Tsai, M.-H.; Department of Neurology, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
Lin, W.-C.; School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
Chen, S.-Y.; Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
Hsieh, M.-Y.; Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
Nian, Fang-Shin ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Molecular Regulation of Neurogenesis ; Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
Cheng, Haw-Yuan ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Molecular Regulation of Neurogenesis ; Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
Zhao, H.-J.; Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
Hung, S.-S.; Genomics Center for Clinical and Biotechnological Applications, Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
Hsu, C.-H.; Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
Hou, P.-S.; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
Tung, C.-Y.; Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
Allanson, J. E., Ledbetter, D. H. and Dobyns, W. B. (1998). Classical lissencephaly syndromes: does the face reflect the brain? J. Med. Genet. 35, 920-923. doi:10.1136/jmg.35.11.920
Alquicira-Hernandez, J. and Powell, J. E. (2021). Nebulosa recovers single-cell gene expression signals by kernel density estimation. Bioinformatics 37, 2485-2487. doi:10.1093/bioinformatics/btab003
Barkovich, A. J., Koch, T. K. and Carrol, C. L. (1991). The spectrum of lissencephaly: report of ten patients analyzed by magnetic resonance imaging. Ann. Neurol. 30, 139-146. doi:10.1002/ana.410300204
Bhaduri, A., Sandoval-Espinosa, C., Otero-Garcia, M., Oh, I., Yin, R., Eze, U. C., Nowakowski, T. J. and Kriegstein, A. R. (2021). An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200-204. doi:10.1038/ s41586-021-03910-8
Bockmann, J., Kreutz, M. R., Gundelfinger, E. D. and Böckers, T. M. (2002). ProSAP/Shank postsynaptic density proteins interact with insulin receptor tyrosine kinase substrate IRSp53. J. Neurochem. 83, 1013-1017. doi:10.1046/j. 1471-4159.2002.01204.x
Celestino-Soper, P. B., Shaw, C. A., Sanders, S. J., Li, J., Murtha, M. T., Ercan-Sencicek, A. G., Davis, L., Thomson, S., Gambin, T., Chinault, A. C. et al. (2011). Use of array CGH to detect exonic copy number variants throughout the genome in autism families detects a novel deletion in TMLHE. Hum. Mol. Genet. 20, 4360-4370. doi:10.1093/hmg/ddr363
Chang, H. Y., Cheng, H. Y., Tsao, A. N., Liu, C. and Tsai, J. W. (2019). Multiple functions of KBP in neural development underlie brain anomalies in Goldberg-Shprintzen syndrome. Front. Mol. Neurosci. 12, 265. doi:10.3389/fnmol.2019. 00265
Chen, K. W., Chang, Y. J. and Chen, L. (2015). SH2B1 orchestrates signaling events to filopodium formation during neurite outgrowth. Commun. Integr. Biol. 8, e1044189. doi:10.1080/19420889.2015.1044189
Chen, J. L., Chang, C. H. and Tsai, J. W. (2019). Gli2 Rescues delays in brain development induced by Kif3a dysfunction. Cereb. Cortex 29, 751-764. doi:10. 1093/cercor/bhx356
Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J., Hao, S. et al. (2022). Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777-1792.e21. doi:10.1016/j. cell.2022.04.003
Chen, Y. A., Lu, I. L. and Tsai, J. W. (2018). Contactin-1/F3 regulates neuronal migration and morphogenesis through modulating RhoA activity. Front. Mol. Neurosci. 11, 422. doi:10.3389/fnmol.2018.00422
Choi, J., Ko, J., Racz, B., Burette, A., Lee, J. R., Kim, S., Na, M., Lee, H. W., Kim, K., Weinberg, R. J. et al. (2005). Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. J. Neurosci. 25, 869-879. doi:10.1523/JNEUROSCI. 3212-04.2005
Collins, R. L., Glessner, J. T., Porcu, E., Lepamets, M., Brandon, R., Lauricella, C., Han, L., Morley, T., Niestroj, L. M., Ulirsch, J. et al. (2022). A cross-disorder dosage sensitivity map of the human genome. Cell 185, 3041-3055.e25. doi:10. 1016/j.cell.2022.06.036
des Portes, V., Francis, F., Pinard, J. M., Desguerre, I., Moutard, M. L., Snoeck, I., Meiners, L. C., Capron, F., Cusmai, R., Ricci, S. et al. (1998). doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH). Hum. Mol. Genet. 7, 1063-1070. doi:10.1093/hmg/7.7.1063
Di Donato, N., Timms, A. E., Aldinger, K. A., Mirzaa, G. M., Bennett, J. T., Collins, S., Olds, C., Mei, D., Chiari, S., Carvill, G. et al. (2018). Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genet. Med. 20, 1354-1364. doi:10.1038/gim.2018.8
Disanza, A., Bisi, S., Winterhoff, M., Milanesi, F., Ushakov, D. S., Kast, D., Marighetti, P., Romet-Lemonne, G., Müller, H. M., Nickel, W. et al. (2013). CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J. 32, 2735-2750. doi:10.1038/emboj.2013.208
Disanza, A., Mantoani, S., Hertzog, M., Gerboth, S., Frittoli, E., Steffen, A., Berhoerster, K., Kreienkamp, H. J., Milanesi, F., Di Fiore, P. P. et al. (2006). Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat. Cell Biol. 8, 1337-1347. doi:10.1038/ ncb1502
Dobyns, W. B. (2010). The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia 51 Suppl. 1, 5-9. doi:10.1111/j.1528-1167.2009.02433.x
Dobyns, W. B. and Truwit, C. L. (1995). Lissencephaly and other malformations of cortical development: 1995 update. Neuropediatrics 26, 132-147. doi:10.1055/s-2007-979744
Dosemeci, A., Burch, A., Loo, H., Toy, D. and Tao-Cheng, J. H. (2017). IRSp53 accumulates at the postsynaptic density under excitatory conditions. PLoS One 12, e0190250. doi:10.1371/journal.pone.0190250
Fry, A. E., Cushion, T. D. and Pilz, D. T. (2014). The genetics of lissencephaly. Am. J. Med. Genet. C Semin. Med. Genet. 166c, 198-210. doi:10.1002/ajmg.c. 31402
Gleeson, J. G., Allen, K. M., Fox, J. W., Lamperti, E. D., Berkovic, S., Scheffer, I., Cooper, E. C., Dobyns, W. B., Minnerath, S. R., Ross, M. E. et al. (1998). Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63-72. doi:10.1016/S0092-8674(00)80899-5
Gleeson, J. G., Lin, P. T., Flanagan, L. A. and Walsh, C. A. (1999). Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257-271. doi:10.1016/S0896-6273(00)80778-3
Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D. and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26, 93-96. doi:10.1038/79246
Hou, P. S., Kumamoto, T. and Hanashima, C. (2017). A sensitive and versatile in situ hybridization protocol for gene expression analysis in developing amniote brains. Methods Mol. Biol. 1650, 319-334. doi:10.1007/978-1-4939-7216-6_22
Hsiao, C. J., Chang, C. H., Ibrahim, R. B., Lin, I. H., Wang, C. H., Wang, W. J. and Tsai, J. W. (2018). Gli2 modulates cell cycle re-entry through autophagy-mediated regulation of the length of primary cilia. J. Cell Sci. 131, jcs221218. doi:10.1242/jcs.221218
Ibrahim, R. B., Yeh, S. Y., Lin, K. P., Ricardo, F., Yu, T. Y., Chan, C. C., Tsai, J. W. and Liu, Y. T. (2020). Cellular secretion and cytotoxicity of transthyretin mutant proteins underlie late-onset amyloidosis and neurodegeneration. Cell. Mol. Life Sci. 77, 1421-1434. doi:10.1007/s00018-019-03357-1
Jheng, G. W., Hur, S. S., Chang, C. M., Wu, C. C., Cheng, J. S., Lee, H. H., Chung, B. C., Wang, Y. K., Lin, K. H., Del Álamo, J. C. et al. (2018). Lis1 dysfunction leads to traction force reduction and cytoskeletal disorganization during cell migration. Biochem. Biophys. Res. Commun. 497, 869-875. doi:10. 1016/j.bbrc.2018.02.151
Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P. et al. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434-443. doi:10.1038/s41586-020-2308-7
Keays, D. A., Tian, G., Poirier, K., Huang, G. J., Siebold, C., Cleak, J., Oliver, P. L., Fray, M., Harvey, R. J., Molnár, Z. et al. (2007). Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128, 45-57. doi:10.1016/j.cell.2006.12.017
Kitamura, K., Yanazawa, M., Sugiyama, N., Miura, H., Iizuka-Kogo, A., Kusaka, M., Omichi, K., Suzuki, R., Kato-Fukui, Y., Kamiirisa, K. et al. (2002). Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat. Genet. 32, 359-369. doi:10.1038/ng1009
Kriegstein, A. R. and Noctor, S. C. (2004). Patterns of neuronal migration in the embryonic cortex. Trends Neurosci. 27, 392-399. doi:10.1016/j.tins.2004.05.001
Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J. and Hall, A. (2001). Cdc42 induces filopodia by promoting the formation of an IRSp53: Mena complex. Curr. Biol. 11, 1645-1655. doi:10.1016/S0960-9822(01)00506-1
Lin, J. R., Cheng, J. F., Liu, Y. T., Hsu, T. R., Lin, K. M., Chen, C., Lin, C. L., Tsai, M. H. and Tsai, J. W. (2022). Novel lissencephaly-associated DCX variants in the C-terminal DCX domain affect microtubule binding and dynamics. Epilepsia 63, 1253-1265. doi:10.1111/epi.17198
Lo Nigro, C., Chong, C. S., Smith, A. C., Dobyns, W. B., Carrozzo, R. and Ledbetter, D. H. (1997). Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum. Mol. Genet. 6, 157-164. doi:10.1093/hmg/6.2.157
Lu, I. L., Chen, C., Tung, C. Y., Chen, H. H., Pan, J. P., Chang, C. H., Cheng, J. S., Chen, Y. A., Wang, C. H., Huang, C. W. et al. (2018). Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat. Commun. 9, 2498. doi:10.1038/s41467-018-04880-8
Mattila, P. K., Pykäläinen, A., Saarikangas, J., Paavilainen, V. O., Vihinen, H., Jokitalo, E. and Lappalainen, P. (2007). Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J. Cell Biol. 176, 953-964. doi:10.1083/jcb.200609176
Miki, H., Yamaguchi, H., Suetsugu, S. and Takenawa, T. (2000). IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732-735. doi:10.1038/35047107
Nian, F. S., Li, L. L., Cheng, C. Y., Wu, P. C., Lin, Y. T., Tang, C. Y., Ren, B. S., Tai, C. Y., Fann, M. J., Kao, L. S. et al. (2019). Rab18 collaborates with Rab7 to modulate lysosomal and autophagy activities in the nervous system: an overlapping mechanism for warburg micro syndrome and Charcot-Marie-tooth neuropathy type 2B. Mol. Neurobiol. 56, 6095-6105. doi:10.1007/s12035-019-1471-z
Oda, K., Shiratsuchi, T., Nishimori, H., Inazawa, J., Yoshikawa, H., Taketani, Y., Nakamura, Y. and Tokino, T. (1999). Identification of BAIAP2 (BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 domain interacts with the cytoplasmic domain of BAI1. Cytogenet. Cell Genet. 84, 75-82. doi:10.1159/000015219
Reiner, O., Carrozzo, R., Shen, Y., Wehnert, M., Faustinella, F., Dobyns, W. B., Caskey, C. T. and Ledbetter, D. H. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364, 717-721. doi:10.1038/364717a0
Santana, J. and Marzolo, M. P. (2017). The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem. J. 474, 3137-3165. doi:10.1042/ BCJ20160628
Scita, G., Confalonieri, S., Lappalainen, P. and Suetsugu, S. (2008). IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol. 18, 52-60. doi:10.1016/j.tcb.2007.12.002
Soltau, M., Berhörster, K., Kindler, S., Buck, F., Richter, D. and Kreienkamp, H. J. (2004). Insulin receptor substrate of 53 kDa links postsynaptic shank to PSD-95. J. Neurochem. 90, 659-665. doi:10.1111/j.1471-4159.2004.02523.x
Suetsugu, S., Murayama, K., Sakamoto, A., Hanawa-Suetsugu, K., Seto, A., Oikawa, T., Mishima, C., Shirouzu, M., Takenawa, T. and Yokoyama, S. (2006). The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J. Biol. Chem. 281, 35347-35358. doi:10.1074/jbc.M606814200
Tsai, J. W., Chen, Y., Kriegstein, A. R. and Vallee, R. B. (2005). LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935-945. doi:10.1083/jcb.200505166
Tsai, M. H., Kuo, P. W., Myers, C. T., Li, S. W., Lin, W. C., Fu, T. Y., Chang, H. Y., Mefford, H. C., Chang, Y. C. and Tsai, J. W. (2016). A novel DCX missense mutation in a family with X-linked lissencephaly and subcortical band heterotopia syndrome inherited from a low-level somatic mosaic mother: Genetic and functional studies. Eur. J. Paediatr. Neurol. 20, 788-794. doi:10.1016/j.ejpn. 2016.05.010
Tsai, M. H., Chan, C. K., Chang, Y. C., Yu, Y. T., Chuang, S. T., Fan, W. L., Li, S. C., Fu, T. Y., Chang, W. N., Liou, C. W. et al. (2017). DEPDC5 mutations in familial and sporadic focal epilepsy. Clin. Genet. 92, 397-404. doi:10.1111/cge.12992
Tsai, M. H., Nian, F. S., Hsu, M. H., Liu, W. S., Liu, Y. T., Liu, C., Lin, P. H., Hwang, D. Y., Chuang, Y. C. and Tsai, J. W. (2019). PRRT2 missense mutations cluster near C-terminus and frequently lead to protein mislocalization. Epilepsia 60, 807-817. doi:10.1111/epi.14725
Tsai, M. H., Cheng, H. Y., Nian, F. S., Liu, C., Chao, N. H., Chiang, K. L., Chen, S. F. and Tsai, J. W. (2020a). Impairment in dynein-mediated nuclear translocation by BICD2 C-terminal truncation leads to neuronal migration defect and human brain malformation. Acta Neuropathol. Commun. 8, 106. doi:10.1186/ s40478-020-00971-0
Tsai, M. H., Muir, A. M., Wang, W. J., Kang, Y. N., Yang, K. C., Chao, N. H., Wu, M. F., Chang, Y. C., Porter, B. E., Jansen, L. A. et al. (2020b). Pathogenic Variants in CEP85L Cause Sporadic and Familial Posterior Predominant Lissencephaly. Neuron 106, 237-245.e8. doi:10.1016/j.neuron.2020.01.027
Yamagishi, A., Masuda, M., Ohki, T., Onishi, H. and Mochizuki, N. (2004). A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J. Biol. Chem. 279, 14929-14936. doi:10.1074/jbc.M309408200