Rab18 Collaborates with Rab7 to Modulate Lysosomal and Autophagy Activities in the Nervous System: an Overlapping Mechanism for Warburg Micro Syndrome and Charcot-Marie-Tooth Neuropathy Type 2B.
Nian, Fang-Shin; Li, Lei-Li; Cheng, Chih-Yaet al.
2019 • In Molecular Neurobiology, 56 (9), p. 6095 - 6105
2019 Nian-Rab18 Collaborates with Rab7 to Modulate Lysosomal and Autophagy Activities in the Nervous System an Overlapping Mechanism for Warburg Micro Syndrome and CMT Neuropathy Type 2B.pdf
[en] Mutations in RAB18, a member of small G protein, cause Warburg micro syndrome (WARBM), whose clinical features include vision impairment, postnatal microcephaly, and lower limb spasticity. Previously, our Rab18-/- mice exhibited hind limb weakness and spasticity as well as signs of axonal degeneration in the spinal cord and lumbar spinal nerves. However, the cellular and molecular function of RAB18 and its roles in the pathogenesis of WARBM are still not fully understood. Using immunofluorescence staining and expression of Rab18 and organelle markers, we find that Rab18 associates with lysosomes and actively traffics along neurites in cultured neurons. Interestingly, Rab18-/- neurons exhibit impaired lysosomal transport. Using autophagosome marker LC3-II, we show that Rab18 dysfunction leads to aberrant autophagy activities in neurons. Electron microscopy further reveals accumulation of lipofuscin-like granules in the dorsal root ganglion of Rab18-/- mice. Surprisingly, Rab18 colocalizes, cofractionates, and coprecipitates with the lysosomal regulator Rab7, mutations of which cause Charcot-Marie-Tooth (CMT) neuropathy type 2B. Moreover, Rab7 is upregulated in Rab18-deficient neurons, suggesting a compensatory effect. Together, our results suggest that the functions of RAB18 and RAB7 in lysosomal and autophagic activities may constitute an overlapping mechanism underlying WARBM and CMT pathogenesis in the nervous system.
Disciplines :
Genetics & genetic processes
Author, co-author :
Nian, Fang-Shin ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Molecular Regulation of Neurogenesis ; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan ; Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
Li, Lei-Li; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
Cheng, Chih-Ya; Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
Wu, Pei-Chun; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan ; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
Lin, You-Tai; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
Tang, Cheng-Yung; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
Ren, Bo-Shiun; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
Tai, Chin-Yin; Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
Fann, Ming-Ji; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan ; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
Kao, Lung-Sen; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan ; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
Hong, Chen-Jee; Brain Research Center, National Yang-Ming University, Taipei, Taiwan ; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan ; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
Tsai, Jin-Wu ; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan. tsaijw@ym.edu.tw ; Brain Research Center, National Yang-Ming University, Taipei, Taiwan. tsaijw@ym.edu.tw ; Biopotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan. tsaijw@ym.edu.tw
Language :
English
Title :
Rab18 Collaborates with Rab7 to Modulate Lysosomal and Autophagy Activities in the Nervous System: an Overlapping Mechanism for Warburg Micro Syndrome and Charcot-Marie-Tooth Neuropathy Type 2B.
We appreciate Dr. Mu-Ming Poo (University of California, Berkeley), Dr. Chih-Chiang Chan (National Taiwan University), and Ms. Elise Shen (University of Texas, Austin) for helpful comments and suggestions. The authors also wish to thank the Instrumentation Resource Center, National Yang-Ming University, and the National RNAi Core Facility at Academia Sinica, Taiwan for their technical support.Funding This work was supported by the grants of Yen Tjing Ling Medical Foundation (CI-103-4), the Ministry of Science and Technology (NSC 101-2320-B-010-077-MY2, 102-2314-B-075-079, 103-2628-B-010-002-MY3, 104-2633-H-010-001, 104-2745-B-075-001, 105-2633-B-009-003, 106-2321-B-075-001, 106-2628-B-010-002-MY3, and 107-2321-B-075-001), Taipei Veterans General Hospital-University System of Taiwan (VGHUST106-G7-5-2), National Health Research Institutes (NHRI-EX103-10314NC), and Academia Sinica, Taiwan (AS-104-TP-B09 and 2396-105-0100) to JWT; and Taiwan National Science Council (NSC 102-2314-B-075-005-MY3), Taipei Veterans General Hospital (V103E9-004 and V102C-173), and the Ministry of Education Taiwan, Aim for the Top University Plan to CJH. This work is also supported by the Development and Construction Program of NYMU School of Medicine (107F-M01-0502) and the Brain Research Center, NYMU through the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan.
Warburg M, Sjo O, Fledelius HC, Pedersen SA (1993) Autosomal recessive microcephaly, microcornea, congenital cataract, mental retardation, optic atrophy, and hypogenitalism. Micro syndrome. Am J Dis Child 147(12):1309–1312
Megarbane A, Choueiri R, Bleik J, Mezzina M, Caillaud C (1999) Microcephaly, microphthalmia, congenital cataract, optic atrophy, short stature, hypotonia, severe psychomotor retardation, and cerebral malformations: a second family with micro syndrome or a new syndrome? J Med Genet 36(8):637–640
Ainsworth JR, Morton JE, Good P, Woods CG, George ND, Shield JP, Bradbury J, Henderson MJ et al (2001) Micro syndrome in Muslim Pakistan children. Ophthalmology 108(3):491–497
Graham JM Jr, Hennekam R, Dobyns WB, Roeder E, Busch D (2004) MICRO syndrome: an entity distinct from COFS syndrome. Am J Med Genet A 128a(3):235–245. 10.1002/ajmg.a.30060
Rodriguez Criado G, Rufo M, Gomez de Terreros I (1999) A second family with micro syndrome. Clin Dysmorphol 8(4):241–245
Bem D, Yoshimura S, Nunes-Bastos R, Bond FC, Kurian MA, Rahman F, Handley MT, Hadzhiev Y et al (2011) Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet 88(4):499–507. 10.1016/j.ajhg.2011.03.012
Handley MT, Aligianis IA (2012) RAB3GAP1, RAB3GAP2 and RAB18: disease genes in micro and Martsolf syndromes. Biochem Soc Trans 40(6):1394–1397. 10.1042/bst20120169
Handley MT, Morris-Rosendahl DJ, Brown S, Macdonald F, Hardy C, Bem D, Carpanini SM, Borck G et al (2013) Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in Warburg micro syndrome and Martsolf syndrome. Hum Mutat 34(5):686–696. 10.1002/humu.22296
Liegel RP, Handley MT, Ronchetti A, Brown S, Langemeyer L, Linford A, Chang B, Morris-Rosendahl DJ, Carpanini S, Posmyk R, Harthill V, Sheridan E, Abdel-Salam GMH, Terhal PA, Faravelli F, Accorsi P, Giordano L, Pinelli L, Hartmann B, Ebert AD, Barr FA, Aligianis IA, Sidjanin DJ (2013) Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am J hum genet doi:10.1016/j.ajhg.2013.10.011, 93, 1001, 1014
Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91(1):119–149. 10.1152/physrev.00059.2009
Bucci C, De Luca M (2012) Molecular basis of Charcot-Marie-Tooth type 2B disease. Biochem Soc Trans 40(6):1368–1372. 10.1042/BST20120197
Cogli L, Piro F, Bucci C (2009) Rab7 and the CMT2B disease. Biochem Soc Trans 37 (Pt 5):1027–1031. doi:10.1042/bst0371027
Eggenschwiler JT, Espinoza E, Anderson KV (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412(6843):194–198. 10.1038/35084089
Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF, Donnai D, Josifova D et al (2007) RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet 80(6):1162–1170. 10.1086/518047
Hurvitz H, Gillis R, Klaus S, Klar A, Gross-Kieselstein F, Okon E (1993) A kindred with Griscelli disease: spectrum of neurological involvement. Eur J Pediatr 152(5):402–405
Haraldsson A, Weemaes CM, Bakkeren JA, Happle R (1991) Griscelli disease with cerebral involvement. Eur J Pediatr 150(6):419–422
Anikster Y, Huizing M, Anderson PD, Fitzpatrick DL, Klar A, Gross-Kieselstein E, Berkun Y, Shazberg G et al (2002) Evidence that Griscelli syndrome with neurological involvement is caused by mutations in RAB27A, not MYO5A. Am J Hum Genet 71(2):407–414. 10.1086/341606
Lu IL, Chen C, Tung CY, Chen HH, Pan JP, Chang CH, Cheng JS, Chen YA et al (2018) Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun 9(1):2498. 10.1038/s41467-018-04880-8
Seixas E, Barros M, Seabra MC, Barral DC (2013) Rab and Arf proteins in genetic diseases. Traffic 14(8):871–885. 10.1111/tra.12072
Giannandrea M, Bianchi V, Mignogna ML, Sirri A, Carrabino S, D’Elia E, Vecellio M, Russo S et al (2010) Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am J Hum Genet 86(2):185–195. 10.1016/j.ajhg.2010.01.011
Lutcke A, Parton RG, Murphy C, Olkkonen VM, Dupree P, Valencia A, Simons K, Zerial M (1994) Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. J Cell Sci 107(Pt 12):3437–3448
Yu H, Leaf DS, Moore HP (1993) Gene cloning and characterization of a GTP-binding Rab protein from mouse pituitary AtT-20 cells. Gene 132(2):273–278
Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG (2005) Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280(51):42325–42335. 10.1074/jbc.M506651200
Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118(Pt 12):2601–2611. 10.1242/jcs.02401
Martin S, Parton RG (2008) Characterization of Rab18, a lipid droplet-associated small GTPase. Methods Enzymol 438:109–129. 10.1016/S0076-6879(07)38008-7
Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F, Lopez-Miranda J, Fruhbeck G et al (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6(7):e22931. 10.1371/journal.pone.0022931
Pulido MR, Rabanal-Ruiz Y, Almabouada F, Diaz-Ruiz A, Burrell MA, Vazquez MJ, Castano JP, Kineman RD et al (2013) Nutritional, hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue. J Mol Endocrinol 50(1):19–29. 10.1530/JME-12-0140
Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279(45):46835–46842. 10.1074/jbc.M409340200
Makino A, Hullin-Matsuda F, Murate M, Abe M, Tomishige N, Fukuda M, Yamashita S, Fujimoto T et al (2016) Acute accumulation of free cholesterol induces the degradation of perilipin 2 and Rab18-dependent fusion of ER and lipid droplets in cultured human hepatocytes. Mol Biol Cell 27(21):3293–3304. 10.1091/mbc.E15-10-0730
Li C, Luo X, Zhao S, Siu GK, Liang Y, Chan HC, Satoh A, Yu SS (2017) COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J 36(4):441–457. 10.15252/embj.201694866
Dubiel D, Bintig W, Kahne T, Dubiel W, Naumann M (2017) Cul3 neddylation is crucial for gradual lipid droplet formation during adipogenesis. Biochim Biophys Acta 1864(8):1405–1412. 10.1016/j.bbamcr.2017.05.009
Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I, Handley MT, Barr FA (2014) Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol 205(5):707–720. 10.1083/jcb.201403026
Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, Lodge R, Dejgaard K, Ly-Hartig TB et al (2008) Rab18 and Rab43 have key roles in ER-Golgi trafficking. J Cell Sci 121(Pt 16):2768–2781. 10.1242/jcs.021808
Handley MT, Carpanini SM, Mali GR, Sidjanin DJ, Aligianis IA, Jackson IJ, FitzPatrick DR (2015) Warburg micro syndrome is caused by RAB18 deficiency or dysregulation. Open Biol 5(6):150047. 10.1098/rsob.150047
Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S (2014) Toward a comprehensive map of the effectors of rab GTPases. Dev Cell 31(3):358–373. 10.1016/j.devcel.2014.10.007
Malagon MM, Cruz D, Vazquez-Martinez R, Peinado JR, Anouar Y, Tonon MC, Vaudry H, Gracia-Navarro F et al (2005) Analysis of Rab18 and a new golgin in the secretory pathway. Ann N Y Acad Sci 1040:137–139. 10.1196/annals.1327.017
Vazquez-Martinez R, Cruz-Garcia D, Duran-Prado M, Peinado JR, Castano JP, Malagon MM (2007) Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules. Traffic 8(7):867–882. 10.1111/j.1600-0854.2007.00570.x
Salloum S, Wang H, Ferguson C, Parton RG, Tai AW (2013) Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog 9(8):e1003513. 10.1371/journal.ppat.1003513
Tang WC, Lin RJ, Liao CL, Lin YL (2014) Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol 88(12):6793–6804. 10.1128/jvi.00045-14
Chan SC, Lo SY, Liou JW, Lin MC, Syu CL, Lai MJ, Chen YC, Li HC (2011) Visualization of the structures of the hepatitis C virus replication complex. Biochem Biophys Res Commun 404(1):574–578. 10.1016/j.bbrc.2010.12.037
Hashim S, Mukherjee K, Raje M, Basu SK, Mukhopadhyay A (2000) Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes. J Biol Chem 275(21):16281–16288
Dansako H, Hiramoto H, Ikeda M, Wakita T, Kato N (2014) Rab18 is required for viral assembly of hepatitis C virus through trafficking of the core protein to lipid droplets. Virology 462-463:166–174. 10.1016/j.virol.2014.05.017
Feldmann A, Bekbulat F, Huesmann H, Ulbrich S, Tatzelt J, Behl C, Kern A (2017) The RAB GTPase RAB18 modulates macroautophagy and proteostasis. Biochem Biophys Res Commun 486(3):738–743. 10.1016/j.bbrc.2017.03.112
Carpanini SM, McKie L, Thomson D, Wright AK, Gordon SL, Roche SL, Handley MT, Morrison H et al (2014) A novel mouse model of Warburg micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. Dis Model Mech 7(6):711–722. 10.1242/dmm.015222
Cheng CY, Wu JC, Tsai JW, Nian FS, Wu PC, Kao LS, Fann MJ, Tsai SJ et al (2015) ENU mutagenesis identifies mice modeling Warburg micro syndrome with sensory axon degeneration caused by a deletion in Rab18. Exp Neurol 267:143–151. 10.1016/j.expneurol.2015.03.003
Tai CY, Mysore SP, Chiu C, Schuman EM (2007) Activity-regulated N-cadherin endocytosis. Neuron 54(5):771–785. 10.1016/j.neuron.2007.05.013
Liu YT, Nian FS, Chou WJ, Tai CY, Kwan SY, Chen C, Kuo PW, Lin PH et al (2016) PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects. Oncotarget 7(26):39184–39196. 10.18632/oncotarget.9258
Jheng GW, Hur SS, Chang CM, Wu CC, Cheng JS, Lee HH, Chung BC, Wang YK et al (2018) Lis1 dysfunction leads to traction force reduction and cytoskeletal disorganization during cell migration. Biochem Biophys Res Commun 497(3):869–875. 10.1016/j.bbrc.2018.02.151
Chen JL, Chang CH, Tsai JW (2018) Gli2 rescues delays in brain development induced by Kif3a dysfunction. Cereb Cortex 29:751–764. 10.1093/cercor/bhx356
Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300(4):C723–C742. 10.1152/ajpcell.00462.2010
Mitsumori K, Maita K, Shirasu Y (1981) An ultrastructural study of spinal nerve roots and dorsal root ganglia in aging rats with spontaneous radiculoneuropathy. Vet Pathol 18(6):714–726. 10.1177/030098588101800602
Samorajski T, Ordy JM, Rady-Reimer P (1968) Lipofuscin pigment accumulation in the nervous system of aging mice. Anat Rec 160(3):555–574. 10.1002/ar.1091600305
Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11(2):467–480
Hyttinen JM, Niittykoski M, Salminen A, Kaarniranta K (2013) Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim Biophys Acta 1833(3):503–510. 10.1016/j.bbamcr.2012.11.018
Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14(3):161–176. 10.1038/nrn3380
Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH Jr, Brown H et al (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29(41):12776–12786. 10.1523/jneurosci.3463-09.2009
Nelson MP, Tse TE, O’Quinn DB, Percival SM, Jaimes EA, Warnock DG, Shacka JJ (2014) Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the brains of alpha-galactosidase A-deficient mice. Acta Neuropathol Commun 2(1):20. 10.1186/2051-5960-2-20
Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997. 10.1038/nm.3232
Zhang L, Sheng R, Qin Z (2009) The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin Shanghai 41(6):437–445
Li JK, Fei P, Li Y, Huang QJ, Zhang Q, Zhang X, Rao YQ, Li J et al (2016) Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis. Sci Rep 6:26564. 10.1038/srep26564
Wu Q, Sun X, Yue W, Lu T, Ruan Y, Chen T, Zhang D (2016) RAB18, a protein associated with Warburg micro syndrome, controls neuronal migration in the developing cerebral cortex. Mol Brain 9:19. 10.1186/s13041-016-0198-2
Granger N (2011) Canine inherited motor and sensory neuropathies: an updated classification in 22 breeds and comparison to Charcot-Marie-tooth disease. Vet J 188(3):274–285. 10.1016/j.tvjl.2010.06.003
Mhlanga-Mutangadura T, Johnson GS, Schnabel RD, Taylor JF, Johnson GC, Katz ML, Shelton GD, Lever TE et al (2016) A mutation in the Warburg syndrome gene, RAB3GAP1, causes a similar syndrome with polyneuropathy and neuronal vacuolation in black Russian terrier dogs. Neurobiol Dis 86:75–85. 10.1016/j.nbd.2015.11.016