Mercury Sulfur Phase Equilibria Magma Ocean Liquidus
Abstract :
[en] The geochemical data provided by the NASA MESSENGER spacecraft unveiled the geochemical heterogeneity of the volcanic crust of Mercury. Surprisingly, a high amount of sulfur was detected which combined with a low iron content, imply highly reduced conditions of parental magmas. Several variables (temperature, pressure, oxygen fugacity fO 2 , and to a lesser extent, melt composition) affect the solubility of sulfur in silicate melts. In reduced silicate melts, sulfur has an oxidation state of S 2− and replaces anionic oxygen to form MgS and CaS complexes. Experimental studies have shown the high S solubility in silicate melts at low fO 2. As observed with other volatile elements, high S contents in silicate melts can deeply affect their properties such as (1) lowering the liquidus as compared to S-free compositions and (2) changing solid-liquid phase equilibria. In this study, we performed high temperature (1500-1950 • C) and high pressure (1.5-3 GPa) piston-cylinder experiments on Fepoor compositions relevant to the petrogenesis of Mercury's volcanic crust with the aim of quantifying the effect of sulfur on depressing their liquidus temperature and understanding its role on phase equilibria. Several compositions were prepared to track the stability fields of olivine (high melt Mg/Si ratio) and orthopyroxene (low melt Mg/Si ratio) in both S-saturated melts and S-free melts. A range of reduced conditions were obtained by using different Si/SiO 2 ratios in the mixes. S-saturated experiments show increasing S abundances in the silicate melts (~ 1-9 wt%) as fO 2 decreases (from IW-2.9 to IW-6.2, IW representing the iron-wüstite thermodynamic equilibrium). Parameterizing our experimental results gives the liquidus depression as a function of the sulfur content in the melt (mol. fraction): ΔT liq (• C) = − 65208.22 [S] 3 melt + 16595.32 [S] 2 melt + 532.31 [S] melt (MSWD = 3.24; SEE = 35 • C) The range of sulfur concentration in our experimental melts would cause a liquidus depression of ca. 20-190 • C. Moreover, our experiments illustrate the role of sulfur in promoting the stability field of orthopyroxene over that of olivine which has major implications for the crystallization of the Mercurian magma ocean and the primordial mineralogical stratification of the mantle. In addition, the presence of sulfur lowers the pressure and temperature conditions of the olivine-orthopyroxene cotectic.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Charlier, Bernard ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique
Zhang, Yishen; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium ; Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, USA
Almeev, R.R., Holtz, F., Koepke, J., Parat, F., Botcharnikov, R.E., The effect of H2O on olivine crystallization in MORB: Experimental calibration at 200 MPa. Am. Mineral. 92 (2007), 670–674, 10.2138/am.2007.2484.
Anzures, B.A., Parman, S.W., Milliken, R.E., Namur, O., Cartier, C., Wang, S., Effect of sulfur speciation on chemical and physical properties of very reduced mercurian melts. Geochim. Cosmochim. Acta 286 (2020), 1–18, 10.1016/j.gca.2020.07.024.
Anzures, B.A., Parman, S.W., Milliken, R.E., Namur, O., Cartier, C., McCubbin, F.M., Vander Kaaden, K.E., Prissel, K., Iacovino, K., Lanzirotti, A., Newville, M., An oxygen fugacity-temperature-pressure-composition model for sulfide speciation in Mercurian magmas. Geochim. Cosmochim. Acta 388 (2025), 61–77, 10.1016/j.gca.2024.11.012.
Berthet, S., Malavergne, V., Righter, K., Melting of the Indarch meteorite (EH4 chondrite) at 1GPa and variable oxygen fugacity: Implications for early planetary differentiation processes. Geochim. Cosmochim. Acta 73 (2009), 6402–6420, 10.1016/j.gca.2009.07.030.
Boukaré, C.-E., Parman, S.W., Parmentier, E.M., Anzures, B.A., Production and preservation of sulfide layering in Mercury's mantle. J. Geophys. Res. Planets 124 (2019), 3354–3372, 10.1029/2019JE005942.
Boulliung, J., Wood, B.J., Sulfur oxidation state and solubility in silicate melts. Contrib. Mineral. Petrol., 178, 2023, 56, 10.1007/s00410-023-02033-9.
Brey, G., Green, D.H., Systematic study of liquidus phase relations in olivine melilitite +H2O +CO2 at high pressures and petrogenesis of an olivine melilitite magma. Contrib. Mineral. Petrol. 61 (1977), 141–162, 10.1007/BF00374364.
Brown, S.M., Elkins-Tanton, L.T., Compositions of Mercury's earliest crust from magma ocean models. Earth Planet. Sci. Lett. 286 (2009), 446–455, 10.1016/j.epsl.2009.07.010.
Cartier, C., Wood, B.J., The role of reducing conditions in building Mercury. Elements 15 (2019), 39–45, 10.2138/gselements.15.1.39.
Cartier, C., Hammouda, T., Doucelance, R., Boyet, M., Devidal, J.-L., Moine, B., Experimental study of trace element partitioning between enstatite and melt in enstatite chondrites at low oxygen fugacities and 5GPa. Geochim. Cosmochim. Acta 130 (2014), 167–187, 10.1016/j.gca.2014.01.002.
Cartier, C., Namur, O., Nittler, L.R., Weider, S.Z., Crapster-Pregont, E., Vorburger, A., Frank, E.A., Charlier, B., No FeS layer in Mercury? Evidence from Ti/Al measured by MESSENGER. Earth Planet. Sci. Lett., 534, 2020, 116108, 10.1016/j.epsl.2020.116108.
Charlier, B., Grove, T.L., Zuber, M.T., Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett. 363 (2013), 50–60, 10.1016/j.epsl.2012.12.021.
Chen, C.-H., Presnall, D.C., The system Mg2SiO4-SiO2 at pressures up to 25 kilobars. Am. Mineral. 60 (1975), 398–406.
Cioria, C., Mitri, G., Connolly, J.A.D., Perrillat, J., Saracino, F., Mantle mineralogy of reduced sub-Earths exoplanets and exo-Mercuries. J. Geophys. Res. Planets, 129, 2024, e2023JE008234, 10.1029/2023JE008234.
Condamine, P., Tournier, S., Charlier, B., Médard, E., Triantafyllou, A., Dalou, C., Tissandier, L., Lequin, D., Cartier, C., Füri, E., Burnard, P.G., Demouchy, S., Marrocchi, Y., Influence of intensive parameters and assemblies on friction evolution during piston-cylinder experiments. Am. Mineral. 107 (2022), 1575–1581, 10.2138/am-2022-7958.
Corgne, A., Keshav, S., Wood, B.J., McDonough, W.F., Fei, Y., Metal–silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion. Geochim. Cosmochim. Acta 72 (2008), 574–589, 10.1016/j.gca.2007.10.006.
Dasgupta, R., Mallik, A., Tsuno, K., Withers, A.C., Hirth, G., Hirschmann, M., Carbon-dioxide-rich silicate melt in the Earth's upper mantle. Nature 493 (2013), 211–215, 10.1038/nature11731.
de Capitani, C., Brown, T.H., The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim. Cosmochim. Acta 51 (1987), 2639–2652, 10.1016/0016-7037(87)90145-1.
de Capitani, C., Petrakakis, K., The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral. 95 (2010), 1006–1016, 10.2138/am.2010.3354.
Farcy, B.J., Gross, J., Carpenter, P., Hicks, J., Filiberto, J., Effect of chlorine on near-liquidus crystallization of olivine-phyric shergottite NWA 6234 at 1 GP a: Implication for volatile-induced melting of the Martian mantle. Meteorit. Planet. Scien. 51 (2016), 2011–2022, 10.1111/maps.12662.
Filiberto, J., Chin, E., Day, J.M.D., Franchi, I.A., Greenwood, R.C., Gross, J., Penniston-Dorland, S.C., Schwenzer, S.P., Treiman, A.H., Geochemistry of intermediate olivine-phyric shergottite Northwest Africa 6234, with similarities to basaltic shergottite Northwest Africa 480 and olivine-phyric shergottite Northwest Africa 2990. Meteorit. Planet. Scien. 47 (2012), 1256–1273, 10.1111/j.1945-5100.2012.01382.x.
Filiberto, J., Dasgupta, R., Gross, J., Treiman, A.H., Effect of chlorine on near-liquidus phase equilibria of an Fe–Mg-rich tholeiitic basalt. Contrib. Mineral. Petrol., 168, 2014, 1027, 10.1007/s00410-014-1027-1.
Filiberto, J., Baratoux, D., Beaty, D., Breuer, D., Farcy, B.J., Grott, M., Jones, J.H., Kiefer, W.S., Mane, P., McCubbin, F.M., Schwenzer, S.P., A review of volatiles in the Martian interior. Meteorit & Planetary Scien 51 (2016), 1935–1958, 10.1111/maps.12680.
Fincham, C.J.B., Richardson, F.D., The behaviour of Sulphur in silicate and aluminate melts. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 223 (1954), 40–62.
Fogel, R.A., Aubrite basalt vitrophyres: the missing basaltic component and high-sulfur silicate melts. Geochim. Cosmochim. Acta 69 (2005), 1633–1648, 10.1016/j.gca.2003.11.032.
Goossens, S., Renaud, J.P., Henning, W.G., Mazarico, E., Bertone, S., Genova, A., Evaluation of recent measurements of Mercury's moments of inertia and tides using a comprehensive Markov chain Monte Carlo method. Planet. Sci. J., 3, 2022, 37.
Gu, T., Stagno, V., Fei, Y., Partition coefficient of phosphorus between liquid metal and silicate melt with implications for the Martian magma ocean. Phys. Earth Planet. Inter., 295, 2019, 106298, 10.1016/j.pepi.2019.106298.
Guo, X., Feng, B., Zhang, B., Zhai, S., Xue, W., Song, Yunke, Song, Yuping, Yan, X., Effect of iron content on the thermal conductivity and thermal diffusivity of orthopyroxene. Geochem. Geophys. Geosyst., 25, 2024, e2023GC011419, 10.1029/2023GC011419.
Hauck, S.A., Margot, J., Solomon, S.C., Phillips, R.J., Johnson, C.L., Lemoine, F.G., Mazarico, E., McCoy, T.J., Padovan, S., Peale, S.J., Perry, M.E., Smith, D.E., Zuber, M.T., The curious case of Mercury's internal structure. JGR Planets 118 (2013), 1204–1220, 10.1002/jgre.20091.
Holzheid, A., Grove, T.L., Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets. Am. Mineral. 87 (2002), 227–237, 10.2138/am-2002-2-304.
Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., Kelley, K.K., Wagman, D.D.W., Selected Values of the Thermodynamic Properties of the Elements. 1973.
Iacovino, K., McCubbin, F.M., Vander Kaaden, K.E., Clark, J., Wittmann, A., Jakubek, R.S., Moore, G.M., Fries, M.D., Archer, D., Boyce, J.W., Carbon as a key driver of super-reduced explosive volcanism on Mercury: evidence from graphite-melt smelting experiments. Earth Planet. Sci. Lett., 602, 2023, 117908, 10.1016/j.epsl.2022.117908.
Jarosewich, E., Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses. Meteorit. Planet. Sci. 25 (1990), 323–337, 10.1111/j.1945-5100.1990.tb00717.x.
Jugo, P.J., Luth, R.W., Richards, J.P., An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300 C and 1.0 GPa. J. Petrol. 46 (2004), 783–798, 10.1093/petrology/egh097.
Keil, K., Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Geochem. J. 70 (2010), 295–317, 10.1016/j.chemer.2010.02.002.
Kilburn, M.R., Wood, B.J., Metal–silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett. 152 (1997), 139–148, 10.1016/S0012-821X(97)00125-8.
King, A.J., Phillips, K.J.H., Strekopytov, S., Vita-Finzi, C., Russell, S.S., Terrestrial modification of the Ivuna meteorite and a reassessment of the chemical composition of the CI type specimen. Geochim. Cosmochim. Acta 268 (2020), 73–89, 10.1016/j.gca.2019.09.041.
Lark, L.H., Parman, S., Huber, C., Parmentier, E.M., Head, J.W., Sulfides in Mercury's mantle: implications for Mercury's interior as interpreted from moment of inertia. Geophys. Res. Lett., 49, 2022, e2021GL096713, 10.1029/2021GL096713.
Lee, C.-T.A., Luffi, P., Plank, T., Dalton, H., Leeman, W.P., Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet. Sci. Lett. 279 (2009), 20–33, 10.1016/j.epsl.2008.12.020.
Li, X., Zhang, C., Almeev, R.R., Holtz, F., GeoBalance: an Excel VBA program for mass balance calculation in geosciences. Geochem. J., 80, 2020, 125629, 10.1016/j.chemer.2020.125629.
Malavergne, V., Toplis, M.J., Berthet, S., Jones, J., Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field. Icarus 206 (2010), 199–209, 10.1016/j.icarus.2009.09.001.
Mavrogenes, J.A., O'Neill, H.St.C., 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim. Cosmochim. Acta 63, 1173–1180. doi: https://doi.org/10.1016/S0016-7037(98)00289-0.
McCoy, T.J., Dickinson, T.L., Lofgren, G.E., Partial melting of the indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34:5 (1999), 735–746, 10.1111/j.1945-5100.1999.tb01386.x.
McDonough, W.F., Sun, S.S., The composition of the Earth. Chem. Geol. 120:3–4 (1995), 223–253, 10.1016/0009-2541(94)00140-4.
Médard, E., Genèse de magmas riches en calcium dans les zones de subduction et sous les rides médio-océaniques : approche expérimentale. 2004, Université Blaise Pascal - Clermont-Ferrand II, Français.
Médard, E., Grove, T.L., The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib. Mineral. Petrol. 155 (2008), 417–432, 10.1007/s00410-007-0250-4.
Métrich, N., Berry, A.J., O'Neill, H.St.C., Susini, J., 2009. The oxidation state of sulfur in synthetic and natural glasses determined by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 73, 2382–2399. doi: https://doi.org/10.1016/j.gca.2009.01.025.
Milholland, C.S., Presnall, D.C., Liquidus phase relations in the CaO–MgO–Al2O3–SiO2 System at 3·0 GPa: the aluminous pyroxene thermal divide and high-pressure fractionation of picritic and komatiitic magmas. J. Petrol. 39:1 (1998), 3–27, 10.1093/petroj/39.1.3.
Mouser, M.D., Dygert, N., On the potential for cumulate mantle overturn in Mercury. JGR Planets, 128, 2023, e2023JE007739, 10.1029/2023JE007739.
Mouser, M.D., Dygert, N., Anzures, B.A., Grambling, N.L., Hrubiak, R., Kono, Y., Shen, G., Parman, S.W., Experimental investigation of Mercury's magma ocean viscosity: Implications for the formation of Mercury's cumulate mantle, its subsequent dynamic evolution, and crustal petrogenesis. JGR Planets, 126, 2021, e2021JE006946, 10.1029/2021JE006946.
Namur, O., Charlier, B., Silicate mineralogy at the surface of Mercury. Nat. Geosci. 10 (2017), 9–13, 10.1038/ngeo2860.
Namur, O., Charlier, B., Holtz, F., Cartier, C., McCammon, C., Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury. Earth Planet. Sci. Lett. 448 (2016), 102–114, 10.1016/j.epsl.2016.05.024.
Namur, O., Collinet, M., Charlier, B., Grove, T.L., Holtz, F., McCammon, C., Melting processes and mantle sources of lavas on Mercury. Earth Planet. Sci. Lett. 439 (2016), 117–128, 10.1016/j.epsl.2016.01.030.
Nilsson, K., Peach, C.L., Sulfur speciation, oxidation state, and sulfur concentration in backarc magmas. Geochim. Cosmochim. Acta 57 (1993), 3807–3813, 10.1016/0016-7037(93)90158-S.
Nittler, L.R., Chabot, N.L., Grove, T.L., Peplowski, P.N., The Chemical Composition of Mercury. Solomon, S.C., Nittler, L.R., Anderson, B.J., (eds.) Mercury, 2018, Cambridge University Press, 30–51, 10.1017/9781316650684.003.
Nittler, L.R., Frank, E.A., Weider, S.Z., Crapster-Pregont, E., Vorburger, A., Starr, R.D., Solomon, S.C., Global major-element maps of Mercury from four years of MESSENGER X-Ray Spectrometer observations. Icarus, 345, 2020, 113716, 10.1016/j.icarus.2020.113716.
O'Neill, H.St.C., 1991. The origin of the Moon and the early history of the earth—a chemical model. Part 1: the moon. Geochim. Cosmochim. Acta 55, 1135–1157. doi: https://doi.org/10.1016/0016-7037(91)90168-5.
O'Neill, H.S.C., The thermodynamic controls on sulfide saturation in silicate melts with application to ocean floor basalts. Moretti, R., Neuville, D.R., (eds.) Magma Redox Geochemistry, 2021, John Wiley and Sons, 10.1002/9781119473206.ch10.
O'Neill, H.S.C., Mavrogenes, J.A., The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400°C and 1 bar. J. Petrol. 43:6 (2002), 1049–1087.
Pirotte, H., Cartier, C., Namur, O., Pommier, A., Zhang, Y., Berndt, J., Klemme, S., Charlier, B., Internal differentiation and volatile budget of Mercury inferred from the partitioning of heat-producing elements at highly reduced conditions. Icarus, 405, 2023, 115699, 10.1016/j.icarus.2023.115699.
Pitsch, S., Connolly, J.A.D., Schmidt, M.W., Sossi, P.A., Liebske, C., Solids and liquids in the (Fe,Mg,Ca)S-system: experimentally determined and thermodynamically modelled phase relations. Phys. Chem. Miner., 52, 2025, 12, 10.1007/s00269-025-01313-z.
Pommier, A., Tauber, M.J., Pirotte, H., Cody, G.D., Steele, A., Bullock, E.S., Charlier, B., Mysen, B.O., Experimental investigation of the bonding of sulfur in highly reduced silicate glasses and melts. Geochim. Cosmochim. Acta 363 (2023), 114–128, 10.1016/j.gca.2023.10.027.
Sen, G., Presnall, D.C., Liquidus phase relationships on the join anorthite-forsterite-quartz at 10 kbar with applications to basalt petrogenesis. Contr. Mineral. and Petrol. 85 (1984), 404–408, 10.1007/BF01150296.
Sorbadere, F., Médard, E., Laporte, D., Schiano, P., Experimental melting of hydrous peridotite–pyroxenite mixed sources: Constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs Earth Planet. Sci. Lett. 384 (2013), 42–56.
Steenstra, E.S., Seegers, A.X., Putter, R., Berndt, J., Klemme, S., Matveev, S., Bullock, E.S., Van Westrenen, W., Metal-silicate partitioning systematics of siderophile elements at reducing conditions: a new experimental database. Icarus, 335, 2020, 113391, 10.1016/j.icarus.2019.113391.
Taylor, G.J., The bulk composition of Mars. Geochemistry 73 (2013), 401–420, 10.1016/j.chemer.2013.09.006.
Weider, S.Z., Nittler, L.R., Starr, R.D., Crapster-Pregont, E.J., Peplowski, P.N., Denevi, B.W., Head, J.W., Byrne, P.K., Hauck, S.A., Ebel, D.S., Solomon, S.C., Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER's X-Ray Spectrometer. Earth Planet. Sci. Lett. 416 (2015), 109–120, 10.1016/j.epsl.2015.01.023.
Weisberg, M., Prinz, M., Nehru, C., Petrology of ALH85085: a chondrite with unique characteristics. Earth Planet. Sci. Lett. 91 (1988), 19–32, 10.1016/0012-821X(88)90148-3.
Wykes, J.L., O'Neill, H.St.C., Mavrogenes, J.A., 2015. The effect of FeO on the sulfur content at sulfide saturation (SCSS) and the selenium content at selenide saturation of silicate melts. J. Petrol. 56, 1407–1424. doi: https://doi.org/10.1093/petrology/egv041.
Zhang, Y., Yoshino, T., Yoneda, A., Osako, M., Effect of iron content on thermal conductivity of olivine with implications for cooling history of rocky planets. Earth Planet. Sci. Lett. 519 (2019), 109–119, 10.1016/j.epsl.2019.04.048.
Zhang, Y., Namur, O., Li, W., Shorttle, O., Gazel, E., Jennings, E., Thy, P., Grove, T.L., Charlier, B., An extended calibration of the olivine–spinel aluminum exchange thermometer: application to the melting conditions and mantle lithologies of large igneous provinces. J. Petrol., 64, 2023, egad077, 10.1093/petrology/egad077.
Zolotov, M.Yu., Sprague, A.L., Hauck, S.A., Nittler, L.R., Solomon, S.C., Weider, S.Z., The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets 118 (2013), 138–146, 10.1029/2012JE004274.