[en] Expansion of the neocortex is thought to pave the way toward acquisition of higher cognitive functions in mammals. The highly conserved Notch signaling pathway plays a crucial role in this process by regulating the size of the cortical progenitor pool, in part by controlling the balance between self-renewal and differentiation. In this review, we introduce the components of Notch signaling pathway as well as the different mode of molecular mechanisms, including trans- and cis-regulatory processes. We focused on the recent findings with regard to the expression pattern and levels in regulating neocortical formation in mammals and its interactions with other known signaling pathways, including Slit-Robo signaling and Shh signaling. Finally, we review the functions of Notch signaling pathway in different species as well as other developmental process, mainly somitogenesis, to discuss how modifications to the Notch signaling pathway can drive the evolution of the neocortex.
Disciplines :
Genetics & genetic processes
Author, co-author :
Nian, Fang-Shin ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Molecular Regulation of Neurogenesis ; Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan ; Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
Hou, Pei-Shan; Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan ; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
Language :
English
Title :
Evolving Roles of Notch Signaling in Cortical Development.
This research was supported by the Ministry of Science and Technology (MOST 108-2320-B-010-046-MY3), National Health Research Institute (NHRI-EX111-11007NC), Yen Tjing Ling Medical Foundation (CI-110-4), and Brain Research Center, National Yang Ming Chiao Tung University.
Aaku-Saraste E. Hellwig A. Huttner W. B. (1996). Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure–remodeling of the neuroepithelium prior to neurogenesis. Dev. Biol. 180 664–679. 10.1006/dbio.1996.0336 8954735
Andersen P. Uosaki H. Shenje L. T. Kwon C. (2012). Non-canonical notch signaling: emerging role and mechanism. Trends Cell Biol. 22 257–265. 10.1016/j.tcb.2012.02.003 22397947
Andrews W. Barber M. Hernadez-Miranda L. R. Xian J. Rakic S. Sundaresan V. et al. (2008). The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev. Biol. 313 648–658. 10.1016/j.ydbio.2007.10.052 18054781
Apelqvist Å Li H. Sommer L. Beatus P. Anderson D. J. Honjo T. et al. (1999). notch signalling controls pancreatic cell differentiation. Nature 400 877–881. 10.1038/23716 10476967
Artavanis-Tsakonas S. Rand M. D. Lake R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284 770–776. 10.1126/science.284.5415.770 10221902
Baek J. H. Hatakeyama J. Sakamoto S. Ohtsuka T. Kageyama R. (2006). Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133 2467–2476. 10.1242/dev.02403 16728479
Belloni E. Muenke M. Roessler E. Traverse G. Siegel-Bartelt J. Frumkin A. et al. (1996). Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat. Genet. 14 353–356. 10.1038/ng1196-353 8896571
Bertrand N. Dahmane N. (2006). Sonic hedgehog signaling in forebrain development and its interactions with pathways that modify its effects. Trends Cell Biol. 16 597–605. 10.1016/j.tcb.2006.09.007 17030124
Borrell V. Cárdenas A. Ciceri G. Galcerán J. Flames N. Pla R. et al. (2012). Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 76 338–352. 10.1016/j.neuron.2012.08.003 23083737
Borrell V. Reillo I. (2012). Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev. Neurobiol. 72 955–971. 10.1002/dneu.22013 22684946
Bray S. J. (2006). Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7 678–689. 10.1038/nrm2009 16921404
Briscoe S. D. Ragsdale C. W. (2018a). Homology, neocortex, and the evolution of developmental mechanisms. Science 362 190–193. 10.1126/science.aau3711 30309947
Briscoe S. D. Ragsdale C. W. (2018b). Molecular anatomy of the alligator dorsal telencephalon. J. Comp. Neurol. 526 1613–1646. 10.1002/cne.24427 29520780
Brose K. Bland K. S. Wang K. H. Arnott D. Henzel W. Goodman C. S. et al. (1999). Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96 795–806.
Bulman M. P. Kusumi K. Frayling T. M. Mckeown C. Garrett C. Lander E. S. et al. (2000). Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet. 24 438–441. 10.1038/74307 10742114
Bush G. Miyamoto A. Denault J.-B. Leduc R. Weinmaster G. (2001). Ligand-induced signaling in the absence of furin processing of notch1. Dev. Biol. 229 494–502. 10.1006/dbio.2000.9992 11150244
Cárdenas A. Borrell V. (2020). Molecular and cellular evolution of corticogenesis in amniotes. Cell. Mol. Life Sci. 77 1435–1460. 10.1007/s00018-019-03315-x 31563997
Cárdenas A. Villalba A. De Juan Romero C. Picó E. Kyrousi C. Tzika A. C. et al. (2018). Evolution of cortical neurogenesis in amniotes controlled by robo signaling levels. Cell 174 590.e21–606.e21. 10.1016/j.cell.2018.06.007 29961574
Castro D. S. Skowronska-Krawczyk D. Armant O. Donaldson I. J. Parras C. Hunt C. et al. (2006). Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev. Cell 11 831–844. 10.1016/j.devcel.2006.10.006 17141158
Chapman G. Sparrow D. B. Kremmer E. Dunwoodie S. L. (2011). Notch inhibition by the ligand Delta-Like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum. Mol. Genet. 20 905–916. 10.1093/hmg/ddq529 21147753
Chen C. C. Winkler C. M. Pfenning A. R. Jarvis E. D. (2013). Molecular profiling of the developing avian telencephalon: regional timing and brain subdivision continuities. J. Comp. Neurol. 521 3666–3701. 10.1002/cne.23406 23818174
Chen H. Thiagalingam A. Chopra H. Borges M. W. Feder J. N. Nelkin B. D. et al. (1997). Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc. Natl. Acad. Sci. 94 5355–5360. 10.1073/pnas.94.10.5355 9144241
Chen N. Greenwald I. (2004). The lateral signal for LIN-12/notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Dev. Cell 6 183–192. 10.1016/s1534-5807(04)00021-8
Cinquin O. (2007). Understanding the somitogenesis clock: what’s missing? Mech. Dev. 124 501–517. 10.1016/j.mod.2007.06.004 17643270
Cordle J. Johnson S. Tay J. Z. Y. Roversi P. Wilkin M. B. De Madrid B. H. et al. (2008a). A conserved face of the jagged/serrate DSL domain is involved in notch trans-activation and cis-inhibition. Nat. Struct. Mol. Biol. 15 849–857. 10.1038/nsmb.1457 18660822
Cordle J. Redfieldz C. Stacey M. Van Der Merwe P. A. Willis A. C. Champion B. R. et al. (2008b). Localization of the delta-like-1-binding site in human notch-1 and its modulation by calcium affinity. J. Biol. Chem. 283 11785–11793. 10.1074/jbc.M708424200 18296446
del Álamo D. Rouault H. Schweisguth F. (2011). Mechanism and significance of cis-inhibition in notch signalling. Curr. Biol. 21 R40–R47. 10.1016/j.cub.2010.10.034 21215938
Dexter J. S. (1914). The analysis of a case of continuous variation in Drosophila by a study of its linkage relations. Am. Nat. 48 712–758.
Dickson B. J. Gilestro G. F. (2006). Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu. Rev. Cell Dev. Biol. 22 651–675. 10.1146/annurev.cellbio.21.090704.151234 17029581
D’souza B. Meloty-Kapella L. Weinmaster G. (2010). Canonical and non-canonical notch ligands. Curr. Top. Dev. Biol. 92 73–129. 10.1016/S0070-2153(10)92003-6
D’souza B. Miyamoto A. Weinmaster G. (2008). The many facets of notch ligands. Oncogene 27 5148–5167. 10.1038/onc.2008.229 18758484
Dugas-Ford J. Rowell J. J. Ragsdale C. W. (2012). Cell-type homologies and the origins of the neocortex. Proc. Natl. Acad. Sci. 109 16974–16979. 10.1073/pnas.1204773109 23027930
Dunwoodie S. L. Clements M. Sparrow D. B. Sa X. Conlon R. A. Beddington R. S. (2002). Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 129 1795–1806. 10.1242/dev.129.7.1795 11923214
Dunwoodie S. L. Henrique D. Harrison S. M. Beddington R. S. (1997). Mouse Dll3: a novel divergent delta gene which may complement the function of other delta homologues during early pattern formation in the mouse embryo. Development 124 3065–3076. 10.1242/dev.124.16.3065 9272948
Echelard Y. Epstein D. J. St-Jacques B. Shen L. Mohler J. Mcmahon J. A. et al. (1993). Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75 1417–1430. 10.1016/0092-8674(93)90627-3
Eldadah Z. A. Hamosh A. Biery N. J. Montgomery R. A. Duke M. Elkins R. et al. (2001). Familial tetralogy of fallot caused by mutation in the jagged1 gene. Hum. Mol. Genet. 10 163–169. 10.1093/hmg/10.2.163 11152664
Englund C. Fink A. Lau C. Pham D. Daza R. A. Bulfone A. et al. (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25 247–251. 10.1523/JNEUROSCI.2899-04.2005 15634788
Feng L. Hatten M. E. Heintz N. (1994). Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12 895–908. 10.1016/0896-6273(94)90341-7
Fiddes I. T. Lodewijk G. A. Mooring M. Bosworth C. M. Ewing A. D. Mantalas G. L. et al. (2018). Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173 1356.e–1369.e. 10.1016/j.cell.2018.03.051 29856954
Fietz S. A. Kelava I. Vogt J. Wilsch-Brauninger M. Stenzel D. Fish J. L. et al. (2010). OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13 690–699. 10.1038/nn.2553 20436478
Fischer-Zirnsak B. Segebrecht L. Schubach M. Charles P. Alderman E. Brown K. et al. (2019). Haploinsufficiency of the notch ligand DLL1 causes variable neurodevelopmental disorders. Am. J. Hum. Genet. 105 631–639. 10.1016/j.ajhg.2019.07.002 31353024
Fleming R. J. (1998). Structural conservation of notch receptors and ligands. Semin. Cell Dev. Biol. 9 599–607. 10.1006/scdb.1998.0260 9918871
Gaiano N. Nye J. S. Fishell G. (2000). Radial glial identity is promoted by notch1 signaling in the murine forebrain. Neuron 26 395–404. 10.1016/s0896-6273(00)81172-1
Geffers I. Serth K. Chapman G. Jaekel R. Schuster-Gossler K. Cordes R. et al. (2007). Divergent functions and distinct localization of the notch ligands DLL1 and DLL3 in vivo. J. Cell Biol. 178 465–476. 10.1083/jcb.200702009 17664336
Gertz C. C. Kriegstein A. R. (2015). Neuronal migration dynamics in the developing ferret cortex. J. Neurosci. 35 14307–14315. 10.1523/JNEUROSCI.2198-15.2015 26490868
Geschwind D. H. Rakic P. (2013). Cortical evolution: judge the brain by its cover. Neuron 80 633–647. 10.1016/j.neuron.2013.10.045 24183016
Go M. J. Eastman D. S. Artavanis-Tsakonas S. (1998). Cell proliferation control by notch signaling in Drosophila development. Development 125 2031–2040. 10.1242/dev.125.11.2031 9570768
Goffinet A. M. Daumerie C. Langerwerf B. Pieau C. (1986). Neurogenesis in reptilian cortical structures: 3H-thymidine autoradiographic analysis. J. Comp. Neurol. 243 106–116. 10.1002/cne.902430109 3950076
Gordon W. R. Vardar-Ulu D. Histen G. Sanchez-Irizarry C. Aster J. C. Blacklow S. C. (2007). Structural basis for autoinhibition of notch. Nat. Struct. Mol. Biol. 14 295–300. 10.1038/nsmb1227 17401372
Govindan S. Jabaudon D. (2017). Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Lett. 591 3960–3977. 10.1002/1873-3468.12846 28895133
Guillemot F. (2005). Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr. Opin. Cell Biol. 17 639–647. 10.1016/j.ceb.2005.09.006 16226447
Hansen D. V. Lui J. H. Parker P. R. Kriegstein A. R. (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464 554–561. 10.1038/nature08845 20154730
Hansson E. M. Lanner F. Das D. Mutvei A. Marklund U. Ericson J. et al. (2010). Control of notch-ligand endocytosis by ligand-receptor interaction. J. Cell Sci. 123 2931–2942. 10.1242/jcs.073239 20720151
Hatakeyama J. Bessho Y. Katoh K. Ookawara S. Fujioka M. Guillemot F. et al. (2004). Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131 5539–5550. 10.1242/dev.01436 15496443
Henderson S. T. Gao D. Christensen S. Kimble J. (1997). Functional domains of LAG-2, a putative signaling ligand for LIN-12 and GLP-1 receptors in Caenorhabditis elegans. Mol. Biol. Cell 8 1751–1762. 10.1091/mbc.8.9.1751 9307971
Henderson S. T. Gao D. Lambie E. J. Kimble J. (1994). lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120 2913–2924. 10.1242/dev.120.10.2913 7607081
Herman A. Rhyner A. Devine P. Marrelli S. Bruneau B. Wythe J. (2018). A novel reporter allele for monitoring Dll4 expression within the embryonic and adult mouse. Biol. Open 7:bio026799. 10.1242/bio.026799 29437553
His W. (1889). Die Neuroblasten Und Deren Entstehung im Embryonalen Mark. Leipzig: S. Hirzel.
Holley S. A. Geisler R. Nüsslein-Volhard C. (2000). Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. Genes Dev. 14 1678–1690.
Hubaud A. Pourquié O. (2014). Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15 709–721. 10.1038/nrm3891 25335437
Huesa G. Anadón R. Folgueira M. Yáñez J. (2009). “Evolution of the Pallium in Fishes,” in Encyclopedia of Neuroscience, eds Binder M. D. Hirokawa N. Windhorst U. (Berlin: Springer), 1400–1404. 10.1007/978-3-540-29678-2_3166 24599112
Imayoshi I. Isomura A. Harima Y. Kawaguchi K. Kori H. Miyachi H. et al. (2013). Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342 1203–1208. 10.1126/science.1242366 24179156
Jarriault S. Bail O. L. Hirsinger E. Pourquié O. Logeat F. Strong C. F. et al. (1998). Delta-1 activation of notch-1 signaling results in HES-1 transactivation. Mol. Cell. Biol. 18 7423–7431. 10.1128/MCB.18.12.7423 9819428
Jarvis E. D. (2009). “Evolution of the Pallium in Birds and Reptiles,” in Encyclopedia of Neuroscience, eds Binder M. D. Hirokawa N. Windhorst U. (Berlin: Springer), 1390–1400. 10.1007/978-3-540-29678-2_3165
Kageyama R. Niwa Y. Isomura A. González A. Harima Y. (2012). Oscillatory gene expression and somitogenesis. Wiley Interdiscip. Rev. Dev. Biol. 1 629–641. 10.1002/wdev.46 23799565
Karten H. J. (1991). Homology and evolutionary origins of the ‘neocortex’. Brain Behav. Evol. 38 264–272. 10.1159/000114393 1777808
Karten H. J. Shimizu T. (1989). The origins of neocortex: connections and lamination as distinct events in evolution. J. Cogn. Neurosci. 1 291–301. 10.1162/jocn.1989.1.4.291 23971981
Kawaguchi D. Yoshimatsu T. Hozumi K. Gotoh Y. (2008). Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development 135 3849–3858. 10.1242/dev.024570 18997111
Kobayashi T. Kageyama R. (2011). Hes1 oscillations contribute to heterogeneous differentiation responses in embryonic stem cells. Genes 2 219–228. 10.3390/genes2010219 24710146
Kobayashi T. Mizuno H. Imayoshi I. Furusawa C. Shirahige K. Kageyama R. (2009). The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev. 23 1870–1875. 10.1101/gad.1823109 19684110
Komada M. (2012). Sonic hedgehog signaling coordinates the proliferation and differentiation of neural stem/progenitor cells by regulating cell cycle kinetics during development of the neocortex. Congenit. Anom. 52 72–77. 10.1111/j.1741-4520.2012.00368.x 22639991
Komada M. Saitsu H. Kinboshi M. Miura T. Shiota K. Ishibashi M. (2008). Hedgehog signaling is involved in development of the neocortex. Development 135 2717–2727. 10.1242/dev.015891 18614579
Komatsu H. Chao M. Y. Larkins-Ford J. Corkins M. E. Somers G. A. Tucey T. et al. (2008). OSM-11 facilitates LIN-12 notch signaling during Caenorhabditis elegans vulval development. PLoS Biol. 6:e196. 10.1371/journal.pbio.0060196 18700817
Koo B.-K. Lim H.-S. Song R. Yoon M.-J. Yoon K.-J. Moon J.-S. et al. (2005). Mind bomb 1 is essential for generating functional notch ligands to activate notch. Development 132 3459–3470. 10.1242/dev.01922 16000382
Kopan R. Ilagan M. X. G. (2009). The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137 216–233. 10.1016/j.cell.2009.03.045 19379690
Kusumi K. Sun E. S. Kerrebrock A. W. Bronson R. T. Chi D. C. Bulotsky M. S. et al. (1998). The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat. Genet. 19 274–278. 10.1038/961 9662403
Ladi E. Nichols J. T. Ge W. Miyamoto A. Yao C. Yang L. T. et al. (2005). The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J. Cell Biol. 170 983–992. 10.1083/jcb.200503113 16144902
Le Borgne R. Bardin A. Schweisguth F. (2005). The roles of receptor and ligand endocytosis in regulating notch signaling. Development 132 1751–1762. 10.1242/dev.01789 15790962
LeBon L. Lee T. V. Sprinzak D. Jafar-Nejad H. Elowitz M. B. (2014). Fringe proteins modulate notch-ligand cis and trans interactions to specify signaling states. eLife 3:e02950. 10.7554/eLife.02950 25255098
Levitt P. Rakic P. (1980). Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol. 193 815–840. 10.1002/cne.901930316 7002963
Liao B.-K. Jörg D. J. Oates A. C. (2016). Faster embryonic segmentation through elevated delta-notch signalling. Nat. Commun. 7 1–12. 10.1038/ncomms11861 27302627
Llinares-Benadero C. Borrell V. (2019). Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat. Rev. Neurosci. 20 161–176. 10.1038/s41583-018-0112-2 30610227
Lubman O. Y. Ilagan M. X. G. Kopan R. Barrick D. (2007). Quantitative dissection of the notch: CSL interaction: insights into the notch-mediated transcriptional switch. J. Mol. Biol. 365 577–589. 10.1016/j.jmb.2006.09.071 17070841
Lui J. H. Hansen D. V. Kriegstein A. R. (2011). Development and evolution of the human neocortex. Cell 146 18–36.
Lukaszewicz A. Savatier P. Cortay V. Giroud P. Huissoud C. Berland M. et al. (2005). G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47 353–364. 10.1016/j.neuron.2005.06.032 16055060
Luzzati F. (2015). A hypothesis for the evolution of the upper layers of the neocortex through co-option of the olfactory cortex developmental program. Front. Neurosci. 9:162. 10.3389/fnins.2015.00162 26029038
Malatesta P. Hartfuss E. Gotz M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127 5253–5263. 10.1242/dev.127.24.5253 11076748
Mara A. Schroeder J. Chalouni C. Holley S. A. (2007). Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC. Nat. Cell Biol. 9 523–530. 10.1038/ncb1578 17417625
Mase S. Shitamukai A. Wu Q. Morimoto M. Gridley T. Matsuzaki F. (2021). notch1 and notch2 collaboratively maintain radial glial cells in mouse neurogenesis. Neurosci. Res. 170 122–132. 10.1016/j.neures.2020.11.007 33309869
Matsuda M. Yamanaka Y. Uemura M. Osawa M. Saito M. K. Nagahashi A. et al. (2020). Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580 124–129. 10.1038/s41586-020-2144-9 32238941
Mehta B. Bhat K. M. (2001). Slit signaling promotes the terminal asymmetric division of neural precursor cells in the Drosophila CNS. Development 128 3161–3168. 10.1242/dev.128.16.3161 11688564
Miyata T. Kawaguchi A. Saito K. Kawano M. Muto T. Ogawa M. (2004). Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131 3133–3145. 10.1242/dev.01173 15175243
Miyoshi G. Fishell G. (2012). Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate. Neuron 74 1045–1058. 10.1016/j.neuron.2012.04.025 22726835
Mizutani K.-I. Yoon K. Dang L. Tokunaga A. Gaiano N. (2007). Differential notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449 351–355. 10.1038/nature06090 17721509
Mohler J. (1988). Requirements for hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila. Genetics 120 1061–1072. 10.1093/genetics/120.4.1061 3147217
Morgan T. H. (1911). The origin of nine wing mutations in drosophila. Science 33 496–499. 10.1126/science.33.848.496 17774436
Morgan T. H. (1917). The theory of the gene. Am. Nat. 51 513–544.
Mueller T. Wullimann M. F. (2003). Anatomy of neurogenesis in the early zebrafish brain. Dev. Brain Res. 140 137–155. 10.1016/s0165-3806(02)00583-7
Murone M. Rosenthal A. De Sauvage F. J. (1999). Sonic hedgehog signaling by the patched–smoothened receptor complex. Curr. Biol. 9 76–84. 10.1016/s0960-9822(99)80018-9
Nandagopal N. Santat L. A. Elowitz M. B. (2019). Cis-activation in the notch signaling pathway. eLife 8:e37880. 10.7554/eLife.37880 30628888
Nelson B. R. Hodge R. D. Bedogni F. Hevner R. F. (2013). Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1-Notch signaling. J. Neurosci. 33 9122–9139. 10.1523/JNEUROSCI.0791-13.2013 23699523
Noctor S. C. Flint A. C. Weissman T. A. Dammerman R. S. Kriegstein A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature 409 714–720. 10.1038/35055553 11217860
Noctor S. C. Flint A. C. Weissman T. A. Wong W. S. Clinton B. K. Kriegstein A. R. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci. 22 3161–3173. 10.1523/JNEUROSCI.22-08-03161.2002 11943818
Noctor S. C. Martínez-Cerdeño V. Ivic L. Kriegstein A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7 136–144. 10.1038/nn1172 14703572
Nofziger D. Miyamoto A. Lyons K. M. Weinmaster G. (1999). Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 126 1689–1702. 10.1242/dev.126.8.1689 10079231
Nomura T. Gotoh H. Ono K. (2013). Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat. Commun. 4:2206. 10.1038/ncomms3206 23884180
Nomura T. Ohtaka-Maruyama C. Kiyonari H. Gotoh H. Ono K. (2020). Changes in wnt-dependent neuronal morphology underlie the anatomical diversification of neocortical homologs in amniotes. Cell Rep. 31:107592. 10.1016/j.celrep.2020.107592 32375034
Nüsslein-Volhard C. Wieschaus E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287 795–801. 10.1038/287795a0 6776413
Ochi S. Imaizumi Y. Shimojo H. Miyachi H. Kageyama R. (2020). Oscillatory expression of Hes1 regulates cell proliferation and neuronal differentiation in the embryonic brain. Development 147:dev182204. 10.1242/dev.182204 32094111
Ohtsuka T. Kageyama R. (2021a). Dual activation of Shh and Notch signaling induces dramatic enlargement of neocortical surface area. Neurosci. Res. Online ahead of print., 10.1016/j.neures.2021.09.006, 34600946
Ohtsuka T. Kageyama R. (2021b). Hes1 overexpression leads to expansion of embryonic neural stem cell pool and stem cell reservoir in the postnatal brain. Development 148:dev189191. 10.1242/dev.189191 33531431
Palmeirim I. Henrique D. Ish-Horowicz D. Pourquié O. (1997). Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91 639–648. 10.1016/s0092-8674(00)80451-1
Purow B. W. Haque R. M. Noel M. W. Su Q. Burdick M. J. Lee J. et al. (2005). Expression of notch-1 and its ligands, delta-like-1 and jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 65 2353–2363. 10.1158/0008-5472.CAN-04-1890 15781650
Rakic P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145 61–83. 10.1002/cne.901450105 4624784
Rakic P. (1974). Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183 425–427. 10.1126/science.183.4123.425 4203022
Ramon y Cajal S Azoulay L. (1955). Histologie du Systeme Nerveux de L’homme et Des Vertebres. Paris: Maloine.
Rao Z. Handford P. Mayhew M. Knott V. Brownlee G. G. Stuartz D. (1995). The structure of a Ca2+-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 82 131–141. 10.1016/0092-8674(95)90059-4
Raya Á Kawakami Y. Rodríguez-Esteban C. Ibañes M. Rasskin-Gutman D. Rodríguez-León J. et al. (2004). Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination. Nature 427 121–128. 10.1038/nature02190 14712268
Reillo I. De Juan Romero C. García-Cabezas M. Borrell V. (2011). A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21 1674–1694. 10.1093/cercor/bhq238 21127018
Roelink H. Porter J. Chiang C. Tanabe Y. Chang D. Beachy P. et al. (1995). Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81 445–455. 10.1016/0092-8674(95)90397-6
Roessler E. Belloni E. Gaudenz K. Jay P. Berta P. Scherer S. W. et al. (1996). Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat. Genet. 14 357–360. 10.1038/ng1196-357 8896572
Ronchini C. Capobianco A. J. (2001). Induction of cyclin D1 transcription and CDK2 activity by Notchic: implication for cell cycle disruption in transformation by Notchic. Mol. Cell. Biol. 21 5925–5934. 10.1128/MCB.21.17.5925-5934.2001 11486031
Saade M. Gutiérrez-Vallejo I. Le Dréau G. Rabadán M. A. Miguez D. G. Buceta J. et al. (2013). Sonic hedgehog signaling switches the mode of division in the developing nervous system. Cell Rep. 4 492–503. 10.1016/j.celrep.2013.06.038 23891002
Sang L. Coller H. A. Roberts J. M. (2008). Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321 1095–1100. 10.1126/science.1155998 18719287
Shawber C. Nofziger D. Hsieh J. Lindsell C. Bogler O. Hayward D. et al. (1996). Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 122 3765–3773. 10.1242/dev.122.12.3765 9012498
Sherwood D. R. McClay D. R. (1997). Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation. Development 124 3363–3374. 10.1242/dev.124.17.3363 9310331
Shibata T. Yamada K. Watanabe M. Ikenaka K. Wada K. Tanaka K. et al. (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J. Neurosci. 17 9212–9219. 10.1523/JNEUROSCI.17-23-09212.1997 9364068
Shikata Y. Okada T. Hashimoto M. Ellis T. Matsumaru D. Shiroishi T. et al. (2011). Ptch1-mediated dosage-dependent action of Shh signaling regulates neural progenitor development at late gestational stages. Dev. Biol. 349 147–159. 10.1016/j.ydbio.2010.10.014 20969845
Shimizu K. Chiba S. Kumano K. Hosoya N. Takahashi T. Kanda Y. et al. (1999). Mouse jagged1 physically interacts with notch2 and other notch receptors: assessment by quantitative methods. J. Biol. Chem. 274 32961–32969. 10.1074/jbc.274.46.32961 10551863
Shimojo H. Isomura A. Ohtsuka T. Kori H. Miyachi H. Kageyama R. (2016). Oscillatory control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis. Genes Dev. 30 102–116. 10.1101/gad.270785.115 26728556
Shimojo H. Ohtsuka T. Kageyama R. (2008). Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58 52–64. 10.1016/j.neuron.2008.02.014 18400163
Smart I. H. Dehay C. Giroud P. Berland M. Kennedy H. (2002). Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12 37–53. 10.1093/cercor/12.1.37 11734531
Smithers L. Haddon C. Jiang Y.-J. Lewis J. (2000). Sequence and embryonic expression of deltaC in the zebrafish. Mech. Dev. 90 119–123. 10.1016/s0925-4773(99)00231-2
Sprinzak D. Blacklow S. C. (2021). Biophysics of notch signaling. Annu. Rev. Biophys. 50 157–189. 10.1146/annurev-biophys-101920-082204 33534608
Sprinzak D. Lakhanpal A. Lebon L. Santat L. A. Fontes M. E. Anderson G. A. et al. (2010). Cis-interactions between notch and delta generate mutually exclusive signalling states. Nature 465 86–90. 10.1038/nature08959 20418862
Sueda R. Imayoshi I. Harima Y. Kageyama R. (2019). High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes Dev. 33 511–523. 10.1101/gad.323196.118 30862661
Suzuki I. Hirata T. (2014). A common developmental plan for neocortical gene-expressing neurons in the pallium of the domestic chicken Gallus gallus domesticus and the Chinese softshell turtle Pelodiscus sinensis. Front. Neuroanat. 8:20. 10.3389/fnana.2014.00020 24778607
Suzuki I. K. Gacquer D. Van Heurck R. Kumar D. Wojno M. Bilheu A. et al. (2018). Human-specific NOTCH2NL genes expand cortical neurogenesis through delta/notch regulation. Cell 173 1370.e16–1384.e16. 10.1016/j.cell.2018.03.067 29856955
Suzuki I. K. Kawasaki T. Gojobori T. Hirata T. (2012). The temporal sequence of the mammalian neocortical neurogenetic program drives mediolateral pattern in the chick pallium. Dev. Cell 22 863–870. 10.1016/j.devcel.2012.01.004 22424929
Takano A. Zochi R. Hibi M. Terashima T. Katsuyama Y. (2011). Function of strawberry notch family genes in the zebrafish brain development. Kobe J. Med. Sci. 56 E220–E230.
Tax F. E. Yeargers J. J. Thomas J. H. (1994). Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with delta and serrate of Drosophila. Nature 368 150–154. 10.1038/368150a0 8139658
Tekendo-Ngongang C. Muenke M. Kruszka P. (1993). “Holoprosencephaly overview,” in GeneReviews(§), eds Adam M. P. Ardinger H. H. Pagon R. A. Wallace S. E. Bean L. J. H. Mirzaa G. et al. (Seattle, WA: University of Washington, Seattle).
Tomita K. Hattori M. Nakamura E. Nakanishi S. Minato N. Kageyama R. (1999). The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev. 13 1203–1210. 10.1101/gad.13.9.1203 10323870
Tosches M. A. Yamawaki T. M. Naumann R. K. Jacobi A. A. Tushev G. Laurent G. (2018). Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360 881–888. 10.1126/science.aar4237 29724907
Tozer S. Baek C. Fischer E. Goiame R. Morin X. (2017). Differential routing of mindbomb1 via centriolar satellites regulates asymmetric divisions of neural progenitors. Neuron 93, 542–551.e4. 10.1016/j.neuron.2016.12.042 28132826
Tsai H. Hardisty R. E. Rhodes C. Kiernan A. E. Roby P. Tymowska-Lalanne Z. et al. (2001). The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum. Mol. Genet. 10 507–512. 10.1093/hmg/10.5.507 11181574
Turnpenny P. D. Alman B. Cornier A. S. Giampietro P. F. Offiah A. Tassy O. et al. (2007). Abnormal vertebral segmentation and the notch signaling pathway in man. Dev. Dyn. 236 1456–1474. 10.1002/dvdy.21182 17497699
Warthen D. Moore E. Kamath B. Morrissette J. Sanchez P. Piccoli D. et al. (2006). Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum. Mutat. 27 436–443. 10.1002/humu.20310 16575836
Weng A. P. Millholland J. M. Yashiro-Ohtani Y. Arcangeli M. L. Lau A. Wai C. et al. (2006). c-Myc is an important direct target of notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20 2096–2109. 10.1101/gad.1450406 16847353
Wickström M. Dyberg C. Shimokawa T. Milosevic J. Baryawno N. Fuskevåg O. M. et al. (2013). Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. Int. J. Cancer 132 1516–1524. 10.1002/ijc.27820 22949014
Wright G. J. Giudicelli F. Soza-Ried C. Hanisch A. Ariza-Mcnaughton L. Lewis J. (2011). DeltaC and DeltaD interact as notch ligands in the zebrafish segmentation clock. Development 138 2947–2956. 10.1242/dev.066654 21653612
Wullimann M. F. (2009). Secondary neurogenesis and telencephalic organization in zebrafish and mice: a brief review. Integr. Zool. 4 123–133. 10.1111/j.1749-4877.2008.00140.x 21392282
Wullimann M. F. Mueller T. (2004). Teleostean and mammalian forebrains contrasted: evidence from genes to behavior. J. Comp. Neurol. 475 143–162. 10.1002/cne.20183 15211457
Yamamoto K. Bloch S. Vernier P. (2017). New perspective on the regionalization of the anterior forebrain in Osteichthyes. Dev. Growth Differ. 59 175–187. 10.1111/dgd.12348 28470718
Yoon K.-J. Koo B.-K. Im S.-K. Jeong H.-W. Ghim J. Kwon M.-C. et al. (2008). Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58 519–531. 10.1016/j.neuron.2008.03.018 18498734
Zeier H. Karten H. J. (1971). The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res. 31 313–326. 10.1016/0006-8993(71)90185-5
Zolkiewska A. (2008). ADAM proteases: ligand processing and modulation of the notch pathway. Cell. Mol. Life Sci. 65 2056–2068. 10.1007/s00018-008-7586-4 18344021