science.1062125
Aslanidis C, Jansen G, Amemiya C, et al. Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature. 1992;355(6360):548-551. doi:10.1038/355548a0
Brook JD, McCurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 1992;69(2):385. doi:10.1016/0092-8674(92)90418-c
Mahadevan M, Tsilfidis C, Sabourin L, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science. 1992;255(5049):1253-1255. doi:10.1126/science.1546325
Ranum LP, Day JW. Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet. 2004;74(5):793-804. doi:10.1086/383590
Miller JW, Urbinati CR, Teng-Umnuay P, et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO j. 2000;19(17):4439-4448. doi:10.1093/emboj/19.17.4439
Kuyumcu-Martinez NM, Wang GS, Cooper TA. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell. 2007;28(1):68-78. doi:10.1016/j.molcel.2007.07.027
Mankodi A, Logigian E, Callahan L, et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science. 2000;289(5485):1769-1773. doi:10.1126/science.289.5485.1769
Mankodi A, Urbinati CR, Yuan QP, et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet. 2001;10(19):2165-2170. doi:10.1093/hmg/10.19.2165
Charizanis K, Lee KY, Batra R, et al. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron. 2012;75(3):437-450. doi:10.1016/j.neuron.2012.05.029
Lee KY, Li M, Manchanda M, et al. Compound loss of muscleblind-like function in myotonic dystrophy. EMBO Mol Med. 2013;5(12):1887-1900. doi:10.1002/emmm.201303275
Kanadia RN, Johnstone KA, Mankodi A, et al. A muscleblind knockout model for myotonic dystrophy. Science. 2003;302(5652):1978-1980. doi:10.1126/science.1088583
Thomas JD, Sznajder LJ, Bardhi O, et al. Disrupted prenatal RNA processing and myogenesis in congenital myotonic dystrophy. Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural. Genes Dev 2017;31(11):1122–1133. 10.1101/gad.300590.117
Johnson NE, Luebbe E, Eastwood E, Chin N, Moxley RT 3rd, Heatwole CR. The impact of congenital and childhood myotonic dystrophy on quality of life: a qualitative study of associated symptoms. J Child Neurol. 2014;29(7):983-986. doi:10.1177/0883073813484804
Prasad M, Hicks R, MacKay M, Nguyen CT, Campbell C. Developmental milestones and quality of life assessment in a congenital myotonic dystrophy cohort. J Neuromuscul Dis. 2016;3(3):405-412. doi:10.3233/JND-160165
Minnerop M, Weber B, Schoene-Bake JC, et al. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain. 2011;134(Pt 12):3530-3546. doi:10.1093/brain/awr299
Wozniak JR, Mueller BA, Lim KO, Hemmy LS, Day JW. Tractography reveals diffuse white matter abnormalities in myotonic dystrophy type 1. J Neurol Sci. 2014;341(1-2):73-78. doi:10.1016/j.jns.2014.04.005
Zanigni S, Evangelisti S, Giannoccaro MP, et al. Relationship of white and gray matter abnormalities to clinical and genetic features in myotonic dystrophy type 1. Neuroimage Clin. 2016;11:678-685. doi:10.1016/j.nicl.2016.04.012
Minnerop M, Gliem C, Kornblum C. Current Progress in CNS imaging of myotonic dystrophy. Front Neurol. 2018;9:646. doi:10.3389/fneur.2018.00646
Lee KY, Chang HC, Seah C, Lee LJ. Deprivation of Muscleblind-like proteins causes deficits in cortical neuron distribution and morphological changes in dendritic spines and postsynaptic densities. Front Neuroanat. 2019;13:75. doi:10.3389/fnana.2019.00075
Goodwin M, Mohan A, Batra R, et al. MBNL sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain. Cell Rep. 2015;12(7):1159-1168. doi:10.1016/j.celrep.2015.07.029
Chen YA, Lu IL, Tsai JW. Contactin-1/F3 regulates neuronal migration and morphogenesis through modulating RhoA activity. Front Mol Neurosci. 2018;11:422. doi:10.3389/fnmol.2018.00422
Lu IL, Chen C, Tung CY, et al. Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun. 2018;9(1):2498. doi:10.1038/s41467-018-04880-8
Chen JL, Chang CH, Tsai JW. Gli2 rescues delays in brain development induced by Kif3a dysfunction. Cereb Cortex. 2019;29(2):751-764. doi:10.1093/cercor/bhx356
Tsai MH, Cheng HY, Nian FS, et al. Impairment in dynein-mediated nuclear translocation by BICD2 C-terminal truncation leads to neuronal migration defect and human brain malformation. Acta Neuropathol Commun. 2020;8(1):106. doi:10.1186/s40478-020-00971-0
Tsai MH, Muir AM, Wang WJ, et al. Pathogenic variants in CEP85L cause sporadic and familial posterior predominant Lissencephaly. Neuron. 2020;106(2):237-245 e8. doi:10.1016/j.neuron.2020.01.027
Liu YT, Nian FS, Chou WJ, et al. PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects. Oncotarget. 2016;7(26):39184-39196. doi:10.18632/oncotarget.9258
Ma L, Qiao Q, Tsai JW, Yang G, Li W, Gan WB. Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex. Dev Neurobiol. 2016;76(3):277-286. doi:10.1002/dneu.22313
Jarrard LE. On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol. 1993;60(1):9-26. doi:10.1016/0163-1047(93)90664-4
Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004;27(8):447-452. doi:10.1016/j.tins.2004.05.013
Brandt MD, Jessberger S, Steiner B, et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci. 2003;24(3):603-613. doi:10.1016/s1044-7431(03)00207-0
Baimbridge KG, Miller JJ. Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Res. 1982;245(2):223-229. doi:10.1016/0006-8993(82)90804-6
Matsuda T, Cepko CL. Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A. 2007;104(3):1027-1032. doi:10.1073/pnas.0610155104
Sugitani Y, Nakai S, Minowa O, et al. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev. 2002;16(14):1760-1765. doi:10.1101/gad.978002
Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992;116(1):201-211. doi:10.1242/dev.116.1.201
Runge K, Cardoso C, de Chevigny A. Dendritic spine plasticity: function and mechanisms. Front Synaptic Neurosci. 2020;12:36. doi:10.3389/fnsyn.2020.00036
Berry KP, Nedivi E. Spine dynamics: are they all the same? Neuron. 2017;96(1):43-55. doi:10.1016/j.neuron.2017.08.008
Sun Q, Turrigiano GG. PSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up and down. J Neurosci. 2011;31(18):6800-6808. doi:10.1523/JNEUROSCI.5616-10.2011
Favaro PD, Huang X, Hosang L, et al. An opposing function of paralogs in balancing developmental synapse maturation. PLoS Biol. 2018;16(12):e2006838. doi:10.1371/journal.pbio.2006838
Han S, Nam J, Li Y, et al. Regulation of dendritic spines, spatial memory, and embryonic development by the TANC family of PSD-95-interacting proteins. J Neurosci. 2010;30(45):15102-15112. doi:10.1523/JNEUROSCI.3128-10.2010
Matsuoka Y, Li X, Bennett V. Adducin is an in vivo substrate for protein kinase C: phosphorylation in the MARCKS-related domain inhibits activity in promoting spectrin-actin complexes and occurs in many cells, including dendritic spines of neurons. J Cell Biol. 1998;142(2):485-497. doi:10.1083/jcb.142.2.485
Li X, Matsuoka Y, Bennett V. Adducin preferentially recruits spectrin to the fast growing ends of actin filaments in a complex requiring the MARCKS-related domain and a newly defined oligomerization domain. J Biol Chem. 1998;273(30):19329-19338. doi:10.1074/jbc.273.30.19329
Bednarek E, Caroni P. Beta-adducin is required for stable assembly of new synapses and improved memory upon environmental enrichment. Neuron. 2011;69(6):1132-1146. doi:10.1016/j.neuron.2011.02.034
Markus EJ, Petit TL. Neocortical synaptogenesis, aging, and behavior: lifespan development in the motor-sensory system of the rat. Exp Neurol. 1987;96(2):262-278. doi:10.1016/0014-4886(87)90045-8
Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1986;232(4747):232-235. doi:10.1126/science.3952506
Huttenlocher PR. Morphometric study of human cerebral cortex development. Neuropsychologia. 1990;28(6):517-527. doi:10.1016/0028-3932(90)90031-i
Schneider-Gold C, Bellenberg B, Prehn C, et al. Cortical and subcortical grey and white matter atrophy in myotonic dystrophies type 1 and 2 is associated with cognitive impairment, depression and daytime sleepiness. PLoS ONE. 2015;10(6):e0130352. doi:10.1371/journal.pone.0130352
Serra L, Bianchi G, Bruschini M, et al. Abnormal cortical thickness is associated with deficits in social cognition in patients with myotonic dystrophy type 1. Front Neurol. 2020;11:113. doi:10.3389/fneur.2020.00113
Meola G, Sansone V. Cerebral involvement in myotonic dystrophies. Muscle Nerve. 2007;36(3):294-306. doi:10.1002/mus.20800
Worku DK. Concurrence of myotonic dystrophy and epilepsy: a case report. J Med Case Reports. 2014;8(1):427. doi:10.1186/1752-1947-8-427
Peddareddygari LR, Grewal AS, Grewal RP. Focal seizures in a patient with myotonic disorder type 2 co-segregating with a chloride voltage-gated channel 1 gene mutation: a case report. J Med Case Reports. 2016;10:167. doi:10.1186/s13256-016-0958-8
Patel DC, Tewari BP, Chaunsali L, Sontheimer H. Neuron-glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci. 2019;20(5):282-297. doi:10.1038/s41583-019-0126-4
Gonzalez-Barriga A, Lallemant L, Dinca DM, et al. Integrative cell type-specific multi-omics approaches reveal impaired programs of glial cell differentiation in mouse culture models of DM1. Front Cell Neurosci. 2021;15:662035. doi:10.3389/fncel.2021.662035
Dinca DM, Lallemant L, Gonzalez-Barriga A, et al. Myotonic dystrophy RNA toxicity alters morphology, adhesion and migration of mouse and human astrocytes. Nat Commun. 2022;13(1):3841. doi:10.1038/s41467-022-31594-9
Meltzer S, Chen C. Balancing dendrite morphogenesis and neuronal migration during cortical development. J Neurosci. 2016;36(42):10726-10728. doi:10.1523/JNEUROSCI.2425-16.2016
Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14(3):285-293. doi:10.1038/nn.2741
Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett. 2015;601:30-40. doi:10.1016/j.neulet.2015.01.011
Herms J, Dorostkar MM. Dendritic spine pathology in neurodegenerative diseases. Annu Rev Pathol. 2016;11(1):221-250. doi:10.1146/annurev-pathol-012615-044216
Stein IS, Zito K. Dendritic spine elimination: molecular mechanisms and implications. Neuroscientist. 2019;25(1):27-47. doi:10.1177/1073858418769644
Quach TT, Stratton HJ, Khanna R, et al. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol. 2021;141(2):139-158. doi:10.1007/s00401-020-02244-5
Wang PY, Lin YM, Wang LH, Kuo TY, Cheng SJ, Wang GS. Reduced cytoplasmic MBNL1 is an early event in a brain-specific mouse model of myotonic dystrophy. Hum Mol Genet. 2017;26(12):2247-2257. doi:10.1093/hmg/ddx115
Wang PY, Chang KT, Lin YM, Kuo TY, Wang GS. Ubiquitination of MBNL1 is required for its cytoplasmic localization and function in promoting neurite outgrowth. Cell Rep. 2018;22(9):2294-2306. doi:10.1016/j.celrep.2018.02.025
Nestor MW, Cai X, Stone MR, Bloch RJ, Thompson SM. The actin binding domain of betaI-spectrin regulates the morphological and functional dynamics of dendritic spines. PLoS ONE. 2011;6(1):e16197. doi:10.1371/journal.pone.0016197
Efimova N, Korobova F, Stankewich MC, et al. BetaIII spectrin is necessary for formation of the constricted neck of dendritic spines and regulation of synaptic activity in neurons. J Neurosci. 2017;37(27):6442-6459. doi:10.1523/JNEUROSCI.3520-16.2017
Han B, Zhou R, Xia C, Zhuang X. Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons. Proc Natl Acad Sci U S A. 2017;114(32):E6678-E6685. doi:10.1073/pnas.1705043114
Wang Y, Ji T, Nelson AD, et al. Critical roles of alphaII spectrin in brain development and epileptic encephalopathy. J Clin Invest. 2018;128(2):760-773. doi:10.1172/JCI95743
Porro F, Rosato-Siri M, Leone E, et al. Beta-adducin (Add2) KO mice show synaptic plasticity, motor coordination and behavioral deficits accompanied by changes in the expression and phosphorylation levels of the alpha- and gamma-adducin subunits. Genes Brain Behav. 2010;9(1):84-96. doi:10.1111/j.1601-183X.2009.00537.x
Jung Y, Mulholland PJ, Wiseman SL, Chandler LJ, Picciotto MR. Constitutive knockout of the membrane cytoskeleton protein beta adducin decreases mushroom spine density in the nucleus accumbens but does not prevent spine remodeling in response to cocaine. Eur J Neurosci. 2013;37(1):1-9. doi:10.1111/ejn.12037
Kiang KM, Leung GK. A review on adducin from functional to pathological mechanisms: future direction in cancer. Biomed Res Int. 2018;2018:3465929. doi:10.1155/2018/3465929