[en] Shock waves have undesirable effects, such as excessive dynamic pressure on spillway walls and the extension of flow beyond spillway conduits. To eliminate these detrimental impacts, designers have attempted to detect the characteristics of these waves. Flow interaction with chute piers generates triple waves in the middle walls and sidewalls of spillway conduits. The present study quantitatively investigated the characteristics of these waves with respect to variations in the bottom inclination angle (θ), wall contraction (w), and Fr numbers (Fr0). The results indicated that with the increment of θ, Fr0, (w, Fr0), and (θ, Fr0), the height (Hm) and distance (ls) of the first wave (w1) increased, which can be helpful for flow aeration. Furthermore, owing to a boost in θ, Fr0, (w, Fr0), and (θ, Fr0), the height of the second wave (w2) was decreased. Therefore, the amount of dynamic pressure on the spillway walls was reduced. Moreover, the distance of w2 decreased with a rise in θ, w and increased with the increment of Fr0 and (w, Fr0). As for w3, raising w and (w, Fr0) elevated the height of this wave and declined its distance. An increase in the height of w3 boosted the flow turbulence and aeration.
Disciplines :
Civil engineering
Author, co-author :
Jamali Rovesht, Tohid ; Université de Liège - ULiège > Urban and Environmental Engineering ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Manafpour, Mohammad; Department of Civil Engineering, Urmia University, Urmia, Iran
Abdo, K., Riahi-Nezhad, C. K. & Imran, J. 2018 Steady supercritical flow in a straight-wall open channel contraction. Journal of Hydraulic Research 57 (5), 647-661. doi:10.1080/00221686.2018.1504126.
Aminoroayaie Yamini, O., Mousavi, S. H., Kavianpour, M. R. & Safari Ghaleh, R. 2021 Hydrodynamic performance and cavitation analysis in bottom outlets of dam using CFD modelling. Journal of Advances in Civil Engineering. ID 5529792, https://doi.org/10.1155/2021/5529792
Bai, R., Zhang, F., Liu, S. & Wang, W. 2016 Air concentration and bubble characteristics downstream of a chute aerator. International Journal of Multiphase Flow 87, 156-166.
Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J. & Amparo, P. 2018 Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways. Journal of Hydro-Environment Research 19, 137-149. doi:10.1016/j.jher.2017.10.002.
Biabani, S., Hamidi, M. & Navayi Neya, B. 2019 Numerical simulation of the chute convergence effects on forming the transverse wave in flood evacuation systems. Journal of Hydraulics 14 (3), 67-84.
Chen, S., Zhang, J., Hu, M. & Hazrati, A. 2013 Experimental study on water wing characteristics induced by piers in flood drainage culverts. Scientia Iranica Transactions on Civil Engineering (A) 20 (5), 1320-1326.
Ebrahimnezhadian, H., Manafpour, M. & Babazadeh, V. 2020 Simulation of the effect of flip bucket edge angle on flow hydraulic characteristics. Iranian Journal of Soil and Water Research 51 (5), 2085-2010. doi:10.22059/ijswr.2020.298275.668509.
Ferziger, J. H. & Peric, M. 2012 Computational Methods for Fluid Dynamics. Springer Science & Business Media, New York. https://doi.org/10.1007/978-3-642-56026-2.
Hassanzadeh Vayghan, V., Mohammadi, M. & Ranjbar, A. 2019 Experimental study of the rooster tail jump and end sill in horseshoe spillways. Civil Engineering Journal 5 (4), 871-880. doi:10.28991/cej-2019-03091295.
Hirt, C. & Nichols, B. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201-225.
Hunt, S. L., Kadavy, K. C., Abt, S. R. & Temple, D. M. 2008 Impact of converging chute walls for roller compacted concrete stepped spillways. Journal of Hydraulic Engineering 134 (7), 1000-1003.
Jahani, M., Sarkardeh, H. & Jabbari, E. 2018 Effect of using guide walls and piers with different geometries on the flow at entrance of a spillway. The European Physical Journal Plus 133 (91), 1-21. doi:10.1140/epjp/i2018-11948-5.
Jan, C. D., Chang, C. J., Lai, J. S. & Guo, W. D. 2009 Characteristics of hydraulic shock waves in an inclined chute contraction - experiments. Journal of Mechanics 25, 129-136. doi:10.1017/S1727719100002574.
Juan César, L. B., Oscar, P. E., Víctor Manuel, O. M. & Jesús, G. S. 2018 Experimental investigation of artificial aeration on a smooth spillway with a crest pier. Journal of Water 10, 1383. doi:10.3390/w10101383.
Mousavimehr, S. M., Aminoroayaie Yamini, O. & Kavianpour, M. R. 2021 Performance assessment of shockwaves of chute spillways in large dams. Journal of Advances in Civil Engineering. ID 6634086, https://doi.org/10.1155/2021/6634086.
Nikpoura, M. R., Khosraviniab, P. & Farsadizadeh, D. 2018 Experimental analysis of shock waves turbulence in contractions with rectangular sections. Journal of Computational and Applied Research 8 (1), 189-198.
Pagliara, S. & Kurdistani, S. M. 2011 Rooster tail wave hydraulics of chutes. Journal of Hydraulic Engineering 137, 1085-1088. doi:10.1061/(ASCE)HY.1943-7900.0000397.
Reinauer, R. & Hager, W. H. 1994 Supercritical flow behind chute piers. Journal of Hydraulic Engineering 120 (11), 1292-1308. Reinauer, R. & Hager, W. H. 1997 Pier waves in sloping chutes. International Journal of Hydropower and Dams 4 (3), 100-103.
Reisi, A., Salah, P. & Kavianpour, M. R. 2015 Impact of chute walls convergence angle on flow characteristics of spillways using numerical modeling. International Journal of Chemical, Environmental & Biological Sciences 3 (3), 245-251.
Salazar, F., San-Mauro, J., Celigueta, M. A. & Oñate, E. 2019 Shockwaves in spillways with the particle finite element method. Journal of Computational Particle Mechanics 7, 87-99. doi:10.1007/s40571-019-00252-1.
Samadi-Boroujeni, H., Abbasi, S., Altaee, A. & Fattahi Nafchi, R. 2019 Numerical and physical modelling of the effect of roughness height on cavitation index in chute spillways. International Journal of Civil Engineering 18 (5), 1-12.
Stamou, I., Chapsas, D. G. & Christodoulou, G. C. 2008 3-D numerical modelling of supercritical flow in gradual expansions. Journal of Hydraulic Research 46 (3), 402-409.
The Final Report of Nazloochay dam's spillway Hydraulic model. 2008. Water Research Institute, Tehran, Iran.
Woolbright, R. W., Hanson, G. J. & Hunt, S. L. 2008 Model study of RCC stepped spillways with sloped converging training walls. Proceedings of American Society of Agricultural and Biological Engineers International, Providence, RI, June 29-July 2, 2008. Doi.10.13031/2013.24693.
Wu, J. H. & Yan, Z. M. 2008 Hydraulic characteristics of bottom underlay-type pier for water-wing control. Journal of Hydrodynamics, Series B 20 (6), 735-740.
Wu, J. H., Cai, C. G., Ji, W., Ruan, S. P. & Luo, C. 2005 Experimental study on cavitation and water-wing for middle-piers of discharge tunnels. Journal of Hydrodynamics, Series B 17 (4), 429-437.
Wu, J. H., Cai, C. G., Ji, W. & Ruan, S. p. 2006 Hydraulic characteristics of water wings for the middle-pier of a discharge tunnel. Journal of Hydrodynamics, Series B 18 (5), 567-571.
Xue, H., Diao, M., Ma, Q. & Sun, H. 2018 Hydraulic characteristics and reduction measure for rooster tails behind spillway piers. Arabian Journal for Science and Engineering 43, 5597-5604. doi:10.1007/s13369-018-3237-8.
Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B. & Speziale, C. G. 1992 Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A 4 (7), 1510-1520. doi:10.1063/1.858424.
Zhang, J. M., Chen, J. G., Xu, W. l., Wang, Y. R. & Li, G. J. 2011 Three-dimensional numerical simulation of aerated flows downstream sudden fall aerator expansion-in a tunnel. Hydrodynamics Journal 23 (1), 71-80.