'current; Fog events; Low-costs; Low-intensity; Poor performance; Test-bench; Time intensities; Water collection; Water droplets; Water source; Water Science and Technology; Waste Management and Disposal; Pollution; Management, Monitoring, Policy and Law
Abstract :
[en] As scarcity of water is expected to intensify with global warming, unconventional water sources such as advective fogs may become essential. In numerous arid regions, nets are used to harvest such water droplets. However, many current fog nets are either not durable or expensive, and have poor performances for short time or low intensity fog events. With a dedicated test bench, we show here that a low-cost net with kirigami design offers a higher and faster fog collecting ability than the usual fibers nets. This kirigami fog net consists of a continuous network of strips where water quickly forms a stable film, accounting for its superior capture efficiency. We rationalize this mechanism with a simplified structure composed of disconnected strips whose optimization paves the way to the shaping of original fog nets such as the kirigami one.
Disciplines :
Physics
Author, co-author :
Bintein, Pierre-Brice ; Université de Liège - ULiège > Département de physique > Physique statistique ; Frugal Lab, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium ; Fab Lab ULB, Université Libre de Bruxelles (ULB), Brussels, Belgium
Cornu, Axel; Frugal Lab, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium ; Fab Lab ULB, Université Libre de Bruxelles (ULB), Brussels, Belgium
Weyer, Floriane ; Université de Liège - ULiège > Centres généraux > Centre de Formation des Enseignant·es (CEFEN)
De Coster, Nicolas; Fab Lab ULB, Université Libre de Bruxelles (ULB), Brussels, Belgium ; Institut Royal Météorologique (IRM), Brussels, Belgium
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Terwagne, Denis ; Université de Liège - ULiège > Département de physique > Physique statistique ; Frugal Lab, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium ; Fab Lab ULB, Université Libre de Bruxelles (ULB), Brussels, Belgium
Language :
English
Title :
Kirigami fog nets: how strips improve water collection
United Nations Educational, Scientific and Cultural Organization. United Nations World Water Development Report 2020: Water and Climate Change. (UNESCO, Paris, 2020).
Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016). DOI: 10.1126/sciadv.1500323
Gosling, S. N. & Arnell, N. W. A global assessment of the impact of climate change on water scarcity. Clim. Change 134, 371–385 (2016). DOI: 10.1007/s10584-013-0853-x
Kölbel, J., Strong, C., Noe, C. & Reig, P. Mapping Public Water Management by Harmonizing and Sharing Corporate Water Risk Information. https://www.wri.org/research/mapping-public-water-management-harmonizing-and-sharing-corporate-water-risk-information (2018).
Zhang, M., Liu, R. & Li, Y. Diversifying eater sources with atmospheric water harvesting to enhance water supply resilience. Sustainability 14, 7783 (2022). DOI: 10.3390/su14137783
Wahlgren, R. V. Atmospheric water vapour processor designs for potable water production: a review. Water Res. 35, 1–22 (2001). DOI: 10.1016/S0043-1354(00)00247-5
Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1–8 (2018).
Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018). DOI: 10.1126/sciadv.aat3198
Lekouch, I. et al. Dew, fog, and rain as supplementary sources of water in south-western Morocco. Energy 36, 2257–2265 (2011). DOI: 10.1016/j.energy.2010.03.017
Kaseke, K. F. & Wang, L. Fog and dew as potable water resources: maximizing harvesting potential and water quality concerns. GeoHealth 2, 327–332 (2018). DOI: 10.1029/2018GH000171
Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003). DOI: 10.1126/science.1089967
Qadir, M., Jiménez, G. C., Farnum, R. L., Dodson, L. L. & Smakhtin, V. Fog water collection: challenges beyond technology. Water 10, 372 (2018). DOI: 10.3390/w10040372
Went, F. W. Fog, mist, dew and other sources of water. in The Yearbook of Agriculture: Water (ed. Stefferud, A.) 103–109 (The United States Department of Agriculture, Washington, 1955).
Marzol-Jaén, M. V. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds. Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S.) 352–358 (Cambridge University Press, Cambridge, 2011).
Gultepe, I. et al. Fog research: a review of past achievements and future perspectives. Pure Appl. Geophys. 164, 1121–1159 (2007). DOI: 10.1007/s00024-007-0211-x
Klemm, O. et al. Fog as a fresh-water resource: overview and perspectives. AMBIO 41, 221–234 (2012). DOI: 10.1007/s13280-012-0247-8
Fessehaye, M. et al. Fog-water collection for community use. Renew. Sust. Energy Rev. 29, 52–62 (2014). DOI: 10.1016/j.rser.2013.08.063
Schemenauer, R. S. & Cereceda, P. A proposed standard fog collector for use in high-elevation regions. J. Appl. Meteorol. Climatol. 33, 1313–1322 (1994). DOI: 10.1175/1520-0450(1994)033<1313:APSFCF>2.0.CO;2
Holmes, R., Rivera, Jd. D. & de la Jara, E. Large fog collectors: new strategies for collection efficiency and structural response to wind pressure. Atmos. Res. 151, 236–249 (2015). DOI: 10.1016/j.atmosres.2014.06.005
Rivera, Jd. D. & Lopez-Garcia, D. Mechanical characteristics of Raschel mesh and their application to the design of large fog collectors. Atmos. Res. 151, 250–258 (2015). DOI: 10.1016/j.atmosres.2014.06.011
Rajaram, M., Heng, X., Oza, M. & Luo, C. Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes. Colloids Surf. A: Physicochem. Eng. Asp. 508, 218–229 (2016). DOI: 10.1016/j.colsurfa.2016.08.034
Park, K.-C., Chhatre, S. S., Srinivasan, S., Cohen, R. E. & McKinley, G. H. Optimal design of permeable fiber network structures for fog harvesting. Langmuir 29, 13269–13277 (2013). DOI: 10.1021/la402409f
Seo, D., Lee, J., Lee, C. & Nam, Y. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces. Sci. Rep. 6, 24276 (2016). DOI: 10.1038/srep24276
Shi, W., Anderson, M. J., Tulkoff, J. B., Kennedy, B. S. & Boreyko, J. B. Fog harvesting with harps. ACS Appl. Mater. Interfaces 10, 11979–11986 (2018). DOI: 10.1021/acsami.7b17488
Labbé, R. & Duprat, C. Capturing aerosol droplets with fibers. Soft Matter. 15, 6946–6951 (2019). DOI: 10.1039/C9SM01205B
Jiang, Y., Savarirayan, S., Yao, Y. & Park, K.-C. Fog collection on a superhydrophilic wire. Appl. Phys. Lett. 114, 083701 (2019). DOI: 10.1063/1.5087144
Shi, W., van der Sloot, T. W., Hart, B. J., Kennedy, B. S. & Boreyko, J. B. Harps enable water harvesting under light fog conditions. Adv. Sust. Syst. 4, 2000040 (2020). DOI: 10.1002/adsu.202000040
Kowalski, N. G., Shi, W., Kennedy, B. S. & Boreyko, J. B. Optimizing fog harps. ACS Appl. Mater. Interfaces 13, 38826–38834 (2021). DOI: 10.1021/acsami.1c08995
Bai, H. et al. Cactus kirigami for efficient fog harvesting: simplifying a 3d cactus into 2d paper art. J. Mater. Chem. A 8, 13452–13458 (2020). DOI: 10.1039/D0TA01204A
Yu, Z. et al. Bio-inspired copper kirigami motifs leading to a 2D-3D switchable structure for programmable fog harvesting and water retention. Adv. Funct. Mater. 33, 2210730 (2023). DOI: 10.1002/adfm.202210730
Li, J. et al. Aerodynamics-assisted, efficient and scalable kirigami fog collectors. Nat. Commun. 12, 1–8 (2021).
Sarsour, J., Stegmaier, T., Linke, M. & Planck, H. Bionic development of textile materials for harvesting water from fog. In Proc. 5th International Conference on Fog, Fog Collection and Dew 248–251 (FOGDEW, 2010).
Feld, S. I., Spencer, B. R. & Bolton, S. M. Improved fog collection using Turf reinforcement mats. J. Sust. Water Built Environ. 2, 04016002 (2016). DOI: 10.1061/JSWBAY.0000811
Schunk, C. et al. Testing water yield, efficiency of different meshes and water quality with a novel fog collector for high wind speeds. Aerosol. Air Qual. Res. 18, 240–253 (2018). DOI: 10.4209/aaqr.2016.12.0528
Demoz, B. B., Collett Jr, J. L. & Daube Jr, B. C. On the Caltech active strand cloudwater collectors. Atmos. Res. 41, 47–62 (1996). DOI: 10.1016/0169-8095(95)00044-5
Brunazzi, E. & Paglianti, A. Design of complex wire-mesh mist eliminators. AIChE J. 46, 1131–1137 (2000). DOI: 10.1002/aic.690460605
Regalado, C. M. & Ritter, A. The design of an optimal fog water collector: a theoretical analysis. Atmosp. Res. 178-179, 45–54 (2016). DOI: 10.1016/j.atmosres.2016.03.006
Azeem, M. et al. Optimal design of multilayer fog collectors. ACS Appl. Mater. Interfaces 12, 7736–7743 (2020). DOI: 10.1021/acsami.9b19727
Nguyen, L. T. et al. Three-dimensional multilayer vertical filament meshes for enhancing efficiency in fog water harvesting. ACS Omega 6, 3910–3920 (2021). DOI: 10.1021/acsomega.0c05776
Montecinos, S., Carvajal, D., Cereceda, P. & Concha, M. Collection efficiency of fog events. Atmos. Res. 209, 163–169 (2018). DOI: 10.1016/j.atmosres.2018.04.004
Fernandez, D. M. et al. Fog water collection effectiveness: mesh intercomparisons. Aerosol. Air Qual. Res. 18, 270–283 (2018). DOI: 10.4209/aaqr.2017.01.0040
Rivera, Jd. D. Aerodynamic collection efficiency of fog water collectors. Atmos. Res. 102, 335–342 (2011). DOI: 10.1016/j.atmosres.2011.08.005
Carvajal, D., Silva-Llanca, L., Larraguibel, D. & González, B. On the aerodynamic fog collection efficiency of fog water collectors via three-dimensional numerical simulations. Atmos. Res. 245, 105123 (2020). DOI: 10.1016/j.atmosres.2020.105123
Langmuir, I. Blodgett, K. B. Collected Works of Irving Langmuir (Pergamon Press, 2004).
Schemenauer, R. S. & Joe, P. I. The collection efficiency of a massive fog collector. Atmos. Res. 24, 53–69 (1989). DOI: 10.1016/0169-8095(89)90036-7
Chen, H. et al. Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 17, 935–942 (2018). DOI: 10.1038/s41563-018-0171-9
Ojiako, C. J., Cimpeanu, R., Bandulasena, H. H., Smith, R. & Tseluiko, D. Deformation and dewetting of liquid films under gas jets. J. Fluid Mech. 905, A18 (2020).
Wei, J., Xu, X., Zhang, J. & Liu, J. Measurement of liquid film coverage on vertical plates with hydrophilic and structured surface treatments. Ind. Eng. Chem. Res. 60, 3736–3744 (2021). DOI: 10.1021/acs.iecr.0c05879
Ledesma-Aguilar, R., Nistal, R., Hernandez-Machado, A. & Pagonabarraga, I. Controlled drop emission by wetting properties in driven liquid filaments. Nat. Mater. 10, 367–371 (2011). DOI: 10.1038/nmat2998
Quéré, D. Thin films flowing on vertical fibers. Eur. Lett. 13, 721 (1990). DOI: 10.1209/0295-5075/13/8/009
Kalliadasis, S. & Chang, H.-C. Drop formation during coating of vertical fibres. J. Fluid Mech. 261, 135–168 (1994). DOI: 10.1017/S0022112094000297
Duprat, C., Ruyer-Quil, C. & Giorgiutti-Dauphiné, F. Spatial evolution of a film flowing down a fiber. Phys. Fluids 21, 042109 (2009). DOI: 10.1063/1.3119811
Golovin, M. & Putnam, A. Inertial impaction on single elements. Ind. Eng. Chem. Fundam. 1, 264 (1962). DOI: 10.1021/i160004a007
Lamura, A., Gompper, G., Ihle, T. & Kroll, D. M. Multi-particle collision dynamics: Flow around a circular and a square cylinder. Eur. Lett. 56, 319 (2001). DOI: 10.1209/epl/i2001-00522-9
Haugen, N. E. L. & Kragset, S. Particle impaction on a cylinder in a crossflow as function of Stokes and Reynolds numbers. J. Fluid Mech. 661, 239–261 (2010). DOI: 10.1017/S0022112010002946
Brandon, D. J. & Aggarwal, S. K. A numerical investigation of particle deposition on a square cylinder placed in a channel flow. Aerosol Sci. Technol. 34, 340–352 (2001). DOI: 10.1080/02786820121279
Salmanzadeh, M., Rahnama, M. & Ahmadi, G. Particle transport and deposition in a duct flow with a rectangular obstruction. Part. Sci. Technol. 25, 401–412 (2007). DOI: 10.1080/02726350701487181
Sau, A., Hsu, T.-W. & Ou, S.-H. Three-dimensional evolution of vortical structures and associated flow bifurcations in the wake of two side-by-side square cylinders. Phys. Fluids 19, 084105 (2007). DOI: 10.1063/1.2757712
Zheng, Q. & Alam, M. M. Intrinsic features of flow past three square prisms in side-by-side arrangement. J. Fluid Mech. 826, 996–1033 (2017). DOI: 10.1017/jfm.2017.378
Boudina, M., Gosselin, F. P. & Étienne, S. Direct interception or inertial impaction? A theoretical derivation of the efficiency power law for a simple and practical definition of capture modes. Phys. Fluids 32, 123603 (2020). DOI: 10.1063/5.0030891
de la Mora, J. F. Inertia and interception in the deposition of particles from boundary layers. Aerosol Sci. Technol. 5, 261–266 (1986). DOI: 10.1080/02786828608959092
Isobe, M. & Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep. 6, 1–6 (2016). DOI: 10.1038/srep24758
Wood, R. & Loomis, A. L. XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity. The Lond. Edinb. Dublin Philos. Mag. J. Sci. 4, 417–436 (1927). DOI: 10.1080/14786440908564348
Lang, R. J. Ultrasonic atomization of liquids. J. Acoust. Soc. Am. 34, 6–8 (1962). DOI: 10.1121/1.1909020
Kooij, S., Astefanei, A., Corthals, G. L. & Bonn, D. Size distributions of droplets produced by ultrasonic nebulizers. Sci. Rep. 9, 6128 (2019). DOI: 10.1038/s41598-019-42599-8