Paper published on a website (Scientific congresses and symposiums)
Impact of real-world confounders on the accuracy of an AI model to support read out of skin prick automated test results
Roux, Karolien; Seys, Sven; Hox, Valerie et al.
2025B-ORL SPRING Symposium
Editorial reviewed
 

Files


Full Text
18 - Karolien Roux.pdf
Author postprint (85.35 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Artificial intelligence; Skin prick test; Allergy; rhinitis
Abstract :
[en] Introduction: Skin prick test (SPT) is the gold standard for identifying allergic sensitization in individuals with a suspected airborne allergy. A novel device, Skin Prick Automated Test (SPAT), previously showed reduced variability and less inconsistent test results compared to manual SPT (1,2). Additionally, an artificial intelligence (AI)-assisted readout method showed high accuracy in supporting physicians to interpret skin reactions following SPAT (3). Objective: In the current study, we evaluated the impact of real-world confounders on the accuracy of the AI model. Methods: The images of the forearm of a validation cohort consisting of 217 patients undergoing SPAT (2604 wheals) were analysed for skin tone, presence of hair, scar tissue, tattoos, hyperpigmentation and imaging artefacts. The individual typology angle (ITA) was used to measure apparent skin tone. Other confounders were qualitatively assessed by visual inspection of the images. Results: Darker skin tone (ITA <25) was observed in 16.1% of patients. Clear presence of hair, scar tissue, tattoos, hyperpigmentation and imaging artefacts were observed in respectively 19.4, 3.7, 4.1, 25.3 and 6.0% of patients. In patients with a darker skin tone (ITA -50 to <-25, -25 to <0, ITA 0 to 25) accuracy was decreased to respectively 88.9%, 95.0% and 91.7% compared to other ITA categories (96.4-96.6%). In patients with tattoo marks in between the prick locations (1.8% of patients), accuracy dropped to 85.4% (compared to 95.7-98.3%). For the other confounders, accuracy remained >90% irrespective of the presence or absence of the confounding variable. Conclusion: The SPAT AI-assisted readout method showed high accuracy in most patients irrespective of presence of hair, hyperpigmentation or scar tissue. Darker skin tone and the presence of tattoo marks were observed in some patients and impacted the performance of the AI model. Enrichment of these patient populations in the AI training cohort is needed to further optimize the AI mod
Disciplines :
Otolaryngology
Author, co-author :
Roux, Karolien;  UZ Leuven - Universitair Ziekenhuis Leuven > Otorhinolaryngology-Head and Neck Surgery
Seys, Sven;  Hippo Dx, Aarschot, Belgium
Hox, Valerie;  UCL Saint-Luc - Brussels Saint-Luc University Hospital > ENT
Chaker, Adam;  Klinikum rechts der Isar, Munich, Germany
De Greve, Glynnis;  GZA Sint-Augustinus, Antwerp, Belgium > ENT
Lemmens, Winde;  ZOL, Genk, Belgium > ENT
Poirrier, Anne-Lise  ;  Université de Liège - ULiège > Département des sciences cliniques > Oto-rhino-laryngologie et audiophonologie ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'ORL, d'audiophonologie et de chir. cervico-faciale
Beckers, Eline;  ZOL Genk > Otorhinolaryngology-Head and Neck Surgery
Daems, Rembert;  Hippo Dx, Aarschot, Belgium
Diamant, Zuzana;  KU Leuven - Katholieke Universiteit Leuven
Dierckx, Carmen;  ZOL, Genk > Otorhinolaryngology-Head and Neck Surgery
Hellings, Peter;  KU Leuven - Katholieke Universiteit Leuven
Huart, Caroline;  UCL - Université Catholique de Louvain
Jerin, Claudia;  Klinikum rechts der Isar, Munich, Germany > Otolaryngology, head and neck surgery
Jorissen, Marc;  KU Leuven - Katholieke Universiteit Leuven
Loeckx, Dirk;  Hippo Dx, Aarschot, Belgium
Oscé, Hanne;  GZA Sint-Augustinus, Antwerp, Belgium > Otorhinolaryngology-Head and Neck Surgery
Thompson, Marc;  Zurich University of Applied Sciences, Zurich, Switzerland
TOMBU, Sophie ;  Centre Hospitalier Universitaire de Liège - CHU > > Service d'ORL, d'audiophonologie et de chir. cervico-faciale
Uyttebroek, Saartje;  KU Leuven - Katholieke Universiteit Leuven
Zarowski, Andrzej;  GZA Sint-Augustinus, Antwerp, Belgium > Otorhinolaryngology-Head and Neck Surgery
Gorris, Senne;  Hippo Dx, Aarschot, Belgium
Van Gerven, Laura;  KU Leuven - Katholieke Universiteit Leuven
More authors (13 more) Less
Language :
English
Title :
Impact of real-world confounders on the accuracy of an AI model to support read out of skin prick automated test results
Publication date :
15 March 2025
Event name :
B-ORL SPRING Symposium
Event organizer :
Royal Belgian Society of Oto-Rhino-Laryngology, Head and Neck Surgery
Event place :
Brussels, Belgium
Event date :
15/03/2025
Audience :
International
Peer review/Selection committee :
Editorial reviewed
Available on ORBi :
since 01 April 2025

Statistics


Number of views
75 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi