[en] The current low-resolution chronostratigraphic framework for the early Ediacaran Period hampers a comprehensive understanding of potential trigger mechanisms for environmental upheavals and their connections to evolutionary innovation. Here, we establish a high-resolution astrochronological framework spanning ~57.6 million years of the early Ediacaran, anchored by the radioisotopic date of the Gaskiers glaciation onset, based on key sections from South China. Constrained by multiple radioisotopic dates, this framework precisely constrains the timing of the Marinoan deglaciation, Ediacaran Negative carbon isotope excursions 1 and 2 (EN1 and EN2), and key fossil assemblages (acanthomorphic acritarchs, Weng'an and Lantian biotas). These dates indicate the rapid termination of the Marinoan glaciation in South China within 106-107 years, while providing robust temporal evidence for the global synchroneity of EN1, EN2, and Marinoan deglaciation. The integrated chronology refines the age model for early Ediacaran biotic evolution, revealing that ecosystems gradually increased in complexity over multi-million-year timescales while global taxonomic diversity remained relatively stable, punctuated by rapid transitions to novel communities coinciding with biogeochemical perturbations.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Zhang, Tan ; State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, 610059, China ; Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu, 610059, China ; School of Energy Resources, China University of Geosciences (Beijing), Beijing, 100083, China
Ma, Chao ; State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, 610059, China. machao@cdut.edu.cn ; Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu, 610059, China. machao@cdut.edu.cn
Li, Yifan ; School of Energy Resources, China University of Geosciences (Beijing), Beijing, 100083, China. yifangeosci@gmail.com
Li, Chao ; State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, 610059, China
Fan, Tailiang; School of Energy Resources, China University of Geosciences (Beijing), Beijing, 100083, China
Gao, Qi; College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China
Kuang, Mingzhi; College of Energy, Chengdu University of Technology, Chengdu, 610059, China
Liu, Wangwei; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration and Production, SINOPEC, Wuxi, 214151, China
Li, Mingsong ; Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
Hou, Mingcai; State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, 610059, China ; Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu, 610059, China
Language :
English
Title :
Astronomically calibrating early Ediacaran evolution.
P.F. Hoffman et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology Sci. Adv. 3 e1600983 2017SciA..3E0983H 29134193 5677351
K.A. McFadden et al. Pulsed oxidation and biological evolution in the Ediacaran doushantuo formation Proc. Natl. Acad. Sci. USA 105 3197 3202 2008PNAS.105.3197M 1:CAS:528:DC%2BD1cXjtlans7o%3D 18299566 2265117 1178.65065
Xiao, S. H. & Narbonne, G. M. The ediacaran period. In Geologic Time Scale 2020 (eds. Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 521–561 (Elsevier, 2020).
C. Zhou M.H. Huyskens X. Lang S. Xiao Q.Z. Yin Calibrating the terminations of Cryogenian global glaciations Geology 47 251 254 2019Geo..47.251Z 1:CAS:528:DC%2BC1MXhtlSktb%2FP 1426.65074
C. Yang et al. The tempo of Ediacaran evolution Sci. Adv. 7 eabi9643 2021SciA..7.9643Y 1:CAS:528:DC%2BB3MXis1ygtb%2FN 34731004 8565906
D. Condon et al. U-Pb ages from the neoproterozoic Doushantuo formation, China Science 308 95 98 2005Sci..308..95C 1:CAS:528:DC%2BD2MXivVaqsr0%3D 15731406 1075.68510
C.R. Calver et al. Globally synchronous marinoan deglaciation indicated by U-Pb geochronology of the cottons Breccia, Tasmania, Australia Geology 41 1127 1130 2013Geo..41.1127C 1:CAS:528:DC%2BC3sXhs1yis7zE
A.R. Prave D.J. Condon K.H. Hoffmann S. Tapster A.E. Fallick Duration and nature of the end-Cryogenian (Marinoan) glaciation Geology 44 631 634 2016Geo..44.631P 1:CAS:528:DC%2BC28XitFShsbrI
V.I. Rogov et al. Duration of the first biozone in the Siberian hypostratotype of the Vendian Russ. Geol. Geophys. 56 573 583 2015RuGG..56.573R 1460.32037
E. Font A. Nédélec R.I.F. Trindade C. Moreau Fast or slow melting of the Marinoan snowball earth? The cap dolostone record Palaeogeogr. Palaeoclimatol. Palaeoecol. 295 215 225
P.W. Schmidt G.E. Williams M.O. McWilliams Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia: implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran system Precambrian Res. 174 35 52 2009PreR.174..35S 1:CAS:528:DC%2BD1MXhtFGhsL3J
P.F. Hoffman A.J. Kaufman G.P. Halverson D.P. Schrag A neoproterozoic snowball earth Science 281 1342 1346 1998Sci..281.1342H 1:CAS:528:DyaK1cXlvVegt7c%3D 9721097
G.H. Spence D.P. Le Heron I.J. Fairchild Sedimentological perspectives on climatic, atmospheric and environmental change in the neoproterozoic Era Sedimentology 63 253 306 1:CAS:528:DC%2BC28XjsVGit7o%3D
G. Jiang M.J. Kennedy N. Christie-Blick Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates Nature 426 822 826 2003Natur.426.822J 1:CAS:528:DC%2BD3sXpvVGmtLg%3D 14685234
A.J. Kaufman F.A. Corsetti M.A. Varni The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie formation, Death Valley, USA Chem. Geol. 237 47 63 2007ChGeo.237..47K 1:CAS:528:DC%2BD2sXht1Gnt7g%3D
C. Zhou et al. A new SIMS zircon U-Pb date from the Ediacaran Doushantuo Formation: age constraint on the Weng’an biota Geol. Mag. 154 1193 1201 2017GeoM.154.1193Z 1:CAS:528:DC%2BC2sXhslymsL7P 1467.35191
Hinnov, L. A. Cyclostratigraphy and astrochronology in 2018. In The Geologic Time Scale 1–80 (Elsevier, 2018).
Gradstein, F. M. & Ogg, J. G. The chronostratigraphic scale. In Geologic Time Scale 21–32 (Elsevier, 2020).
R.N. Mitchell et al. Orbital forcing of ice sheets during snowball Earth Nat. Commun. 12 2021NatCo.12.4187M 1:CAS:528:DC%2BB3MXhsFOnsrfF 34234152 8263735 07553333 4187
M.L. Lantink J.H.F.L. Davies M. Ovtcharova F.J. Hilgen Milankovitch cycles in banded iron formations constrain the earth–moon system 2.46 billion years ago Proc. Natl. Acad. Sci. USA 119 e2117146119 1:CAS:528:DC%2BB38Xislaqt7bL 36161904 9546617
D. Minguez K.P. Kodama Rock magnetic chronostratigraphy of the Shuram carbon isotope excursion: Wonoka Formation, Australia Geology 45 567 570 2017Geo..45.567M 1:CAS:528:DC%2BC1cXkvVyntLY%3D
Z. Gong M. Li Astrochronology of the Ediacaran Shuram carbon isotope excursion, Oman Earth Planet. Sci. Lett. 547 116462 1:CAS:528:DC%2BB3cXhsVWqsrjF
C. Shen M. Schmitz P. Johnson J.H.F.L. Davies G.P. Halverson U-Pb geochronology and cyclostratigraphy of the middle Ediacaran upper Jibalah Group, eastern Arabian Shield Precambrian Res. 375 106674 1:CAS:528:DC%2BB38XhtFyjtrrN
Y. Sui et al. Astronomical time scale for the lower Doushantuo Formation of early Ediacaran, South China Sci. Bull. 63 1485 1494 1:CAS:528:DC%2BC1cXisVentrnN 1443.20020
C. Zhou C. Guan H. Cui Q. Ouyang W. Wang Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China: Implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean Palaeogeogr. Palaeoclimatol. Palaeoecol. 461 145 155
M. Zhu et al. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China Precambrian Res 225 7 28 2013PreR.225..7Z 1:CAS:528:DC%2BC3sXls1OqtA%3D%3D
G. Jiang X. Shi S. Zhang Y. Wang S. Xiao Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China Gondwana Res 19 831 849 2011GondR.19.831J 1:CAS:528:DC%2BC3MXkvVygsL8%3D
Liu, P. & Moczydłowska, M. Ediacaran microfossils from the doushantuo formation chert nodules in the yangtze gorges area, South China, and new biozones. In Ediacaran Microfossils from the Doushantuo Formation Chert Nodules in the Yangtze Gorges Area, South China, and New Biozones (eds. Liu, P. & Moczydłowska, M.) 65 (John Wiley & Sons, Ltd, 2019).
S. Xiao et al. The Weng’an biota and the Ediacaran radiation of multicellular eukaryotes Natl. Sci. Rev. 1 498 520 1:CAS:528:DC%2BC1cXotVWnsro%3D 1291.30204
D.E. Canfield A.H. Knoll S.W. Poulton G.M. Narbonne G.R. Dunning Carbon isotopes in clastic rocks and the neoproterozoic carbon cycle Am. J. Sci. 320 97 124 2020AmJS.320..97C 1:CAS:528:DC%2BB3cXitVeqtLrJ
B. Chang et al. A ∼60-Ma-long, high-resolution record of Ediacaran paleotemperature Sci. Bull. 67 910 913 0957.93041
J.J. Matthews et al. A chronostratigraphic framework for the rise of the Ediacaran Macrobiota: new constraints from mistaken point ecological reserve, newfoundland Bull. Geol. Soc. Am. 133 612 624 1:CAS:528:DC%2BB3MXhtlynt7bL
P.F. Hoffman Z.X. Li A palaeogeographic context for Neoproterozoic glaciation Palaeogeogr. Palaeoclimatol. Palaeoecol. 277 158 172 1178.54012
Z.X. Li D.A.D. Evans G.P. Halverson Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland Sediment. Geol. 294 219 232 2013SedG.294.219L 0812.65027
J.P. Pu et al. Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota Geology 44 955 958 2016Geo..44.955P 1:CAS:528:DC%2BC1cXitlehtbs%3D 1525.05171
G. Zhao et al. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea Earth-Science Rev 186 262 286 2018ESRv.186.262Z 1298.35132
J. Wang Z.X. Li History of neoproterozoic rift basins in South China: implications for Rodinia break-up Precambrian Res. 122 141 158 2003PreR.122.141W 1:CAS:528:DC%2BD3sXitVyqtLs%3D 1498.93244
R. Li et al. Stratigraphic evidence for a major unconformity within the Ediacaran system Earth Planet. Sci. Lett. 636 118715 1:CAS:528:DC%2BB2cXpsFyrs7k%3D
X. Yuan Z. Chen S. Xiao C. Zhou H. Hua An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes Nature 470 390 393 2011Natur.470.390Y 1:CAS:528:DC%2BC3MXitVCltbY%3D 21331041 1410.34210
M. Zhu H. Strauss G.A. Shields From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China Palaeogeogr. Palaeoclimatol. Palaeoecol. 254 1 6
Zeebe, R. E. & Lantink, M. L. Milanković forcing in deep time. Paleoceanogr. Paleoclimatology39, e2024PA004861 (2024).
R.E. Zeebe M.L. Lantink A secular solar system resonance that disrupts the dominant cycle in earth’s orbital eccentricity (g 2 − g 5): implications for astrochronology Astron. J. 167 204 2024AJ..167.204Z
S.R. Meyers The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: an inverse approach for astrochronologic testing and time scale optimization Paleoceanography 30 1625 1640 2015PalOc.30.1625M 1235.00047
S.R. Meyers Cyclostratigraphy and the problem of astrochronologic testing Earth Sci. Rev. 190 190 223 2019ESRv.190.190M 1415.86025
M.D. Cantine et al. Chronology of Ediacaran sedimentary and biogeochemical shifts along eastern Gondwanan margins Commun. Earth Environ. 5 1 9
D. Xiao et al. Neoproterozoic postglacial paleoenvironment and hydrocarbon potential: a review and new insights from the Doushantuo Formation Sichuan Basin, China Earth Sci. Rev. 212 103453 2021mesq.book...X 1:CAS:528:DC%2BB3cXisFOnsL%2FN 1519.68252
A.D. Miall Updating uniformitarianism: stratigraphy as just a set of ‘frozen accidents’ Geol. Soc. Spec. Publ. 404 11 36 2015GSLSP.404..11M
L.A. Hinnov Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences Bull. Geol. Soc. Am. 125 1703 1734 1283.53053
M. Martinez G. Dera Orbital pacing of carbon fluxes by a ~ 9-My eccentricity cycle during the Mesozoic Proc. Natl. Acad. Sci. USA 112 12604 12609 2015PNAS.11212604M 1:CAS:528:DC%2BC2MXhsFKnt7bO 26417080 4611626 1163.16301
M. Ikeda R. Tada K. Ozaki Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts Nat. Commun. 8 2017NatCo..815532I 1:CAS:528:DC%2BC2sXpsVCltbY%3D 28589958 5467233 1523.60030 15532
S. Boulila B. Galbrun J. Laskar H. Pälike A ~9myr cycle in Cenozoic δ 13 C record and long-term orbital eccentricity modulation: is there a link? Earth Planet. Sci. Lett. 317–318 273 281 2012E&PSL.317.273B
R.E. Zeebe I.J. Kocken Applying astronomical solutions and Milanković forcing in the earth sciences Earth Sci. Rev. 261 104959 1458.90667
B.B. Sageman et al. Integrating 40Ar/39Ar, U-Pb, and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA Bull. Geol. Soc. Am. 126 956 973 1:CAS:528:DC%2BC2cXhtlCjs7bE 1406.53001
C. Ma S.R. Meyers B.B. Sageman Theory of chaotic orbital variations confirmed by Cretaceous geological evidence Nature 542 468 470 2017Natur.542.468M 1:CAS:528:DC%2BC2sXjsVSntLc%3D 28230127 1406.53001
J.S. Eldrett et al. An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: implications for global chronostratigraphy Cretac. Res. 56 316 344
A.D. Rooney J.V. Strauss A.D. Brandon F.A. Macdonald A Cryogenian chronology: Two long-lasting synchronous neoproterozoic glaciations Geology 43 459 462 2015Geo..43.459R
B. Kilner C. Mac Niocaill M. Brasier Low-latitude glaciation in the Neoproterozoic of Oman Geology 33 413 416 2005Geo..33.413K 1353.92004
R.I.F. Trindade E. Font M.S. D’Agrella-Filho A.C.R. Nogueira C. Riccomini Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon craton Terra Nova 15 441 446 2003TeNov.15.441T
T.B. Thomas D.C. Catling Three-stage formation of cap carbonates after Marinoan snowball glaciation consistent with depositional timescales and geochemistry Nat. Commun. 15 1 15 1:CAS:528:DC%2BB2cXht1amsbbJ
B. Chen et al. A short-lived oxidation event during the early Ediacaran and delayed oxygenation of the Proterozoic ocean Earth Planet. Sci. Lett. 577 117274 1:CAS:528:DC%2BB3MXisVehsb%2FM
D.A. Fike J.P. Grotzinger L.M. Pratt R.E. Summons Oxidation of the Ediacaran ocean Nature 444 744 747 2006Natur.444.744F 1:CAS:528:DC%2BD28Xht1Ontb3I 17151665
G.P. Halverson P.F. Hoffman D.P. Schrag A.C. Maloof A.H.N. Rice Toward a Neoproterozoic composite carbon-isotope record Bull. Geol. Soc. Am. 117 1181
E.A. Sperling et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation Nature 523 451 454 2015Natur.523.451S 1:CAS:528:DC%2BC2MXht1WksrfI 26201598 0586.73200
G.Y. Wei et al. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records Earth Sci. Rev. 214 103506 1:CAS:528:DC%2BB3MXhslKgt7c%3D 1260.35070
Y. Sawaki et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China Precambrian Res. 176 46 64 2010PreR.176..46S 1:CAS:528:DC%2BD1MXhsFGms73P 1210.90013
G.A. Shields et al. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial Nat. Geosci. 12 823 827 2019NatGe.12.823S 1:CAS:528:DC%2BC1MXhs12gurjM 1428.76097
C. Li et al. Uncovering the spatial heterogeneity of Ediacaran carbon cycling Geobiology 15 211 224 1:CAS:528:DC%2BC2sXisV2mtLw%3D 27997754 1389.15019
C. Yang et al. Implications for Ediacaran biological evolution from the ca. 602 Ma Lantian biota in China Geology 50 562 566 2022Geo..50.562Y 1:CAS:528:DC%2BB38XhsFSrs7vJ 0865.62046
S.K. Sahoo et al. Ocean oxygenation in the wake of the Marinoan glaciation Nature 489 546 549 2012Natur.489.546S 1:CAS:528:DC%2BC38XhsVWnur3E 23018964 1115.30033
Z. Yina et al. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian Proc. Natl. Acad. Sci. USA 112 E1453 E1460 1544.62174
R. Wood et al. Integrated records of environmental change and evolution challenge the Cambrian explosion Nat. Ecol. Evol. 3 528 538 30858589 0085.20302
T.M. Lenton R.A. Boyle S.W. Poulton G.A. Shields-Zhou N.J. Butterfield Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era Nat. Geosci. 7 257 265 2014NatGe..7.257L 1:CAS:528:DC%2BC2cXjvV2it74%3D 1447.92270
X. Chen Y. Zhou G.A. Shields Progress towards an improved Precambrian seawater 87 Sr/86 Sr curve Earth Sci. Rev. 224 103869 1:CAS:528:DC%2BB3MXislemu7%2FK
G.A. Shields A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth eEarth 2 35 42 1:CAS:528:DC%2BD1cXktVKmu7o%3D 0272.46021
Kodama, K. P. & Hinnov, L. A. Rock Magnetic Cyclostratigraphy. (John Wiley & Sons, 2014).
M. Li et al. Paleoclimate proxies for cyclostratigraphy: comparative analysis using a lower Triassic marine section in South China Earth Sci. Rev. 189 125 146 2019ESRv.189.125L 1:CAS:528:DC%2BC1MXitVynurw%3D 1406.35412
H. Ao et al. Orbital climate variability on the northeastern Tibetan Plateau across the Eocene–Oligocene transition Nat. Commun. 11 2020NatCo.11.5249A 1:CAS:528:DC%2BB3cXitFCks7bL 33067447 7567875 1467.46012 5249
D.J. Thomson Spectrum estimation and harmonic analysis Proc. IEEE 70 1055 1096 1982IEEEP.70.1055T 0491.90013
M.E. Mann J.M. Lees Robust estimation of background noise and signal detection in climatic time series Clim. Change 33 409 445 1996ClCh..33.409M 0286.90067
G.P. Weedon K.N. Page H.C. Jenkyns Cyclostratigraphy, stratigraphic gaps and the duration of the Hettangian Stage (Jurassic): insights from the Blue Lias Formation of southern Britain Geol. Mag. 156 1469 1509 2019GeoM.156.1469W 1:CAS:528:DC%2BC1MXhsFWrtrnE
Grippo, A, Fischer, A. G, Hinnov, L. A, Herbert, T. D. & Silva, I. P. Cyclostratigraphy and chronology of the Albian stage (Piobbico core, Italy Cyclostratigraphy: Approaches and Case Histories) 57–81 (SEPM, Society for Sedimentary Geology, 2004).
M. Li L. Hinnov L. Kump Acycle: Time-series analysis software for paleoclimate research and education Comput. Geosci. 127 12 22 2019CG..127..12L 1:CAS:528:DC%2BC1MXhtVShtLk%3D
Meyers, S. R. Astrochron: An R Package for Astrochronology.https://cran.r-project.org/web/packages/astrochron/index.html (2014).
M.A.M. Moustafa et al. R A language and environment for statistical computing, R Foundation for Statistical Computing 20 1979 1992 07259267
K.H. Hoffmann D.J. Condon S.A. Bowring J.L. Crowley U-Pb zircon date from the Neoproterozoic Ghaub Formation Namibia: constraints on Marinoan glaciation Geology 32 817 820 2004Geo..32.817H 1:CAS:528:DC%2BD2cXotFKitbY%3D
D.E. Canfield et al. Ferruginous conditions dominated later neoproterozoic deep-water chemistry Science 321 949 952 2008Sci..321.949C 1:CAS:528:DC%2BD1cXpslWrtbs%3D 18635761