[en] Africa's environmental, cultural, and genetic diversity can profoundly shape population responses to infectious diseases, including malaria caused by Plasmodium falciparum. Differences in malaria susceptibility among populations are documented, but the underlying mechanisms remain poorly understood. Notably, the Fulani ethnic group in Africa is less susceptible to malaria compared to other sympatric groups, such as the Mossi. They exhibit lower disease rates and parasite load as well as enhanced serological protection. However, elucidating the molecular and cellular basis of this protection has been challenging in part due to limited immunological characterization at the cellular level. To address this question, we performed single-cell transcriptomic profiling of peripheral blood mononuclear cells from 126 infected and non-infected Fulani and Mossi children in rural Burkina Faso. This analysis generated over 70,000 single-cell transcriptomes and identified 30 distinct cell subtypes. We report a profound effect of ethnicity on the transcriptional landscape, particularly within monocyte populations. Differential expression analysis across cell subtypes revealed ethnic-specific immune signatures under both infected and non-infected states. Specifically, monocytes and T cell subtypes of the Fulani exhibited reduced pro-inflammatory responses, while their B cell subtypes displayed stronger activation and inflammatory profiles. Furthermore, single-cell expression quantitative trait locus (eQTL) analysis in monocytes of infected children revealed several significant regulatory variants with ethnicity-specific effects on immune-related genes, including CD36 and MT2A. Overall, we identify ethnic, cell-type-specific, and genetic regulatory effects on host immune responses to malaria and provide valuable single-cell eQTL and transcriptomic datasets from under-represented populations.
Disciplines :
Genetics & genetic processes
Author, co-author :
Shahin, Tala; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Jurkovic, Jakub; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Dieng, Mame ; Université de Liège - ULiège > TERRA Research Centre ; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Manikandan, Vinu; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Abdrabou, Wael; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Alamad, Bana; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Bayaraa, Odmaa; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Diawara, Aïssatou; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Sermé, Samuel Sindié; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
Henry, Noëlie Béré; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
Sombie, Salif; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
Almojil, Dareen; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Arnoux, Marc; Core Technology Platforms, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Drou, Nizar; Center for Genomics and Systems Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Soulama, Issiaka; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso, Institut de Recherche en Sciences de la Santé (IRSS)/CNRST, 03 BP 7192, Ouagadougou, Burkina Faso
Idaghdour, Youssef ; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates, Center for Genomics and Systems Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates. Electronic address: youssef.idaghdour@nyu.edu
We thank the children for their contribution to the study by providing blood samples and their families who agreed to be part of the study. We also acknowledge the effort of all the nurses and team at the CNRFP who assisted in sample collection in Burkina Faso. We thank the NYUAD Center for Genomics and Systems Biology Core Bioinformatics and Technology platforms for providing technical assistance and Jane Carlton for supporting our research program. This work was funded by NYUAD grant ADHPG AD105 to Y.I.
Sirugo, G., Hennig, B.J., Adeyemo, A.A., Matimba, A., Newport, M.J., Ibrahim, M.E., Ryckman, K.K., Tacconelli, A., Mariani-Costantini, R., Novelli, G., et al. Genetic studies of African populations: An overview on disease susceptibility and response to vaccines and therapeutics. Hum. Genet. 123 (2008), 557–598, 10.1007/S00439-008-0511-y.
Campbell, M.C., Tishkoff, S.A., AFRICAN GENETIC DIVERSITY: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping. Annu. Rev. Genomics Hum. Genet. 9 (2008), 403–433, 10.1146/annurev.genom.9.081307.164258.
Pereira, L., Mutesa, L., Tindana, P., Ramsay, M., African genetic diversity and adaptation inform a precision medicine agenda. Nat. Rev. Genet. 22 (2021), 284–306, 10.1038/S41576-020-00306-8.
Sirugo, G., Williams, S.M., Tishkoff, S.A., The Missing Diversity in Human Genetic Studies. Cell 177 (2019), 26–31, 10.1016/j.cell.2019.02.048.
Temba, G.S., Kullaya, V., Pecht, T., Mmbaga, B.T., Aschenbrenner, A.C., Ulas, T., Kibiki, G., Lyamuya, F., Boahen, C.K., Kumar, V., et al. Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes. Nat. Immunol. 22 (2021), 287–300, 10.1038/s41590-021-00867-8.
Mills, M.C., Rahal, C., The GWAS Diversity Monitor tracks diversity by disease in real time. Nat. Genet. 52 (2020), 242–243, 10.1038/S41588-020-0580-y.
Sato, S., Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology. J. Physiol. Anthropol., 40, 2021, 1, 10.1186/S40101-020-00251-9.
Venugopal, K., Hentzschel, F., Valkiūnas, G., Marti, M., Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat. Rev. Microbiol. 18 (2020), 177–189, 10.1038/s41579-019-0306-2.
Kimenyi, K.M., Wamae, K., Ochola-Oyier, L.I., Understanding P. falciparum Asymptomatic Infections: A Proposition for a Transcriptomic Approach. Front. Immunol., 10, 2019, 2398, 10.3389/fimmu.2019.02398.
Allison, A.C., Protection Afforded by Sickle-cell Trait Against Subtertian Malarial Infection. Br. Med. J. 1 (1954), 290–294, 10.1136/bmj.1.4857.290.
Kwiatkowski, D.P., How Malaria Has Affected the Human Genome and What Human Genetics Can Teach Us about Malaria. Am. J. Hum. Genet. 77 (2005), 171–192, 10.1086/432519.
Ruwende, C., Khoo, S.C., Snow, R.W., Yates, S.N., Kwiatkowski, D., Gupta, S., Warn, P., Allsopp, C.E., Gilbert, S.C., Peschu, N., et al. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376 (1995), 246–249, 10.1038/376246a0.
Williams, T.N., Wambua, S., Uyoga, S., Macharia, A., Mwacharo, J.K., Newton, C.R.J.C., Maitland, K., Both heterozygous and homozygous alpha+ thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood 106 (2005), 368–371, 10.1182/blood-2005-01-0313.
Tournamille, C., Colin, Y., Cartron, J.P., Le Van Kim, C., Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat. Genet. 10 (1995), 224–228, 10.1038/ng0695-224.
Band, G., Rockett, K.A., Spencer, C.C.A., Kwiatkowski, D.P., Clarke, G.M., Kivinen, K., Leffler, E.M., Cornelius, V., Conway, D.J., et al., Malaria Genomic Epidemiology Network. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 526 (2015), 253–257, 10.1038/nature15390.
Barreiro, L.B., Quintana-Murci, L., From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat. Rev. Genet. 11 (2010), 17–30, 10.1038/nrg2698.
Idaghdour, Y., Awadalla, P., Exploiting gene expression variation to capture gene-environment interactions for disease. Front. Genet., 3, 2012, 228, 10.3389/fgene.2012.00228.
Abdrabou, W., Dieng, M.M., Diawara, A., Sermé, S.S., Almojil, D., Sombié, S., Henry, N.B., Kargougou, D., Manikandan, V., Soulama, I., Idaghdour, Y., Metabolome modulation of the host adaptive immunity in human malaria. Nat. Metab. 3 (2021), 1001–1016, 10.1038/s42255-021-00404-9.
Dooley, N.L., Chabikwa, T.G., Pava, Z., Loughland, J.R., Hamelink, J., Berry, K., Andrew, D., Soon, M.S.F., SheelaNair, A., Piera, K.A., et al. Single cell transcriptomics shows that malaria promotes unique regulatory responses across multiple immune cell subsets. Nat. Commun., 14, 2023, 7387, 10.1038/s41467-023-43181-7.
Guha, R., Mathioudaki, A., Doumbo, S., Doumtabe, D., Skinner, J., Arora, G., Siddiqui, S., Li, S., Kayentao, K., Ongoiba, A., et al. Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype. PLoS Pathog., 17, 2021, e1009430, 10.1371/journal.ppat.1009430.
Dobbs, K.R., Crabtree, J.N., Dent, A.E., Innate immunity to malaria—The role of monocytes. Immunol. Rev. 293 (2020), 8–24, 10.1111/imr.12830.
Kumar, R., Loughland, J.R., Ng, S.S., Boyle, M.J., Engwerda, C.R., The regulation of CD4+ T cells during malaria. Immunol. Rev. 293 (2020), 70–87, 10.1111/imr.12804.
Pérez-Mazliah, D., Ndungu, F.M., Aye, R., Langhorne, J., B-cell memory in malaria: Myths and realities. Immunol. Rev. 293 (2020), 57–69, 10.1111/imr.12822.
Hafalla, J.C., Silvie, O., Matuschewski, K., Cell biology and immunology of malaria. Immunol. Rev. 240 (2011), 297–316, 10.1111/j.1600-065x.2010.00988.x.
Modiano, D., Petrarca, V., Sirima, B.S., Nebié, I., Diallo, D., Esposito, F., Coluzzi, M., Different response to Plasmodium falciparum malaria in west African sympatric ethnic groups. Proc. Natl. Acad. Sci. USA 93 (1996), 13206–13211, 10.1073/pnas.93.23.13206.
Modiano, D., Chiucchiuini, A., Petrarca, V., Sirima, B.S., Luoni, G., Perlmann, H., Esposito, F., Coluzzi, M., Humoral response to Plasmodium falciparum Pf155/ring-infected erythrocyte surface antigen and Pf332 in three sympatric ethnic groups of Burkina Faso. Am. J. Trop. Med. Hyg. 58 (1998), 220–224, 10.4269/ajtmh.1998.58.220.
Troye-Blomberg, M., Arama, C., Quin, J., Bujila, I., Farrants, A.-K.Ö., What will studies of Fulani individuals naturally exposed to malaria teach us about protective immunity to malaria?. Scand. J. Immunol., 92, 2020, e12932, 10.1111/sji.12932.
Vicente, M., Priehodová, E., Diallo, I., Podgorná, E., Poloni, E.S., Černý, V., Schlebusch, C.M., Population history and genetic adaptation of the Fulani nomads: Inferences from genome-wide data and the lactase persistence trait. BMC Genom. 20 (2019), 1–12, 10.1186/S12864-019-6296-7.
Feero, W.G., Steiner, R.D., Slavotinek, A., Faial, T., Bamshad, M.J., Austin, J., Korf, B.R., Flanagin, A., Bibbins-Domingo, K., Guidance on use of race, ethnicity, and geographic origin as proxies for genetic ancestry groups in biomedical publications. Am. J. Hum. Genet. 111 (2024), 621–623, 10.1016/j.ajhg.2024.03.003.
Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M. 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. Integrated analysis of multimodal single-cell data. Cell 184 (2021), 3573–3587.e29, 10.1016/j.cell.2021.04.048.
van der Wijst, M.G.P., de Vries, D.H., Groot, H.E., Trynka, G., Hon, C.C., Bonder, M.J., Stegle, O., Nawijn, M.C., Idaghdour, Y., van der Harst, P., et al. The single-cell eQTLGen consortium. Elife, 9, 2020, e52155, 10.7554/eLife.52155.
Sanou, G.S., Tiendrebeogo, R.W., Ouédraogo, A.L., Diarra, A., Ouédraogo, A., Yaro, J.B., Ouédraogo, E., Verra, F., Behr, C., Troye-Blomberg, M., et al. Haematological parameters, natural regulatory CD4+ CD25+ FOXP3+ T cells and γδ T cells among two sympatric ethnic groups having different susceptibility to malaria in Burkina Faso. BMC Res. Notes, 5, 2012, 76, 10.1186/1756-0500-5-76.
Dai, H., Wang, L., Li, L., Huang, Z., Ye, L., Metallothionein 1: A New Spotlight on Inflammatory Diseases. Front. Immunol., 12, 2021, 739918, 10.3389/fimmu.2021.739918.
Westra, H.J., Franke, L., From genome to function by studying eQTLs. Biochim. Biophys. Acta 1842 (2014), 1896–1902, 10.1016/j.bbadis.2014.04.024.
Cabrera, A., Neculai, D., Kain, K.C., CD36 and malaria: Friends or foes? A decade of data provides some answers. Trends Parasitol. 30 (2014), 436–444, 10.1016/j.pt.2014.07.006.
Harrison, P.W., Amode, M.R., Austine-Orimoloye, O., Azov, A.G., Barba, M., Barnes, I., Becker, A., Bennett, R., Berry, A., Bhai, J., et al. Ensembl 2024. Nucleic Acids Res. 52 (2024), D891–D899, 10.1093/nar/gkad1049.
Nassar, L.R., Barber, G.P., Benet-Pagès, A., Casper, J., Clawson, H., Diekhans, M., Fischer, C., Gonzalez, J.N., Hinrichs, A.S., Lee, B.T., et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 51 (2023), D1188–D1195, 10.1093/nar/gkac1072.
Aguet, F., Barbeira, A.N., Bonazzola, R., Brown, A., Castel, S.E., Jo, B., Kasela, S., Kim-Hellmuth, S., Liang, Y., Oliva, M., et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science (New York, N.Y.) 369 (2020), 1318–1330, 10.1126/science.aaz1776.
Junqueira, C., Polidoro, R.B., Castro, G., Absalon, S., Liang, Z., Sen Santara, S., Crespo, Â., Pereira, D.B., Gazzinelli, R.T., Dvorin, J.D., Lieberman, J., γδ T cells suppress Plasmodium falciparum blood-stage infection by direct killing and phagocytosis. Nat. Immunol. 22 (2021), 347–357, 10.1038/s41590-020-00847-4.
Torcia, M.G., Santarlasci, V., Cosmi, L., Clemente, A., Maggi, L., Mangano, V.D., Verra, F., Bancone, G., Nebie, I., Sirima, B.S., et al. Functional deficit of T regulatory cells in Fulani, an ethnic group with low susceptibility to Plasmodium falciparum malaria. Proc. Natl. Acad. Sci. USA 105 (2008), 646–651, 10.1073/pnas.0709969105.
Quin, J.E., Bujila, I., Chérif, M., Sanou, G.S., Qu, Y., Homann, M.V., Rolicka, A., Sirima, S.B., O'Connell, M.A., Lennartsson, A., et al. Major transcriptional changes observed in the Fulani, an ethnic group less susceptible to malaria. Elife, 6, 2017, e29156, 10.7554/eLife.29156.
Portugal, S., Moebius, J., Skinner, J., Doumbo, S., Doumtabe, D., Kone, Y., Dia, S., Kanakabandi, K., Sturdevant, D.E., Virtaneva, K., et al. Exposure-Dependent Control of Malaria-Induced Inflammation in Children. PLoS Pathog., 10, 2014, e1004079, 10.1371/journal.ppat.1004079.
Tran, T.M., Jones, M.B., Ongoiba, A., Bijker, E.M., Schats, R., Venepally, P., Skinner, J., Doumbo, S., Quinten, E., Visser, L.G., et al. Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria. Sci. Rep., 6, 2016, 31291, 10.1038/srep31291.
Boyle, M.J., Engwerda, C.R., Jagannathan, P., The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat. Rev. Immunol. 24 (2024), 637–653, 10.1038/s41577-024-01041-5.
Boström, S., Giusti, P., Arama, C., Persson, J.O., Dara, V., Traore, B., Dolo, A., Doumbo, O., Troye-Blomberg, M., Changes in the levels of cytokines, chemokines and malaria-specific antibodies in response to Plasmodium falciparum infection in children living in sympatry in Mali. Malar. J., 11, 2012, 109, 10.1186/1475-2875-11-109.
Almojil, D., Diawara, A., Soulama, I., Dieng, M.M., Manikandan, V., Sermé, S.S., Sombié, S., Diarra, A., Barry, A., Coulibaly, S.A., et al. Impact of Plasmodium falciparum infection on DNA methylation of circulating immune cells. Front. Genet., 14, 2023, 1197933, 10.3389/fgene.2023.1197933.
Penha-Gonçalves, C., Genetics of Malaria Inflammatory Responses: A Pathogenesis Perspective. Front. Immunol., 10, 2019, 1771, 10.3389/fimmu.2019.01771.
Kurup, S.P., Butler, N.S., Harty, J.T., T cell-mediated immunity to malaria. Nat. Rev. Immunol. 19 (2019), 457–471, 10.1038/s41577-019-0158-z.
Teo, A., Feng, G., Brown, G.V., Beeson, J.G., Rogerson, S.J., Functional Antibodies and Protection against Blood-stage Malaria. Trends Parasitol. 32 (2016), 887–898, 10.1016/j.pt.2016.07.003.
Fall, A.K.D.J., Kana, I.H., Garcia-Senosiain, A., Henry, B., Dechavanne, C., Garcia, A., Buffet, P., Sabbagh, A., Migot-Nabias, F., Theisen, M., Courtin, D., Susceptibility to malaria in Fulani, Bariba, Otamari and Gando individuals living in sympatry in Benin: Role of opsonizing antibodies to Plasmodium falciparum merozoites. Heliyon, 9, 2023, e13092, 10.1016/j.heliyon.2023.e13092.
Portugal, S., Doumtabe, D., Traore, B., Miller, L.H., Troye-Blomberg, M., Doumbo, O.K., Dolo, A., Pierce, S.K., Crompton, P.D., B cell analysis of ethnic groups in Mali with differential susceptibility to malaria. Malar. J., 11, 2012, 162, 10.1186/1475-2875-11-162.
Tiono, A.B., Sirima, S.B., Hamed, K., Fulani show decreased susceptibility to Plasmodium falciparum infection versus Mossi: Data from a community-wide screening and treatment of asymptomatic carriers in Burkina Faso. Malar. J., 12, 2013, 163, 10.1186/1475-2875-12-163.
Patel, S.N., Serghides, L., Smith, T.G., Febbraio, M., Silverstein, R.L., Kurtz, T.W., Pravenec, M., Kain, K.C., CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J. Infect. Dis. 189 (2004), 204–213, 10.1086/380764.
Thylur, R.P., Wu, X., Gowda, N.M., Punnath, K., Neelgund, S.E., Febbraio, M., Gowda, D.C., CD36 receptor regulates malaria-induced immune responses primarily at early blood stage infection contributing to parasitemia control and resistance to mortality. J. Biol. Chem. 292 (2017), 9394–9408, 10.1074/jbc.m117.781294.
Fry, A.E., Ghansa, A., Small, K.S., Palma, A., Auburn, S., Diakite, M., Green, A., Campino, S., Teo, Y.Y., Clark, T.G., et al. Positive selection of a CD36 nonsense variant in sub-Saharan Africa, but no association with severe malaria phenotypes. Hum. Mol. Genet. 18 (2009), 2683–2692, 10.1093/hmg/ddp192.
Stankovic, R.K., Chung, R.S., Penkowa, M., Metallothioneins I and II: neuroprotective significance during CNS pathology. Int. J. Biochem. Cell Biol. 39 (2007), 484–489, 10.1016/j.biocel.2006.09.010.
Penkowa, M., Espejo, C., Ortega-Aznar, A., Hidalgo, J., Montalban, X., Martínez Cáceres, E.M., Metallothionein expression in the central nervous system of multiple sclerosis patients. Cell. Mol. Life Sci. 60 (2003), 1258–1266, 10.1007/S00018-003-3021-Z.
SubramanianVignesh, K., LanderoFigueroa, J.A., Porollo, A., Caruso, J.A., Deepe, G.S., Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity 39 (2013), 697–710, 10.1016/j.immuni.2013.09.006.
Afolayan, A.O., Ayeni, F.A., Moissl-Eichinger, C., Gorkiewicz, G., Halwachs, B., Högenauer, C., Impact of a Nomadic Pastoral Lifestyle on the Gut Microbiome in the Fulani Living in Nigeria. Front. Microbiol., 10, 2019, 2138, 10.3389/fmicb.2019.02138.
Bamgbose, T., Anvikar, A.R., Alberdi, P., Abdullahi, I.O., Inabo, H.I., Bello, M., Cabezas-Cruz, A., de la Fuente, J., Functional Food for the Stimulation of the Immune System Against Malaria. Probiotics Antimicrob. Proteins 13 (2021), 1254–1266, 10.1007/s12602-021-09780-w.
Abdrabou, W., Zorigt, S., Soulama, I., Bolatbay, D., Dieng, M.M., Jurkovic, J., Sermé, S.S., Sombié, S., Henry, N.B., Kargougou, D., et al. The impact of interethnic lipidomic variation in falciparum malaria. J. Infect., 90, 2024, 106396, 10.1016/j.jinf.2024.106396.