Article (Scientific journals)
Use of machine learning techniques to predict poor survival after hematopoietic cell transplantation for myelofibrosis.
Hernandez-Boluda, Juan Carlos; Mosquera Orgueira, Adrian; Gras, Luuk et al.
2025In Blood, 145 (26), p. 3139-3152
Peer Reviewed verified by ORBi
 

Files


Full Text
blood.2024027287.pdf
Author postprint (5.93 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] With the incorporation of effective therapies for myelofibrosis (MF), accurately predicting outcomes after allogeneic hematopoietic cell transplantation (allo-HCT) is crucial for determining the optimal timing for this procedure. Using data from 5,183 MF patients who underwent first allo-HCT between 2005 and 2020 at EBMT centers, we examined different machine learning (ML) models to predict overall survival (OS) after transplant. The cohort was divided into a training set (75%) and a test set (25%) for model validation. A Random Survival Forests (RSF) model was developed based on 10 variables: patient age, comorbidity index, performance status, blood blasts, hemoglobin, leukocytes, platelets, donor type, conditioning intensity, and graft-versus-host disease prophylaxis. Its performance was compared with a four-level Cox regression-based score and other ML-based models derived from the same dataset, and with the CIBMTR score. The RSF outperformed all comparators, achieving better concordance indices across both primary and post-essential thrombocythemia/polycythemia vera MF subgroups. The robustness and generalizability of the RSF model was confirmed by Akaike's Information Criterion and time-dependent Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) metrics in both sets. While all models were prognostic for non-relapse mortality, the RSF provided better curve separation, effectively identifying a high-risk group comprising 25% of patients. In conclusion, ML enhances risk stratification in MF patients undergoing allo-HCT, paving the way for personalized medicine. A web application (https://gemfin.click/ebmt) based on the RSF model offers a practical tool to identify patients at high risk for poor transplantation outcomes, supporting informed treatment decisions and advancing individualized care.
Disciplines :
Hematology
Author, co-author :
Hernandez-Boluda, Juan Carlos ;  Hospital Clínico Valencia, Valencia, Spain
Mosquera Orgueira, Adrian ;  University Hospital of Santiago de Compostela, SANTIAGO DE COMPOSTELA, Spain
Gras, Luuk;  EBMT Statistical Unit, Leiden, Netherlands
Koster, Linda;  EBMT Data Office, Leiden, Netherlands
Tuffnell, Joe;  EBMT Leiden Study Unit, Leiden, Netherlands
Kröger, Nicolaus ;  University Medical Center Hamburg_Eppendorf, Hamburg, Germany
Gambella, Massimiliano;  IRCCS Ospedale Policlinico San Martino, Genova, Italy
Schroeder, Thomas;  University of Duesseldorf, Duesseldorf, Germany
Robin, Marie ;  Hopital Saint Louis, Paris, France
Sockel, Katja;  University Hospital Dresden, Dresden, Germany
Passweg, Jakob R ;  University Hospital Basel, Basel, Switzerland
Blau, Igor Wolfgang;  Charité, Berlin, Germany
Yakoub-Agha, Ibrahim ;  Cellular therapy unit, Lille, France
Van Dijck, Ruben ;  Erasmus MC Cancer Institute, Rotterdam, Netherlands
Stelljes, Matthias ;  University of Muenster, Muenster, Germany
Sengeloev, Henrik;  Rigshospitalet
Vydra, Jan ;  Institute of Hematology and Blood Transfusion, Prague, Czech Republic
Platzbecker, Uwe ;  University Hospital Leipzig, Department of Hematology and Cell Therapy, Leipzig, Germany
Dewitte, Moniek;  UMC Utrecht, Utrecht, Netherlands
Baron, Frédéric  ;  Université de Liège - ULiège > Département des sciences cliniques
Carlson, Kristina ;  Uppsala University Hospital, Uppsala, Sweden
Rojas Martínez, Javier Alberto ;  Hospital de Santiago de Compostela, Santiago de Compostela, Spain
Pérez Míguez, Carlos ;  Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
Crucitti, Davide ;  Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
Raj, Kavita ;  University College London Hospitals NHS Foundation Trust, London, United Kingdom
Drozd-Sokolowska, Joanna ;  Medical University of Warsaw, Warsaw, Poland
Battipaglia, Giorgia ;  Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, Naples, Italy, Naples, Italy
Polverelli, Nicola ;  Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
Czerw, Tomasz ;  Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland, Gliwice, Poland
McLornan, Donal P;  University College Hospital, London, United Kingdom
More authors (20 more) Less
Language :
English
Title :
Use of machine learning techniques to predict poor survival after hematopoietic cell transplantation for myelofibrosis.
Publication date :
26 June 2025
Journal title :
Blood
ISSN :
0006-4971
eISSN :
1528-0020
Publisher :
American Society of Hematology, United States
Volume :
145
Issue :
26
Pages :
3139-3152
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 10 April 2025

Statistics


Number of views
104 (0 by ULiège)
Number of downloads
57 (0 by ULiège)

Scopus citations®
 
5
Scopus citations®
without self-citations
5
OpenCitations
 
0
OpenAlex citations
 
5

Bibliography


Similar publications



Contact ORBi