SAMD9L protein, human; SAMD9 protein, human; Antiviral Restriction Factors; Intracellular Signaling Peptides and Proteins; Tumor Suppressor Proteins; Humans; Animals; HEK293 Cells; Protein Biosynthesis; Intracellular Signaling Peptides and Proteins/metabolism; Intracellular Signaling Peptides and Proteins/genetics; HIV Infections/virology; HIV Infections/drug therapy; HIV-1/genetics; HIV-1/physiology; Virus Replication; Lentiviruses, Primate/genetics; Lentiviruses, Primate/metabolism; HIV Infections; HIV-1; Lentiviruses, Primate; Neuroscience (all); Biochemistry, Genetics and Molecular Biology (all); Immunology and Microbiology (all); Agricultural and Biological Sciences (all)
Abstract :
[en] Sterile alpha motif domain-containing proteins 9 and 9-like (SAMD9/9L) are associated with life-threatening genetic diseases in humans and are restriction factors of poxviruses. Yet, their cellular function and the extent of their antiviral role are poorly known. Here, we found that interferon-stimulated human SAMD9L restricts HIV-1 in the late phases of replication, at the posttranscriptional and prematuration steps, impacting viral translation and, possibly, endosomal trafficking. Surprisingly, the paralog SAMD9 exerted an opposite effect, enhancing HIV-1. More broadly, we showed that SAMD9L restricts primate lentiviruses, but not a gammaretrovirus (MLV), nor 2 RNA viruses (arenavirus MOPV and rhabdovirus VSV). Using structural modeling and mutagenesis of SAMD9L, we identified a conserved Schlafen-like active site necessary for HIV-1 restriction by human and a rodent SAMD9L. By testing a gain-of-function constitutively active variant from patients with SAMD9L-associated autoinflammatory disease, we determined that SAMD9L pathogenic functions also depend on the Schlafen-like active site. Finally, we found that the constitutively active SAMD9L strongly inhibited HIV, MLV, and, to a lesser extent, MOPV. This suggests that the virus-specific effect of SAMD9L may involve its differential activation/sensing and the virus ability to evade from SAMD9L restriction. Overall, our study identifies SAMD9L as an HIV-1 antiviral factor from the cell autonomous immunity and deciphers host determinants underlying the translational repression. This provides novel links and therapeutic avenues against viral infections and genetic diseases.
Disciplines :
Microbiology
Author, co-author :
Legrand, Alexandre; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
Dahoui, Clara; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
de la Myre Mory, Clément ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale ; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
Noy, Kodie; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France ; Unité de Biologie des Infections Virales Émergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
Guiguettaz, Laura; Laboratoire de Biologie et Modélisation de la Cellule (LBMC), Université de Lyon, INSERM U1293, CNRS UMR 5239, ENS de Lyon, UCBL1, Lyon, France
Versapuech, Margaux; Université Paris Cité, CNRS, Inserm, Institut Cochin, INSERM, CNRS, Paris, France
Loyer, Clara; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
Pillon, Margaux; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
Wcislo, Mégane; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
Guéguen, Laurent; Laboratoire de Biologie et Biométrie Évolutive (LBBE), CNRS UMR 5558, UCBL1, Villeurbanne, France
Berlioz-Torrent, Clarisse; Université Paris Cité, CNRS, Inserm, Institut Cochin, INSERM, CNRS, Paris, France
Cimarelli, Andrea; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
Mateo, Mathieu; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France ; Unité de Biologie des Infections Virales Émergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
Fiorini, Francesca; Retroviruses and structural biochemistry, Molecular Microbiology and Structural Biochemistry (MMSB), IBCP, CNRS UMR 5086, University of Lyon, Lyon, France
Ricci, Emiliano P; Laboratoire de Biologie et Modélisation de la Cellule (LBMC), Université de Lyon, INSERM U1293, CNRS UMR 5239, ENS de Lyon, UCBL1, Lyon, France
Etienne, Lucie ; Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
amfAR - American Foundation for AIDS Research FRM - Fondation pour la Recherche Médicale FINOVI - Fondation Innovations en Infectiologie Sidaction CNRS - Centre National de la Recherche Scientifique UCBL - Université Claude Bernard. Lyon 1
Funding text :
Funding: This work was funded by grants from the French Research Agency on HIV and Emerging Infectious Diseases ANRS/MIE (#ECTZ19143 and #ECTZ118944 to LE, #ECTZ245897 to LE and FF, #ECTZ243795 to CBT, #ECTZ3306 to EPR), as well as from the ANR LABEX ECOFECT (ANR-11-LABX-0048 of Universit\u00E9 de Lyon, within the program \"Investissements d\u2019Avenir\" (ANR-11-IDEX-0007) operated by the French National Research Agency, to LE and LG), the amfAR (Mathilde Krim Phase II Fellowship #109140-58-RKHF, to LE), the \u201CFondation pour la Recherche M\u00E9dicale\u201D (FRM \u201CProjet Innovant\u201D #ING20160435028 to LE), the FINOVI (\u201Crecently settled scientist\u201D grant to LE), and the Sidaction (to LE #23-1-AEQ-13601, and to AC). LE and AC are supported by the CNRS. LG is supported by the Universit\u00E9 Claude Bernard Lyon 1 and Swedish Center of Advanced Study. AL is supported by PhD fellowships from Sidaction (2020 - n\u25E612673, 2023 - n\u25E613574). The funders play no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Thomas ME, Abdelhamed S, Hiltenbrand R, Schwartz JR, Sakurada SM, Walsh M, et al. Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells. Leukemia. 2021; 35:3232–3244. https://doi.org/10.1038/s41375-021-01212-6 PMID: 33731850
Allenspach EJ, Soveg F, Finn LS, So L, Gorman JA, Rosen ABI, et al. Germline SAMD9L truncation variants trigger global translational repression. J Exp Med. 2021; 218:e20201195. https://doi.org/10.1084/jem.20201195 PMID: 33724365
Russell AJ, Gray PE, Ziegler JB, Kim YJ, Smith S, Sewell WA, et al. SAMD9L autoinflammatory or ataxia pancytopenia disease mutations activate cell-autonomous translational repression. Proc Natl Acad Sci U S A. 2021; 118:e2110190118. https://doi.org/10.1073/pnas.2110190118 PMID: 34417303
Nagamachi A, Kanai A, Nakamura M, Okuda H, Yokoyama A, Shinriki S, et al. Multiorgan failure with abnormal receptor metabolism in mice mimicking Samd9/9L syndromes. J Clin Invest. 2021; 131:140147. https://doi.org/10.1172/JCI140147 PMID: 33373325
Nagamachi A, Matsui H, Asou H, Ozaki Y, Aki D, Kanai A, et al. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell. 2013; 24:305–317. https://doi.org/10.1016/j.ccr.2013.08.011 PMID: 24029230
de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A, Huang Y, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest. 2020; 130:1669–1682. https://doi.org/10.1172/JCI129301 PMID: 31874111
Tesi B, Davidsson J, Voss M, Rahikkala E, Holmes TD, Chiang SCC, et al. Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood. 2017; 129:2266–2279. https://doi.org/10.1182/blood-2016-10-743302 PMID: 28202457
Sahoo SS, Pastor VB, Goodings C, Voss RK, Kozyra EJ, Szvetnik A, et al. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat Med. 2021; 27:1806–1817. https://doi.org/10.1038/s41591-021-01511-6 PMID: 34621053
Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, et al. New spinocerebellar ataxia subtype caused by SAMD9L mutation triggering mitochondrial dysregulation (SCA49). Brain Commun. 2022; 4:fcac030. https://doi.org/10.1093/braincomms/fcac030 PMID: 35310830
Narumi S, Amano N, Ishii T, Katsumata N, Muroya K, Adachi M, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016; 48:792–797. https://doi.org/10.1038/ng.3569 PMID: 27182967
Meng X, Zhang F, Yan B, Si C, Honda H, Nagamachi A, et al. A paralogous pair of mammalian host restriction factors form a critical host barrier against poxvirus infection. PLoS Pathog. 2018; 14: e1006884. https://doi.org/10.1371/journal.ppat.1006884 PMID: 29447249
Liu J, McFadden G. SAMD9 Is an Innate Antiviral Host Factor with Stress Response Properties That Can Be Antagonized by Poxviruses. J Virol. 2014; 89:1925–1931. https://doi.org/10.1128/JVI.02262-14 PMID: 25428864
Sivan G, Ormanoglu P, Buehler EC, Martin SE, Moss B. Identification of Restriction Factors by Human Genome-Wide RNA Interference Screening of Viral Host Range Mutants Exemplified by Discovery of SAMD9 and WDR6 as Inhibitors of the Vaccinia Virus K1L-C7L-Mutant. MBio. 2015; 6:e01122. https://doi.org/10.1128/mBio.01122-15 PMID: 26242627
Peng S, Meng X, Zhang F, Pathak PK, Chaturvedi J, Coronado J, et al. Structure and function of an effector domain in antiviral factors and tumor suppressors SAMD9 and SAMD9L. Proc Natl Acad Sci. 2022; 119:e2116550119. https://doi.org/10.1073/pnas.2116550119 PMID: 35046037
Kane M, Zang TM, Rihn SJ, Zhang F, Kueck T, Alim M, et al. Identification of Interferon-Stimulated Genes with Antiretroviral Activity. Cell Host Microbe. 2016; 20:392–405. https://doi.org/10.1016/j.chom.2016.08.005 PMID: 27631702
Schoggins JW. Interferon-Stimulated Genes: What Do They All Do? Annu Rev Virol. 2019; 6:567–584. https://doi.org/10.1146/annurev-virology-092818-015756 PMID: 31283436
Crow YJ, Stetson DB. The type I interferonopathies: 10 years on. Nat Rev Immunol. 2021:1–13. https://doi.org/10.1038/s41577-021-00633-9 PMID: 34671122
OhAinle M, Helms L, Vermeire J, Roesch F, Humes D, Basom R, et al. A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV. Nussenzweig MC, Sundquist WI, editors. Elife 2018; 7: e39823. https://doi.org/10.7554/eLife.39823 PMID: 30520725
Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A. 2008; 105:7552–7557. https://doi.org/10.1073/pnas.0802203105 PMID: 18490657
Ochsenbauer C, Edmonds TG, Ding H, Keele BF, Decker J, Salazar MG, et al. Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4 T lymphocytes and monocyte-derived macrophages. J Virol. 2012; 86:2715–2728. https://doi.org/10.1128/JVI.06157-11 PMID: 22190722
Wu N, Nguyen X-N, Wang L, Appourchaux R, Zhang C, Panthu B, et al. The interferon stimulated gene 20 protein (ISG20) is an innate defense antiviral factor that discriminates self versus non-self translation. PLoS Pathog. 2019; 15:e1008093. https://doi.org/10.1371/journal.ppat.1008093 PMID: 31600344
Song Y, Nguyen X-N, Kumar A, da Silva C, Picard L, Etienne L, et al. Trim69 is a microtubule regulator that acts as a pantropic viral inhibitor. Proc Natl Acad Sci U S A. 2022; 119:e2211467119. https://doi.org/10.1073/pnas.2211467119 PMID: 36251989
Mekhedov SL, Makarova KS, Koonin EV. The complex domain architecture of SAMD9 family proteins, predicted STAND-like NTPases, suggests new links to inflammation and apoptosis. Biol Direct. 2017; 12:13. https://doi.org/10.1186/s13062-017-0185-2 PMID: 28545555
Goyal M, Banerjee C, Nag S, Bandyopadhyay U. The Alba protein family: Structure and function. Biochim Biophys Acta. 2016; 1864:570–583. https://doi.org/10.1016/j.bbapap.2016.02.015 PMID: 26900088
Jo U, Pommier Y. Structural, molecular, and functional insights into Schlafen proteins. Exp Mol Med. 2022; 54:730–738. https://doi.org/10.1038/s12276-022-00794-0 PMID: 35768579
Yang J-Y, Deng X-Y, Li Y-S, Ma X-C, Feng J-X, Yu B, et al. Structure of Schlafen13 reveals a new class of tRNA/rRNA- targeting RNase engaged in translational control. Nat Commun. 2018; 9:1165. https://doi.org/10.1038/s41467-018-03544-x PMID: 29563550
Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, et al. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature. 2012; 491:125–128. https://doi.org/10.1038/ nature11433 PMID: 23000900
Guo G, Wang Y, Hu X-M, Li Z-R, Tan J, Qiao W-T. Human Schlafen 11 exploits codon preference discrimination to attenuate viral protein synthesis of prototype foamy virus (PFV). Virology. 2021; 555:78–88. https://doi.org/10.1016/j.virol.2020.12.015 PMID: 33465725
Ding J, Wang S, Wang Z, Chen S, Zhao J, Solomon M, et al. Schlafen 5 suppresses human immunodeficiency virus type 1 transcription by commandeering cellular epigenetic machinery. Nucleic Acids Res. 2022; 50:6137–6153. https://doi.org/10.1093/nar/gkac489 PMID: 35687115
Kobayashi-Ishihara M, Frazão Smutná K, Alonso FE, Argilaguet J, Esteve-Codina A, Geiger K, et al. Schlafen 12 restricts HIV-1 latency reversal by a codon-usage dependent post-transcriptional block in CD4+ T cells. Commun Biol. 2023; 6:1–15. https://doi.org/10.1038/s42003-023-04841-y PMID: 37165099
Zhang F, Meng X, Townsend MB, Satheshkumar PS, Xiang Y. Identification of CP77 as the Third Orthopoxvirus SAMD9 and SAMD9L Inhibitor with Unique Specificity for a Rodent SAMD9L. J Virol. 2019; 93:e00225–e00219. https://doi.org/10.1128/JVI.00225-19 PMID: 30918078
Li M, Kao E, Malone D, Gao X, Wang JYJ, David M. DNA damage-induced cell death relies on SLFN11-dependent cleavage of distinct type II tRNAs. Nat Struct Mol Biol. 2018; 25:1047–1058. https://doi.org/10.1038/s41594-018-0142-5 PMID: 30374083
Presnyak V, Alhusaini N, Chen Y-H, Martin S, Morris N, Kline N, et al. Codon optimality is a major determinant of mRNA stability. Cell. 2015; 160:1111–1124. https://doi.org/10.1016/j.cell.2015.02.029 PMID: 25768907
Metzner FJ, Huber E, Hopfner K-P, Lammens K. Structural and biochemical characterization of human Schlafen 5. Nucleic Acids Res. 2022; 50:1147–1161. https://doi.org/10.1093/nar/gkab1278 PMID: 35037067
Zhang F, Ji Q, Chaturvedi J, Morales M, Mao Y, Meng X, et al. Human SAMD9 is a poxvirus-activatable anticodon nuclease inhibiting codon-specific protein synthesis. Sci Adv. 2023;9:eadh8502. https://doi.org/10.1126/sciadv.adh8502 PMID: 37285440
Tran V, Ledwith MP, Thamamongood T, Higgins CA, Tripathi S, Chang MW, et al. Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nat Microbiol. 2020; 5:1490–1503. https://doi.org/10.1038/s41564-020-0778-x PMID: 32839537
Marziali F, Delpeuch M, Kumar A, Appourchaux R, Dufloo J, Tartour K, et al. Functional Heterogeneity of Mammalian IFITM Proteins against HIV-1. J Virol. 2021; 95:e0043921. https://doi.org/10.1128/JVI. 00439-21 PMID: 34160255
Diamond MS, Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol. 2013; 13:46–57. https://doi.org/10.1038/nri3344 PMID: 23237964
Etienne L, Hahn BH, Sharp PM, Matsen FA, Emerman M. Gene Loss and Adaptation to Hominids Underlie the Ancient Origin of HIV-1. Cell Host Microbe. 2013; 14:85–92. https://doi.org/10.1016/j.chom.2013.06.002 PMID: 23870316
Uriu K, Kosugi Y, Suzuki N, Ito J, Sato K. Elucidation of the Complicated Scenario of Primate APOBEC3 Gene Evolution. J Virol. 2021; 95:e00144–e00121. https://doi.org/10.1128/JVI.00144-21 PMID: 33789992
Haller O, Staeheli P, Schwemmle M, Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol. 2015; 23:154–163. https://doi.org/10.1016/j.tim.2014.12.003 PMID: 25572883
Goujon C, Moncorgé O, Bauby H, Doyle T, Ward CC, Schaller T, et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature. 2013; 502:559–562. https://doi.org/10.1038/ nature12542 PMID: 24048477
Lemos de Matos A, Liu J, McFadden G, Esteves PJ. Evolution and divergence of the mammalian SAMD9/SAMD9L gene family. BMC Evol Biol. 2013; 13:121. https://doi.org/10.1186/1471-2148-13-121 PMID: 23758988
Duggal NK, Emerman M. Evolutionary conflicts between viruses and restriction factors shape immunity. Nat Rev Immunol. 2012; 12:687–695. https://doi.org/10.1038/nri3295 PMID: 22976433
Daugherty MD, Malik HS. Rules of Engagement: Molecular Insights from Host-Virus Arms Races. Annu Rev Genet. 2012; 46:677–700. https://doi.org/10.1146/annurev-genet-110711-155522 PMID: 23145935
Enard D, Cai L, Gwennap C, Petrov DA. Viruses are a dominant driver of protein adaptation in mammals. McVean G, editor. Elife 2016; 5: e12469. https://doi.org/10.7554/eLife.12469 PMID: 27187613
Wein T, Sorek R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Immunol. 2022; 22:629–638. https://doi.org/10.1038/s41577-022-00705-4 PMID: 35396464
Ostertag D, Hoblitzell-Ostertag TM, Perrault J. Overproduction of double-stranded RNA in vesicular stomatitis virus-infected cells activates a constitutive cell-type-specific antiviral response. J Virol. 2007; 81:503–513. https://doi.org/10.1128/JVI.01218-06 PMID: 17065213
Carnec X, Mateo M, Page A, Reynard S, Hortion J, Picard C, et al. A Vaccine Platform against Arenaviruses Based on a Recombinant Hyperattenuated Mopeia Virus Expressing Heterologous Glycoproteins. J Virol. 2018; 92:e02230–e02217. https://doi.org/10.1128/JVI.02230-17 PMID: 29593043
Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol Biol. 2018; 430:2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007 PMID: 29258817
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589. https://doi.org/10.1038/s41586-021-03819-2 PMID: 34265844
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022; 50:D439–D444. https://doi.org/10.1093/nar/gkab1061 PMID: 34791371
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000; 28:235–242. https://doi.org/10.1093/nar/28.1.235 PMID: 10592235
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32:1792–1797. https://doi.org/10.1093/nar/gkh340 PMID: 15034147
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014; 42:W320–W324. https://doi.org/10.1093/nar/gku316 PMID: 24753421