Global and Planetary Change; Stratigraphy; Paleontology
Abstract :
[en] The Devonian is a warmer-than-present geological period spanning from 419 to 359 million years ago (Ma) characterized by multiple identified ocean anoxic/hypoxic events. Despite decades of extensive investigation, no consensus has been reached regarding the drivers of these anoxic events. While growing geological evidence has demonstrated a temporal correlation between astronomical forcing and anoxia during this period, underlying physical mechanisms remain unknown, hence questioning causality. Here, we perform multiple sensitivity experiments, using an Earth system model of intermediate complexity (cGENIE), to isolate the influences of specific Devonian climate and palaeogeography components on ocean oxygen levels, contributing to the better understanding of the intricate interplay of factors preconditioning the ocean to anoxia. We quantify the impact of continental configuration, ocean–atmosphere biogeochemistry (global mean oceanic PO4 concentration and atmospheric pO2), climatic forcing (pCO2), and astronomical forcing on background oceanic circulation and oxygenation during the Devonian. Our results indicate that continental configuration is crucial for Devonian ocean anoxia, significantly influencing ocean circulation and oxygen levels while consistently modulating the effects of other Devonian climate components such as oceanic PO4 concentration, atmospheric pO2 and pCO2, and orbital forcing. The evolution of continental configuration provides a plausible explanation for the increased frequency of ocean anoxic events identified during the Middle and Late Devonian periods, as it contributed to the expansion of oxygen-depleted zones. Our simulations also show that both the decreased atmospheric pO2 and increased oceanic PO4 concentration exacerbate ocean anoxia, consistent with established knowledge. The variation of pCO2 reveals a wide range of ocean dynamics patterns, including stable oscillations, multiple convection cells, multistability, and hysteresis, all leading to significant variations of the ocean oxygen levels and therefore strongly impacting the preconditioning of the ocean to anoxia. Furthermore, multistability and important hysteresis (particularly slow ocean time response) offer different mechanisms to account for the prolonged duration of some ocean anoxic events. Finally, we found that astronomical forcing substantially impacts ocean anoxia by altering ocean circulation and oxygen solubility, with obliquity consistently emerging as the primary orbital parameter driving ocean oxygen variations.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Gérard, Justin ; Earth and Life Institute (ELI), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
Sablon, Loïc ; Earth and Life Institute (ELI), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
Huygh, Jarno ; Université de Liège - ULiège > Geology
Pohl, Alexandre ; Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
Vérard, Christian ; Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Crucifix, Michel ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires ; Earth and Life Institute (ELI), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
Language :
English
Title :
Exploring the mechanisms of Devonian oceanic anoxia: impact of ocean dynamics, palaeogeography, and orbital forcing
F.R.S.-FNRS - Fonds de la Recherche Scientifique ANR - Agence Nationale de la Recherche INSU - Institut National des Sciences de l'Univers Leverhulme Trust
Funding text :
This research is funded by the Belgian National Fund of Scientific Research (FNRS), project WarmAnoxia, PDR grant no. T.0037.22. Anne-Christine Da Silva was supported by FNRS CDR grant no. J.0037.21. Alexandre Pohl was supported by the French Agence Nationale de la Recherche (ANR) under references ANR-22-CE01-0003 (project ECO-BOOST) and ANR-23-CE01-0003 (project CYCLO-SED) and the programme TelluS of the Institut National des Sciences de l\u2019Univers, CNRS (project ROSETTA).Computational resources have been provided by the supercomputing facilities of the UCLouvain (CIS-M/UCL) and the Consortium des \u00C9quipements de Calcul Intensif en F\u00E9d\u00E9ration Wallonie Bruxelles (C\u00C9CI). We are grateful to the editor and reviewers for constructive comments during the editing process. This research is funded by the Belgian National Fund of Scientific Research (FNRS), project WarmAnoxia, PDR grant no. T.0037.22. Anne-Christine Da Silva was supported by FNRS CDR grant no. J.0037.21. Alexandre Pohl was supported by the French Agence Nationale de la Recherche (ANR) under references ANR-22-CE01-0003 (project ECO-BOOST) and ANR-23-CE01-0003 (project CYCLO-SED) and the programme TelluS of the Institut National des Sciences de l\u2019Univers, CNRS (project ROSETTA).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Algeo, T. J. and Scheckler, S. E.: Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events, Philos. T. Roy. Soc. B, 353, 113–130, https://doi.org/10.1098/rstb.1998.0195, 1998.
Becker, R., Marshall, J., Da Silva, A.-C., Agterberg, F., Grad-stein, F., and Ogg, J.: The Devonian Period, in: Geologic Time Scale 2020, Elsevier, 733–810, https://doi.org/10.1016/B978-012-824360-2.00022-X, 2020.
Bond, D. P. and Wignall, P. B.: The role of sea-level change and marine anoxia in the Frasnian–Famennian (Late Devonian) mass extinction, Palaeogeogr. Palaeocl., 263, 107–118, https://doi.org/10.1016/j.palaeo.2008.02.015, 2008.
Boyer, D. L., Haddad, E. E., and Seeger, E. S.: The last gasp: trace fossils track deoxygenation leading into the Frasnian–Famennian extinction event, PALAIOS, 29, 646–651, https://doi.org/10.2110/palo.2014.049, 2014.
Brugger, J., Hofmann, M., Petri, S., and Feulner, G.: On the Sensitivity of the Devonian Climate to Continental Configuration, Vegetation Cover, Orbital Configuration, CO2 Concentration, and Insolation, Paleoceanography and Paleoclimatology, 34, 1375–1398, https://doi.org/10.1029/2019PA003562, 2019.
Brunetti, M., Kasparian, J., and Vérard, C.: Co-existing climate attractors in a coupled aquaplanet, Clim. Dynam., 53, 6293–6308, https://doi.org/10.1007/s00382-019-04926-7, 2019.
Cannell, A., Blamey, N., Brand, U., Escapa, I., and Large, R.: A revised sedimentary pyrite proxy for atmospheric oxygen in the Paleozoic: Evaluation for the Silurian-Devonian-Carboniferous period and the relationship of the results to the observed biosphere record, Earth-Sci. Rev., 231, 104062, https://doi.org/10.1016/j.earscirev.2022.104062, 2022.
Cao, L., Eby, M., Ridgwell, A., Caldeira, K., Archer, D., Ishida, A., Joos, F., Matsumoto, K., Mikolajewicz, U., Mouchet, A., Orr, J. C., Plattner, G.-K., Schlitzer, R., Tokos, K., Totterdell, I., Tschumi, T., Yamanaka, Y., and Yool, A.: The role of ocean transport in the uptake of anthropogenic CO2, Biogeosciences, 6, 375–390, https://doi.org/10.5194/bg-6-375-2009, 2009.
Carmichael, S. K., Waters, J. A., Königshof, P., Suttner, T. J., and Kido, E.: Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression, Global Planet. Change, 183, 102984, https://doi.org/10.1016/j.gloplacha.2019.102984, 2019.
Cermeño, P., García-Comas, C., Pohl, A., Williams, S., Benton, M. J., Chaudhary, C., Le Gland, G., Müller, R. D., Ridgwell, A., and Vallina, S. M.: Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots, Nature, 607, 507–511, https://doi.org/10.1038/s41586-022-04932-6, 2022.
Chen, D., Wang, J., Racki, G., Li, H., Wang, C., Ma, X., and Whalen, M. T.: Large sulphur isotopic perturbations and oceanic changes during the Frasnian–Famennian transition of the Late Devonian, J. Geol. Soc. London, 170, 465–476, https://doi.org/10.1144/jgs2012-037, 2013.
Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M.-F., Weber, S., Alcamo, J., Alexeev, V., Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I., Petoukhov, V., Stone, P., and Wang, Z.: Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models, Clim. Dynam., 18, 579–586, https://doi.org/10.1007/s00382-001-0200-1, 2002.
Crichton, K. A., Ridgwell, A., Lunt, D. J., Farnsworth, A., and Pearson, P. N.: Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model, Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, 2021.
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P. G., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H., and Canfield, D. E.: Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish, P. Natl. Acad. Sci. USA, 107, 17911–17915, https://doi.org/10.1073/pnas.1011287107, 2010.
Dahl, T. W., Harding, M. A., Brugger, J., Feulner, G., Norrman, K., Lomax, B. H., and Junium, C. K.: Low atmospheric CO2 levels before the rise of forested ecosystems, Nat. Commun., 13, 7616, https://doi.org/10.1038/s41467-022-35085-9, 2022.
Da Silva, A.-C., Sinnesael, M., Claeys, P., Davies, J. H. F. L., De Winter, N. J., Percival, L. M. E., Schaltegger, U., and De Vleeschouwer, D.: Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating, Sci. Rep., 10, 12940, https://doi.org/10.1038/s41598-020-69097-6, 2020.
De Vleeschouwer, D., Rakociński, M., Racki, G., Bond, D. P., Sobień, K., and Claeys, P.: The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland), Earth Planet. Sc. Lett., 365, 25–37, https://doi.org/10.1016/j.epsl.2013.01.016, 2013.
De Vleeschouwer, D., Crucifix, M., Bounceur, N., and Claeys, P.: The impact of astronomical forcing on the Late Devonian greenhouse climate, Global Planet. Change, 120, 65–80, https://doi.org/10.1016/j.gloplacha.2014.06.002, 2014.
De Vleeschouwer, D., Boulvain, F., Da Silva, A.-C., Pas, D., Labaye, C., and Claeys, P.: The astronomical calibration of the Givetian (Middle Devonian) timescale (Dinant Synclinorium, Belgium), Geological Society, London, Special Publications, 414, 245–256, https://doi.org/10.1144/SP414.3, 2015.
De Vleeschouwer, D., Da Silva, A.-C., Sinnesael, M., Chen, D., Day, J. E., Whalen, M. T., Guo, Z., and Claeys, P.: Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity, Nat. Commun., 8, 2268, https://doi.org/10.1038/s41467-017-02407-1, 2017.
Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck, J.-F.: A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration, Nat. Commun., 7, 10316, https://doi.org/10.1038/ncomms10316, 2016.
Dopieralska, J.: Reconstructing seawater circulation on the Moroccan shelf of Gondwana during the Late Devonian: Evidence from Nd isotope composition of conodonts, Geochem. Geophy. Geosy., 10, 2008GC002247, https://doi.org/10.1029/2008GC002247, 2009.
Eberhard, J., Bevan, O. E., Feulner, G., Petri, S., van Hunen, J., and Baldini, J. U. L.: Sensitivity of Neoproterozoic snowball-Earth inceptions to continental configuration, orbital geometry, and volcanism, Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, 2023.
Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24, 415–433, https://doi.org/10.1007/s00382-004-0508-8, 2005.
Ferreira, D., Marshall, J., and Rose, B.: Climate Determinism Revisited: Multiple Equilibria in a Complex Climate Model, J. Climate, 24, 992–1012, https://doi.org/10.1175/2010JCLI3580.1, 2011.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845, 2017.
Gérard, J. and Crucifix, M.: Diagnosing the causes of AMOC slowdown in a coupled model: a cautionary tale, Earth Syst. Dynam., 15, 293–306, https://doi.org/10.5194/esd-15-293-2024, 2024.
Gough, D.: Solar interior structure and luminosity variations, in: Physics of Solar Variations: Proceedings of the 14th ESLAB Symposium held in Scheveningen, the Netherlands, 16–19 September 1980, Springer, 21–34, https://doi.org/10.1007/978-94-010-9633-1_4, 1981.
Haddad, E. E., Boyer, D. L., Droser, M. L., Lee, B. K., Lyons, T. W., and Love, G. D.: Ichnofabrics and chemostratigraphy argue against persistent anoxia during the Upper Kellwasser Event in New York State, Palaeogeogr. Palaeocl., 490, 178–190, https://doi.org/10.1016/j.palaeo.2017.10.025, 2018.
Hedhli, M., Grasby, S., Henderson, C., and Davis, B.: Multiple diachronous “Black Seas” mimic global ocean anoxia during the latest Devonian, Geology, 51, 973–977, https://doi.org/10.1130/G51394.1, 2023.
Hibler, W. D.: A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815–846, https://doi.org/10.1175/15200485(1979)009<0815:ADTSIM>2.0.CO;2, 1979.
Hughes, T. M. C. and Weaver, A. J.: Multiple Equilibria of an Asymmetric Two-Basin Ocean Model, J. Phys. Oceanogr., 24, 619–637, https://doi.org/10.1175/15200485(1994)024<0619:MEOAAT>2.0.CO;2, 1994.
Hülse, D., Lau, K. V., Van De Velde, S. J., Arndt, S., Meyer, K. M., and Ridgwell, A.: End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia, Nat. Geosci., 14, 862–867, https://doi.org/10.1038/s41561-021-00829-7, 2021.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophy. Geosy., 11, 2009GC002788, https://doi.org/10.1029/2009GC002788, 2010.
Joachimski, M., Breisig, S., Buggisch, W., Talent, J., Maw-son, R., Gereke, M., Morrow, J., Day, J., and Weddige, K.: Devonian climate and reef evolution: Insights from oxygen isotopes in apatite, Earth Planet. Sc. Lett., 284, 599–609, https://doi.org/10.1016/j.epsl.2009.05.028, 2009.
Kabanov, P., Hauck, T. E., Gouwy, S. A., Grasby, S. E., and Van Der Boon, A.: Oceanic anoxic events, photiczone euxinia, and controversy of sea-level fluctuations during the Middle-Late Devonian, Earth-Sci. Rev., 241, 104415, https://doi.org/10.1016/j.earscirev.2023.104415, 2023.
Kaiser, S. I., Aretz, M., and Becker, R. T.: The global Hangenberg Crisis (Devonian–Carboniferous transition): review of a first-order mass extinction, Geological Society, London, Special Publications, 423, 387–437, https://doi.org/10.1144/SP423.9, 2016.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: a new orbital solution for the long-term motion of the Earth, Astron. Astrophys., 532, A89, https://doi.org/10.1051/00046361/201116836, 2011.
Lawver, L. A. and Gahagan, L. M.: Evolution of Cenozoic seaways in the circum-Antarctic region, Palaeogeogr. Palaeocl., 198, 11–37, https://doi.org/10.1016/S0031-0182(03)00392-4, 2003.
Li, Y. and Yang, H.: A Theory for Self-Sustained Multicentennial Oscillation of the Atlantic Meridional Overturning Circulation, J. Climate, 35, 5883–5896, https://doi.org/10.1175/JCLI-D-210685.1, 2022.
Lohmann, J., Dijkstra, H. A., Jochum, M., Lucarini, V., and Ditlevsen, P. D.: Multistability and intermediate tipping of the Atlantic Ocean circulation, Science Advances, 10, eadi4253, https://doi.org/10.1126/sciadv.adi4253, 2024.
Lunt, D. J., Williamson, M. S., Valdes, P. J., Lenton, T. M., and Marsh, R.: Comparing transient, accelerated, and equilibrium simulations of the last 30 000 years with the GENIE-1 model, Clim. Past, 2, 221–235, https://doi.org/10.5194/cp-2-221-2006, 2006.
Mack, C. L. J.: Modelling the Late Devonian Climate: Implications for evolution and extinction, PhD thesis, University of Oxford, https://ora.ox.ac.uk/objects/uuid: 95ac6924-cf4b-43bb-9c02-fb9d37acb596 (last access: 20 January 2025), 2021.
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions, Global Biogeochem. Cy., 7, 645–677, https://doi.org/10.1029/93GB01355, 1993.
Marcilly, C. M.-., Maffre, P., Le Hir, G., Pohl, A., Fluteau, F., Goddéris, Y., Donnadieu, Y., H. Heimdal, T., and Torsvik, T. H.: Understanding the early Paleozoic carbon cycle balance and climate change from modelling, Earth Planet. Sc. Lett., 594, 117717, https://doi.org/10.1016/j.epsl.2022.117717, 2022.
Margazoglou, G., Grafke, T., Laio, A., and Lucarini, V.: Dynamical landscape and multistability of a climate model, P. R. Soc. A, 477, 20210019, https://doi.org/10.1098/rspa.2021.0019, 2021.
Marsh, R., Müller, S. A., Yool, A., and Edwards, N. R.: Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: “eb_go_gs” configurations of GENIE, Geosci. Model Dev., 4, 957–992, https://doi.org/10.5194/gmd-4-957-2011, 2011.
Marsh, R., Sóbester, A., Hart, E. E., Oliver, K. I. C., Edwards, N. R., and Cox, S. J.: An optimally tuned ensemble of the “eb_go_gs” configuration of GENIE: parameter sensitivity and bifurcations in the Atlantic overturning circulation, Geosci. Model Dev., 6, 1729–1744, https://doi.org/10.5194/gmd-6-1729-2013, 2013.
Merdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, J. A., Blades, M. L., Young, A., Armistead, S. E., Cannon, J., Zahirovic, S., and Müller, R. D.: Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic, Earth-Sci. Rev., 214, 103477, https://doi.org/10.1016/j.earscirev.2020.103477, 2021.
Meyers, S. R., Sageman, B. B., and Arthur, M. A.: Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2, Paleoceanography, 27, 2012PA002286, https://doi.org/10.1029/2012PA002286, 2012.
Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.: Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison, Paleoceanography, 27, 2012PA002351, https://doi.org/10.1029/2012PA002351, 2012.
Paschall, O., Carmichael, S. K., Königshof, P., Waters, J. A., Ta, P. H., Komatsu, T., and Dombrowski, A.: The Devonian-Carboniferous boundary in Vietnam: Sustained ocean anoxia with a volcanic trigger for the Hangenberg Crisis?, Global Planet. Change, 175, 64–81, https://doi.org/10.1016/j.gloplacha.2019.01.021, 2019.
Peltier, W. R. and Vettoretti, G.: Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A “kicked” salt oscillator in the Atlantic, Geophys. Res. Lett., 41, 7306–7313, https://doi.org/10.1002/2014GL061413, 2014.
Percival, L., Bond, D., Rakociński, M., Marynowski, L., Hood, A., Adatte, T., Spangenberg, J., and Föllmi, K.: Phosphorus-cycle disturbances during the Late Devonian anoxic events, Global Planet. Change, 184, 103070, https://doi.org/10.1016/j.gloplacha.2019.103070, 2020.
Percival, L. M., Marynowski, L., Baudin, F., Goderis, S., De Vleeschouwer, D., Rakociński, M., Narkiewicz, K., Corradini, C., Da Silva, A.-C., and Claeys, P.: Combined nitrogen-isotope and cyclostratigraphy evidence for temporal and spatial variability in Frasnian–Famennian Environmental Change, Geochem. Geophy. Geosy., 23, e2021GC010308, https://doi.org/10.1029/2021GC010308, 2022.
Pohl, A., Lu, Z., Lu, W., Stockey, R. G., Elrick, M., Li, M., Desrochers, A., Shen, Y., He, R., Finnegan, S., and Ridgwell, A.: Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation, Nat. Geosci., 14, 868–873, https://doi.org/10.1038/s41561-021-00843-9, 2021.
Pohl, A., Ridgwell, A., Stockey, R. G., Thomazo, C., Keane, A., Vennin, E., and Scotese, C. R.: Continental configuration controls ocean oxygenation during the Phanerozoic, Nature, 608, 523–527, https://doi.org/10.1038/s41586-022-05018-z, 2022.
Pohl, A., Stockey, R. G., Dai, X., Yohler, R., Le Hir, G., Hülse, D., Brayard, A., Finnegan, S., and Ridgwell, A.: Why the Early Paleozoic was intrinsically prone to marine extinction, Science Advances, 9, eadg7679, https://doi.org/10.1126/sciadv.adg7679, 2023.
Rae, J. W. B., Gray, W. R., Wills, R. C. J., Eisenman, I., Fitzhugh, B., Fotheringham, M., Littley, E. F. M., Rafter, P. A., Rees-Owen, R., Ridgwell, A., Taylor, B., and Burke, A.: Overturning circulation, nutrient limitation, and warming in the Glacial North Pacific, Science Advances, 6, eabd1654, https://doi.org/10.1126/sciadv.abd1654, 2020.
Rahmstorf, S.: Multiple Convection Patterns and Thermohaline Flow in an Idealized OGCM, J. Climate, 8, 3028–3039, https://doi.org/10.1175/1520-0442(1995)008<3028:MCPATF>2.0.CO;2, 1995.
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., and Weaver, A. J.: Thermohaline circulation hysteresis: A model intercomparison, Geophys. Res. Lett., 32, 2005GL023655, https://doi.org/10.1029/2005GL023655, 2005.
Reinhard, C. T., Olson, S. L., Kirtland Turner, S., Pälike, C., Kanzaki, Y., and Ridgwell, A.: Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14, Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, 2020.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Ridgwell, A., Hülse, D., Peterson, C., Ward, B., Ted, evansmn, and Jones, R.: derpycode/muffindoc: v0.24-574-NSF (v0.24-574-NSF), Zenodo [code], https://doi.org/10.5281/zenodo.13377225, 2024.
Ridgwell, A., Reinhard, C., van de Velde, S., Adloff, M., Monteiro, F., Camillalxy98, Vervoort, P., Kanzaki, Y., Ward, B., Hülse, D., Wilson, J., Li, M., InkyANB, and Kirtland Turner, S.: derpycode/cgenie.muffin: v0.9.59 (v0.9.59), Zenodo [code], https://doi.org/10.5281/zenodo.14680971, 2025.
Sakai, K. and Peltier, W. R.: Dansgaard–Oeschger Oscillations in a Coupled Atmosphere–Ocean Climate Model, J. Climate, 10, 949–970, https://doi.org/10.1175/15200442(1997)010<0949:DOOIAC>2.0.CO;2, 1997.
Sarr, A., Donnadieu, Y., Laugié, M., Ladant, J., Suchéras-Marx, B., and Raisson, F.: Ventilation Changes Drive Orbital-Scale Deoxygenation Trends in the Late Cretaceous Ocean, Geophys. Res. Lett., 49, e2022GL099830, https://doi.org/10.1029/2022GL099830, 2022.
Scotese, C. R. and Wright, N.: PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic, Paleomap Proj, https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/ (last access: 20 January 2025), 2018.
Semtner Jr., A. J.: A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr., 6, 379–389, https://doi.org/10.1175/15200485(1976)006<0379:AMFTTG>2.0.CO;2, 1976.
Sévellec, F. and Fedorov, A. V.: Millennial Variability in an Idealized Ocean Model: Predicting the AMOC Regime Shifts, J. Climate, 27, 3551–3564, https://doi.org/10.1175/JCLI-D-1300450.1, 2014.
Song, H., Song, H., Algeo, T. J., Tong, J., Romaniello, S. J., Zhu, Y., Chu, D., Gong, Y., and Anbar, A. D.: Uranium and carbon isotopes document global-ocean redox-productivity relationships linked to cooling during the Frasnian-Famennian mass extinction, Geology, 45, 887–890, https://doi.org/10.1130/G39393.1, 2017.
Stein, W. E., Berry, C. M., Morris, J. L., Hernick, L. V., Mannolini, F., Ver Straeten, C., Landing, E., Marshall, J. E., Wellman, C. H., Beerling, D. J., and Leake, J. R.: Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests, Curr. Biol., 30, 421–431.e2, https://doi.org/10.1016/j.cub.2019.11.067, 2020.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.: Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic, Nature, 457, 711–714, https://doi.org/10.1038/nature07717, 2009.
Turner, B. W. and Slatt, R. M.: Assessing bottom water anoxia within the Late Devonian Woodford Shale in the Arkoma Basin, southern Oklahoma, Mar. Petrol. Geol., 78, 536–546, https://doi.org/10.1016/j.marpetgeo.2016.10.009, 2016.
Valdes, P. J., Scotese, C. R., and Lunt, D. J.: Deep ocean temperatures through time, Clim. Past, 17, 1483–1506, https://doi.org/10.5194/cp-17-1483-2021, 2021.
Vandenbroucke, T. R. A., Emsbo, P., Munnecke, A., Nuns, N., Duponchel, L., Lepot, K., Quijada, M., Paris, F., Servais, T., and Kiessling, W.: Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction, Nat. Commun., 6, 7966, https://doi.org/10.1038/ncomms8966, 2015.
Vérard, C.: Panalesis: towards global synthetic palaeogeographies using integration and coupling of manifold models, Geol. Mag., 156, 320–330, https://doi.org/10.1017/S0016756817001042, 2019a.
Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M., and Liu, M.: 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations, Journal of Palaeogeography, 4, 64–84, https://doi.org/10.3724/SP.J.1261.2015.00068, 2015.
Vervoort, P., Kirtland Turner, S., Rochholz, F., and Ridgwell, A.: Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record: The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks, Paleoceanography and Paleoclimatology, 39, e2023PA004826, https://doi.org/10.1029/2023PA004826, 2024.
Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen, S. O.: Atmospheric CO2 control of spontaneous millennial-scale ice age climate oscillations, Nat. Geosci., 15, 300–306, https://doi.org/10.1038/s41561-022-00920-7, 2022.
Von Der Heydt, A. and Dijkstra, H. A.: Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene, Paleoceanography, 21, 2005PA001149, https://doi.org/10.1029/2005PA001149, 2006.
Ward, B. A., Wilson, J. D., Death, R. M., Monteiro, F. M., Yool, A., and Ridgwell, A.: EcoGEnIE 1.0: plankton ecology in the cGEnIE Earth system model, Geosci. Model Dev., 11, 4241–4267, https://doi.org/10.5194/gmd-11-4241-2018, 2018.
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L., Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates, Atmos. Ocean, 39, 361–428, https://doi.org/10.1080/07055900.2001.9649686, 2001.
Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson, L. C., Liu, W., McDonagh, E. L., Mecking, J. V., and Zhang, J.: Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis, J. Geophys. Res.-Oceans, 124, 5336–5375, https://doi.org/10.1029/2019jc015083, 2019.
Wichern, N. M. A., Bialik, O. M., Nohl, T., Percival, L. M. E., Becker, R. T., Kaskes, P., Claeys, P., and De Vleeschouwer, D.: Astronomically paced climate and carbon cycle feedbacks in the lead-up to the Late Devonian Kellwasser Crisis, Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, 2024.
Wong Hearing, T. W., Pohl, A., Williams, M., Donnadieu, Y., Harvey, T. H. P., Scotese, C. R., Sepulchre, P., Franc, A., and Vandenbroucke, T. R. A.: Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate, Nat. Commun., 12, 3868, https://doi.org/10.1038/s41467-021-24141-5, 2021.
Yang, S., Galbraith, E., and Palter, J.: Coupled climate impacts of the Drake Passage and the Panama Seaway, Clim. Dynam., 43, 37–52, https://doi.org/10.1007/s00382-013-1809-6, 2014.
Zhang, F., Dahl, T. W., Lenton, T. M., Luo, G., Shen, S.-z., Algeo, T. J., Planavsky, N., Liu, J., Cui, Y., Qie, W., Romaniello, S. J., and Anbar, A. D.: Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis, Earth Planet. Sc. Lett., 533, 115976, https://doi.org/10.1016/j.epsl.2019.115976, 2020a.
Zhang, L., Chen, D., Kuang, G., Guo, Z., Zhang, G., and Wang, X.: Persistent oxic deep ocean conditions and frequent volcanic activities during the Frasnian-Famennian transition recorded in South China, Global Planet. Change, 195, 103350, https://doi.org/10.1016/j.gloplacha.2020.103350, 2020b.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.