2D materials; Chemical modification; Dielectric; Electrochemical detection; Siloxene; 2d material; Benzyl group; Characterization studies; Dielectric studies; ELectrochemical detection; Electrochemical studies; Electronics devices; Functionalized; Miniaturisation; Electronic, Optical and Magnetic Materials
Abstract :
[en] Silicon is one of the most used materials in semiconductors and electronic devices. Its miniaturization in two-dimensional (2D) scale is now a great challenge to improve and/or extend its application in many practical fields. Layered siloxene nanosheet (SiNS), a derived 2D silicon material with –H and –OH functional groups synthesized from calcium di-silicide (CaSi2) have attracted a great interest while its functionalization has been barely explored. Herein, the strategy of direct exfoliation of CaSi2 by thermal heating with benzyl groups was explored, leading to air stable functionalized silicon nanosheets. The obtained dispersible thin materials were found to be mostly Kautsky-type crystalline siloxene nanosheets that are arbitrarily terminated with benzyl, hydrogen and hydroxyl groups. Moreover, the dielectric study with temperature dependency showed high dielectric permittivities, without any conducting polymer, induced by different phenomena occurring on the layered nanosheets. Electrochemical studies displayed a diffusion-controlled process involving a fast electron transfer with the functionalized silicon-based materials as working electrodes deposited on carbon graphite electrode (CGE) in the presence of ferricyanide ions. Organo-modified siloxene are therefore potential electrode materials for electrochemical detection.
Disciplines :
Chemistry
Author, co-author :
Nayad, Abdallah; Laboratoire de Chimie Moléculaire, Unité de Chimie de Coordination Et Catalyse, Faculté Des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
Hasnaoui, Ali; Laboratoire de Chimie Moléculaire, Unité de Chimie de Coordination Et Catalyse, Faculté Des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
Hadouch, Youness; Laboratory of Innovative Materials, Energy and Sustainable Development (IMED), Faculté Des Sciences Et Techniques, Université Cadi Ayyad, Marrakech, Morocco
Fkhar, Lahcen ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Laboratoire de Chimie Moléculaire, Unité de Chimie de Coordination Et Catalyse, Faculté Des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
Idouhli, Rachid; Laboratoire de Chimie Appliquée Et Biomasse, Faculté Des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
Abdessalam, Abouelfida; Laboratoire de Chimie Appliquée Et Biomasse, Faculté Des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
Mehdi, Ahmad; Institut Charles Gerhardt Montpellier, Université Montpellier, CNRS, ENSCM, Montpellier, France
Dikici, Burak; Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
Mezzane, Daoud; Laboratory of Innovative Materials, Energy and Sustainable Development (IMED), Faculté Des Sciences Et Techniques, Université Cadi Ayyad, Marrakech, Morocco
Firdoussi, Larbi El; Laboratoire de Chimie Moléculaire, Unité de Chimie de Coordination Et Catalyse, Faculté Des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
Ait Ali, Mustapha ; Laboratoire de Chimie Moléculaire, Unité de Chimie de Coordination Et Catalyse, Faculté Des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
Language :
English
Title :
Chemical Synthesis of Organo-siloxene 2D Materials from Calcium Di-Silicide: Characterization, Dielectric and Electrochemical Studies
The authors would like to thank first Pr. Kacim Salah and Dr. Anass Benayad for the help in XPS discussion, and secondly the technical staff of the CAC (Centre of Analysis and Characterization) of Cadi Ayyad University for running SEM-EDS, FT-IR and XRD analyses.
Fang B, Chang D, Xu Z, Gao C (2020) A review on graphene fibers: expectations, advances, and prospects. Adv Mater 32:1–29. 10.1002/adma.201902664 DOI: 10.1002/adma.201902664
Wang HF, Tang C, Zhang Q (2019) A review of graphene-based 3D van der Waals hybrids and their energy applications. Nano Today 25:27–37. 10.1016/j.nantod.2019.02.006 DOI: 10.1016/j.nantod.2019.02.006
Avouris P, Dimitrakopoulos C (2012) Graphene: Synthesis and applications. Mater Today 15:86–97. 10.1016/S1369-7021(12)70044-5 DOI: 10.1016/S1369-7021(12)70044-5
Zhang P, Wang F, Yu M et al (2018) Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem Soc Rev 47:7426–7451. 10.1039/c8cs00561c DOI: 10.1039/c8cs00561c
Zhang X, Hou L, Ciesielski A, Samorì P (2016) 2D materials beyond graphene for high-performance energy storage applications. Adv Energy Mater 6:1600671. 10.1002/aenm.201600671 DOI: 10.1002/aenm.201600671
Ashraf N, Isa khan M, Majid A et al (2020) A review of the interfacial properties of 2-D materials for energy storage and sensor applications. Chinese J Phys 66:246–257. 10.1016/j.cjph.2020.03.035 DOI: 10.1016/j.cjph.2020.03.035
Yu S, Wu X, Wang Y et al (2017) 2D Materials for optical modulation: challenges and opportunities. Adv Mater 29
Lu J, Liu H (2018) A critical review on the carrier dynamics in 2D layered materials investigated using THz spectroscopy. Opt Commun 406:24–35. 10.1016/j.optcom.2017.06.069 DOI: 10.1016/j.optcom.2017.06.069
Backes C, Higgins TM, Kelly A et al (2017) Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem Mater 29:243–255. 10.1021/acs.chemmater.6b03335 DOI: 10.1021/acs.chemmater.6b03335
Wu W, Zhang C, Hou S (2017) Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets. J Mater Sci 52:10649–10660. 10.1007/s10853-017-1289-x DOI: 10.1007/s10853-017-1289-x
Balendhran S, Walia S, Nili H et al (2015) Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small 11:640–652 DOI: 10.1002/smll.201402041
Trivedi S, Srivastava A, Kurchania R (2014) Silicene and germanene: A first principle study of electronic structure and effect of hydrogenation-passivation. J Comput Theor Nanosci 11:781–788. 10.1166/jctn.2014.3428 DOI: 10.1166/jctn.2014.3428
Matthes L, Pulci O, Bechstedt F (2013) Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene. J Phys Condens Matter 25:395305–395312. 10.1088/0953-8984/25/39/395305 DOI: 10.1088/0953-8984/25/39/395305
Mortazavi B, Dianat A, Cuniberti G, Rabczuk T (2016) Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation. Electrochim Acta 213:865–870. 10.1016/j.electacta.2016.08.027 DOI: 10.1016/j.electacta.2016.08.027
Oughaddou H, Enriquez H, Tchalala MR et al (2015) Silicene, a promising new 2D material. Prog Surf Sci 90:46–83. 10.1016/j.progsurf.2014.12.003 DOI: 10.1016/j.progsurf.2014.12.003
Sone J, Yamagami T, Aoki Y et al (2014) Epitaxial growth of silicene on ultra-thin Ag(111) films. New J Phys 16:095004. 10.1088/1367-2630/16/9/095004 DOI: 10.1088/1367-2630/16/9/095004
Meng L, Wang Y, Zhang L et al (2013) Buckled silicene formation on Ir(111). Nano Lett 13:685–690. 10.1021/nl304347w DOI: 10.1021/nl304347w
Aizawa T, Suehara S, Otani S (2014) Silicene on zirconium carbide (111). J Phys Chem C 118:23049–23057. 10.1021/jp505602c DOI: 10.1021/jp505602c
Dávila ME, Le Lay G (2016) Few layer epitaxial germanene: A novel two-dimensional Dirac material. Sci Rep 6:1–9. 10.1038/srep20714 DOI: 10.1038/srep20714
Li L, Lu SZ, Pan J et al (2014) Buckled germanene formation on Pt(111). Adv Mater 26:4820–4824. 10.1002/adma.201400909 DOI: 10.1002/adma.201400909
Ogikubo T, Shimazu H, Fujii Y et al (2020) Continuous growth of germanene and stanene lateral heterostructures. Adv Mater Interfaces 7:1902132. 10.1002/admi.201902132 DOI: 10.1002/admi.201902132
Li P, Zhao G, Zheng X et al (2018) Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater 15:422–446 DOI: 10.1016/j.ensm.2018.07.014
Colas A, Curtis J (2004) Silicone biomaterials: History and chemistry & Medical applications of silicones. In: Biomaterials Science: an introduction to materials in medicine. Elsevier Academic Press, pp 80–86
Ksenofontova OI, Vasin AV, Egorov VV et al (2014) Porous silicon and its applications in biology and medicine. Tech Phys 59:66–77. 10.1134/S1063784214010083 DOI: 10.1134/S1063784214010083
Nalwa HS (2001) Silicon-based material and devices, two-volume set: materials and processing, properties and devices. Academic Press Inc
Yang W, Chen J, Zhang Y et al (2019) Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology. Adv Funct Mater 29:1808182. 10.1002/adfm.201808182 DOI: 10.1002/adfm.201808182
Molle A, Grazianetti C, Tao L et al (2018) Silicene, silicene derivatives, and their device applications. Chem Soc Rev 47:6370–6387. 10.1039/c8cs00338f DOI: 10.1039/c8cs00338f
Xu X, Zhou L, Ding D et al (2020) Silicene quantum dots confined in few-layer siloxene nanosheets for blue-light-emitting diodes. ACS Appl Nano Mater 3:538–546. 10.1021/acsanm.9b02091 DOI: 10.1021/acsanm.9b02091
Imagawa H, Takahashi N, Nonaka T et al (2015) Synthesis of a calcium-bridged siloxene by a solid state reaction for optical and electrochemical properties. J Mater Chem A 3:9411–9414. 10.1039/c5ta00321k DOI: 10.1039/c5ta00321k
Huang Y, Yuan P, Kumazawa Y et al (2018) Morphological and structural modifications of Si-based nanostructures synthesized from metal silicide templates in IP6, acid and metal chloride solutions. In: Defect and Diffusion Forum. Trans Tech Publications Ltd, pp 61–67
Meng X, Yuan P, Hayakawa Y et al (2018) Formation of Si-based nanosheet bundles and morphological modification of CaSi2 crystals by thermal treatment using chloride compounds. e-Journal Surf Sci Nanotechnol 16:218–224. 10.1380/ejssnt.2018.218 DOI: 10.1380/ejssnt.2018.218
Tchalala MR, Ali MA, Enriquez H et al (2013) Silicon sheets by redox assisted chemical exfoliation. J Phys Condens Matter 25:442001. 10.1088/0953-8984/25/44/442001 DOI: 10.1088/0953-8984/25/44/442001
Ali MA, Tchalala MR (2014) Chemical Synthesis of Silicon Nanosheets from layered calcium disilicide. J Phys Conf Ser 491:012009. 10.1088/1742-6596/491/1/012009 DOI: 10.1088/1742-6596/491/1/012009
Wöhler F (1863) Ueber Verbindungen des Siliciums mit Sauerstoff und Wasserstoff. Justus Liebigs Ann Chem 127:257–274. 10.1002/jlac.18631270302 DOI: 10.1002/jlac.18631270302
Weiss A, Beil G, Meyer H (1980) The topochemical reaction of CaSi2 to a two-dimensional subsiliceous acid Si6H3(OH)3 (= Kautskys’ Siloxene). Zeitschrift fur Naturforsch - Sect B J Chem Sci 35:25–30. 10.1515/znb-1980-0108 DOI: 10.1515/znb-1980-0108
Nakano H, Ishii M, Nakamura H (2005) Preparation and structure of novel siloxene nanosheets. Chem Commun 2:2945–2947. 10.1039/b500758e DOI: 10.1039/b500758e
Ryan BJ, Hanrahan MP, Wang Y et al (2020) Silicene, siloxene, or silicane? Revealing the structure and optical properties of silicon nanosheets derived from calcium disilicide. Chem Mater 32:795–804. 10.1021/acs.chemmater.9b04180 DOI: 10.1021/acs.chemmater.9b04180
Karar D, Bandyopadhyay NR, Pramanick AK et al (2018) Quasi-two-dimensional luminescent silicon nanosheets. J Phys Chem C 122:18912–18921. 10.1021/acs.jpcc.8b03988 DOI: 10.1021/acs.jpcc.8b03988
Guo Q, Han Y, Chen N, Qu L (2021) Few-layer siloxene as an electrode for superior high-rate zinc ion hybrid capacitors. ACS Energy Lett 6:1786–1794. 10.1021/acsenergylett.1c00285 DOI: 10.1021/acsenergylett.1c00285
Fu R, Zhang K, Zaccaria RP et al (2017) Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. Nano Energy 39:546–553. 10.1016/j.nanoen.2017.07.040 DOI: 10.1016/j.nanoen.2017.07.040
Zhang Y, Tan L, Wu Y et al (2022) Self-healing and ultrastable anode based on room temperature liquid metal reinforced two-dimensional siloxene for high-performance lithium-ion batteries. Appl Mater Today 26. https://doi.org/10.1016/j.apmt.2021.101300
Loaiza LC, Monconduit L, Seznec V (2019) Siloxene: A potential layered silicon intercalation anode for Na, Li and K ion batteries. J Power Sources 417:99–107. 10.1016/j.jpowsour.2019.02.030 DOI: 10.1016/j.jpowsour.2019.02.030
Wang Y, Zhou L, Huang J et al (2020) Highly stable lithium−sulfur batteries promised by siloxene: an effective cathode material to regulate the adsorption and conversion of polysulfides. Adv Funct Mater 30:1910331. 10.1002/adfm.201910331 DOI: 10.1002/adfm.201910331
Krishnamoorthy K, Pazhamalai P, Kim SJ (2018) Two-dimensional siloxene nanosheets: Novel high-performance supercapacitor electrode materials. Energy Environ Sci 11:1595–1602. 10.1039/c8ee00160j DOI: 10.1039/c8ee00160j
Pazhamalai P, Krishnamoorthy K, Sahoo S et al (2019) Understanding the thermal treatment effect of two-dimensional siloxene sheets and the origin of superior electrochemical energy storage performances. ACS Appl Mater Interfaces 11:624–633. 10.1021/acsami.8b15323 DOI: 10.1021/acsami.8b15323
Krishnamoorthy K, Pazhamalai P, Mariappan VK et al (2021) Two-dimensional siloxene-graphene heterostructure-based high-performance supercapacitor for capturing regenerative braking energy in electric vehicles. Adv Funct Mater 31:1–11. 10.1002/adfm.202008422 DOI: 10.1002/adfm.202008422
Meng Q, Du C, Xu Z et al (2020) Siloxene-reduced graphene oxide composite hydrogel for supercapacitors. Chem Eng J 393:124684. 10.1016/j.cej.2020.124684 DOI: 10.1016/j.cej.2020.124684
Krishnamoorthy K, Pazhamalai P, Mariappan VK et al (2020) Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat Commun 11:1–11. 10.1038/s41467-020-15808-6 DOI: 10.1038/s41467-020-15808-6
Bhatta T, Sharma S, Shrestha K et al (2022) Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications. AdvFunct Mater 2202145. https://doi.org/10.1002/adfm.202202145
Shrestha K, Sharma S, Pradhan GB et al (2022) A Siloxene/Ecoflex Nanocomposite‐Based Triboelectric Nanogenerator with Enhanced Charge Retention by MoS 2 /LIG for Self‐Powered Touchless Sensor Applications. AdvFunct Mater 2113005. https://doi.org/10.1002/adfm.202113005
Mondal S, Mondal TK, Su YK, Saha SK (2020) Photoluminescence and photo-induced conductivity in 2D siloxene nanosheet for optoelectronic applications. J Colloid Interface Sci 562:453–460. 10.1016/j.jcis.2019.11.095 DOI: 10.1016/j.jcis.2019.11.095
Li M, Ramachandran R, Sakthivel T et al (2021) Siloxene: An advanced metal-free catalyst for efficient photocatalytic reduction of aqueous Cr(VI) under visible light. Chem Eng J 421:129728. 10.1016/j.cej.2021.129728 DOI: 10.1016/j.cej.2021.129728
Imagawa H, Wu X, Itahara H et al (2018) Photocatalytic NO removal over calcium-bridged siloxenes under ultraviolet and visible light irradiation. Dalt Trans 47:7070–7076. 10.1039/c7dt04310d DOI: 10.1039/c7dt04310d
Deepak N, Pandey A, Shukla S, Saxena S (2021) Siloxene: A novel 2D photocatalyst for degradation of dye molecules. Nano-Struct Nano-Objects 26:100721. 10.1016/j.nanoso.2021.100721 DOI: 10.1016/j.nanoso.2021.100721
Ramachandran R, Leng X, Zhao C et al (2020) 2D siloxene sheets: A novel electrochemical sensor for selective dopamine detection. Appl Mater Today 18:100477. 10.1016/j.apmt.2019.100477 DOI: 10.1016/j.apmt.2019.100477
Ji J, Mazinani S, Ahmed E et al (2021) Hydrophobic poly(vinylidene fluoride) / siloxene nanofiltration membranes. J Memb Sci 635:119447. 10.1016/j.memsci.2021.119447 DOI: 10.1016/j.memsci.2021.119447
Nayad A, Hnawi SK, Hasnaoui A et al (2021) Materials Today: Proceedings Calcium Di-silicide: A potential precursor for chemical synthesis of functionalized Bi-dimensional silicon materials. Mater Today Proc 39:1103–1117. 10.1016/j.matpr.2020.03.703 DOI: 10.1016/j.matpr.2020.03.703
Sugiyama Y, Okamoto H, Nakano H (2010) Synthesis of siloxene derivatives with organic groups. Chem Lett 39:938–939. 10.1246/cl.2010.938 DOI: 10.1246/cl.2010.938
Ohashi M, Shirai S, Nakano H (2019) Direct chemical synthesis of benzyl-modified silicane from calcium disilicide. Chem Mater 31:4720–4725. 10.1021/acs.chemmater.9b00715 DOI: 10.1021/acs.chemmater.9b00715
Sturala J, Luxa J, Matějková S et al (2019) Exfoliation of calcium germanide by alkyl halides. Chem Mater 31:10126–10134. 10.1021/acs.chemmater.9b03391 DOI: 10.1021/acs.chemmater.9b03391
Gao R, Tang J, Terabe K et al (2019) Preparation of layered Si materials as anode for lithium-ion batteries. Chem Phys Lett 730:198–205. 10.1016/j.cplett.2019.06.010 DOI: 10.1016/j.cplett.2019.06.010
Ohshita J, Matsuzawa Y, Yagami T et al (2020) Photo-energy transfer in σ-π conjugated polysilanes prepared by platinum-catalyzed reactions of arylacetylenes with layered polysilane. Chem Lett 49:1174–1177. 10.1246/CL.200338 DOI: 10.1246/CL.200338
Sugiyama Y, Okamoto H, Mitsuoka T et al (2010) Synthesis and optical properties of monolayer organosilicon nanosheets. J Am Chem Soc 132:5946–5947. 10.1021/ja100919d DOI: 10.1021/ja100919d
Wang F, Barnes TJ, Prestidge CA (2019) Controlling and predicting the dissolution kinetics of thermally oxidised mesoporous silicon particles: towards improved drug delivery. Pharmaceutics 11:634. 10.3390/pharmaceutics11120634 DOI: 10.3390/pharmaceutics11120634
Babonneau F, Sorarù GD, Mackenzie JD (1990) 29Si MAS-NMR investigation of the conversion process of a polytitanocarbosilane into SiC-TiC ceramics. J Mater Sci 25:3664–3670. 10.1007/BF00575402 DOI: 10.1007/BF00575402
Helbich T, Lyuleeva A, Marx P et al (2017) Lewis acid induced functionalization of photoluminescent 2D silicon nanosheets for the fabrication of functional hybrid films. Adv Funct Mater 27:1606764. 10.1002/adfm.201606764 DOI: 10.1002/adfm.201606764
Nakano H, Tanaka Y, Yamamoto K et al (2019) Silicanes modified by conjugated substituents for optoelectronic devices. Adv Opt Mater 7:1–8. 10.1002/adom.201900696 DOI: 10.1002/adom.201900696
Okamoto H, Kumai Y, Sugiyama Y et al (2010) Silicon nanosheets and their self-assembled regular stacking structure. J Am Chem Soc 132:2710–2718. 10.1021/ja908827z DOI: 10.1021/ja908827z
Ohshita J, Yamamoto K, Tanaka D et al (2016) Preparation and Photocurrent Generation of Silicon Nanosheets with Aromatic Substituents on the Surface. 6–11. 10.1021/acs.jpcc.6b03014
Takeda K, Shiraishi K (1993) Electronic structure of silicon-oxygen high polymers. Solid State Commun 85:301–305. 10.1016/0038-1098(93)90020-N DOI: 10.1016/0038-1098(93)90020-N
Nakano H, Nakamura D (2019) Hansen solubility parameters of stacked silicanes derived from porous silicon. ACS Omega 4:11838–11843. 10.1021/acsomega.9b01496 DOI: 10.1021/acsomega.9b01496
Arnot DJ, Li W, Bock DC et al (2022) Low‐oxidized siloxene nanosheets with high capacity, capacity retention, and rate capability in lithium‐based batteries. Adv Mater Interfaces 2102238. 10.1002/admi.202102238
Wang Y, Jie W, Yang C et al (2019) Colossal permittivity materials as superior dielectrics for diverse applications. Adv Funct Mater 29:1808118 DOI: 10.1002/adfm.201808118
Kittl JA, Opsomer K, Popovici M et al (2009) High-k dielectrics for future generation memory devices (Invited Paper). Microelectron Eng 86:1789–1795. 10.1016/j.mee.2009.03.045 DOI: 10.1016/j.mee.2009.03.045
Wallace RM (2017) Dielectric materials for microelectronics. In: Springer Handbooks. Springer, p 1
Hao X (2013) A review on the dielectric materials for high energy-storage application. J Adv Dielectr 03:1330001. 10.1142/s2010135x13300016 DOI: 10.1142/s2010135x13300016
Wan W, Tao M, Cao H et al (2020) Enhanced dielectric properties of homogeneous Ti3C2Tx MXene@SiO2/polyvinyl alcohol composite films. Ceram Int 46:13862–13868. 10.1016/j.ceramint.2020.02.179 DOI: 10.1016/j.ceramint.2020.02.179
Li W, Song Z, Zhong J et al (2019) Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. J Mater Chem C 7:10371–10378. 10.1039/c9tc02715g DOI: 10.1039/c9tc02715g
Chen J, Wang X, Yu X et al (2018) High dielectric constant and low dielectric loss poly(vinylidene fluoride) nanocomposites: Via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates. J Mater Chem C 6:271–279. 10.1039/c7tc04758d DOI: 10.1039/c7tc04758d
Kavinkumar T, Senthilkumar P, Dhanuskodi S, Manivannan S (2017) Dielectric transition and ferroelectric properties of graphene oxide-barium titanate nanocomposites. J Eur Ceram Soc 37:1401–1409. 10.1016/j.jeurceramsoc.2016.11.026 DOI: 10.1016/j.jeurceramsoc.2016.11.026
Sagadevan S, Das I, Pal K et al (2017) Optical and electrical smart response of chemically stabilized graphene oxide. J Mater Sci Mater Electron 28:5235–5243. 10.1007/s10854-016-6180-z DOI: 10.1007/s10854-016-6180-z
Bartkowska JA, Bochenek D (2018) Microstructure and dielectric properties of BF–PFN ceramics with negative dielectric loss. J Mater Sci Mater Electron 29:17262–17268. 10.1007/s10854-018-9820-7 DOI: 10.1007/s10854-018-9820-7
Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. 10.1016/S0022-0728(79)80075-3 DOI: 10.1016/S0022-0728(79)80075-3