Carboxylic acid dimers; Collision cross sections; Cross-section values; High resolution mass spectrometry; Ion mobility spectrometry; Negative electrospray ionizations; Perfluoroalkyl carboxylic acids; Polyfluoroalkyl substances; Pubchem; Structural characterization; Structural Biology; Spectroscopy
Résumé :
[en] Per- and polyfluoroalkyl substances (PFAS) are contaminants of increasing concern, with over seven million compounds currently inventoried in the PubChem PFAS Tree. Recently, ion mobility spectrometry has been combined with liquid chromatography and high-resolution mass spectrometry (LC-IMS-HRMS) to assess PFAS. Interestingly, using negative electrospray ionization, perfluoroalkyl carboxylic acids (PFCAs) form homodimers ([2M-H]-), a phenomenon observed with trapped, traveling wave, and drift-tube IMS. In addition to the limited research on their effect on analytical performance, there is little information on the conformations these dimers can adopt. This study aimed to propose most probable conformations for PFCA dimers. Based on qualitative analysis of how collision cross section (CCS) values change with the mass-to-charge ratio (m/z) of PFCA ions, the PFCA dimers were hypothesized to likely adopt a V-shaped structure. To support this assumption, in silico geometry optimizations were performed to generate a set of conformers for each possible dimer. A CCS value was then calculated for each conformer using the trajectory method with Lennard-Jones and ion-quadrupole potentials. Among these conformers, at least one of the ten lowest-energy conformers identified for each dimer exhibited theoretical CCS values within a ±2% error margin compared to the experimental data, qualifying them as plausible structures for the dimers. Our findings revealed that the fluorinated alkyl chains in the dimers are close to each other due to a combination of C-F···O=C and C-F···F-C stabilizing interactions. These findings, together with supplementary investigations involving environmentally relevant cations, may offer valuable insights into the interactions and environmental behavior of PFAS.
Disciplines :
Chimie
Auteur, co-auteur :
Schneiders, Aurore ; Université de Liège - ULiège > Molecular Systems (MolSys)
Far, Johann ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Belova, Lidia ; Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
Fry, Allison; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
Covaci, Adrian ; Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
Baker, Erin S ; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences)
Eppe, Gauthier ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Langue du document :
Anglais
Titre :
Structural Characterization of Dimeric Perfluoroalkyl Carboxylic Acid Using Experimental and Theoretical Ion Mobility Spectrometry Analyses.
Date de publication/diffusion :
05 mars 2025
Titre du périodique :
Journal of the American Society for Mass Spectrometry
ISSN :
1044-0305
eISSN :
1879-1123
Maison d'édition :
American Chemical Society (ACS), Etats-Unis
Peer reviewed :
Peer reviewed vérifié par ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen F.R.S.-FNRS - Fonds de la Recherche Scientifique
Subventionnement (détails) :
Computational resources for Gaussian calculations have been provided by the Consortium des E\u0301quipements de Calcul Intensif (CE\u0301CI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region. A.S. also acknowledges financial support from the F.R.S.-FNRS (Research Fellow fellowship, 1.A.465.24F). L.B. acknowledges funding through a Research Foundation Flanders (FWO) fellowship (11G1821N). A.F and E.S.B. would also like to acknowledge funding from the NIH National Institute of Environmental Health Sciences (P42 ES027704) and a cooperative agreement with the Environmental Protection Agency (STAR RD 84003201). Analytical standards were purchased with funding from the Belgian Federal Public Service Health, Food Chain Safety and Environment, as part of the RT23/07 PFASFORWARD project.
Wang, Z.; Buser, A. M.; Cousins, I. T.; Demattio, S.; Drost, W.; Johansson, O.; Ohno, K.; Patlewicz, G.; Richard, A. M.; Walker, G. W.; White, G. S.; Leinala, E. A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environ. Sci. Technol. 2021, 55 ( 23), 15575- 15578, 10.1021/acs.est.1c06896
Buck, R. C.; Franklin, J.; Berger, U.; Conder, J. M.; Cousins, I. T.; de Voogt, P.; Jensen, A. A.; Kannan, K.; Mabury, S. A.; van Leeuwen, S. P. J. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7 ( 4), 513- 541, 10.1002/ieam.258
Teymourian, T.; Teymoorian, T.; Kowsari, E.; Ramakrishna, S. A Review of Emerging PFAS Contaminants: Sources, Fate, Health Risks, and a Comprehensive Assortment of Recent Sorbents for PFAS Treatment by Evaluating Their Mechanism. Res. Chem. Intermed. 2021, 47, 4879- 4914, 10.1007/s11164-021-04603-7
Hasegawa, T. Physicochemical Nature of Perfluoroalkyl Compounds Induced by Fluorine. Chem. Rec. 2017, 17 ( 10), 903- 917, 10.1002/tcr.201700018
Grandjean, P.; Clapp, R. Perfluorinated Alkyl Substances: Emerging Insights into Health Risks. New Solut. 2015, 25 ( 2), 147- 163, 10.1177/1048291115590506
Listing of POPs in the Stockholm Convention. http://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx (accessed 2024-08-01).
Interstate technology & regulatory council. PFAS Fact Sheet on History and Use. https://pfas-1.itrcweb.org/wp-content/uploads/2023/10/HistoryandUse_PFAS_Fact-Sheet_Sept2023_final.pdf (accessed 2024-08-01).
Schymanski, E. L.; Zhang, J.; Thiessen, P. A.; Chirsir, P.; Kondic, T.; Bolton, E. E. Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing. Environ. Sci. Technol. 2023, 57 ( 44), 16918- 16928, 10.1021/acs.est.3c04855
Gao, K.; Chen, Y.; Xue, Q.; Fu, J.; Fu, K.; Fu, J.; Zhang, A.; Cai, Z.; Jiang, G. Trends and Perspectives in Per-and Polyfluorinated Alkyl Substances (PFAS) Determination: Faster and Broader. TrAC - Trends Anal. Chem. 2020, 133, 116114, 10.1016/j.trac.2020.116114
Pan, Y.; Wang, J.; Yeung, L. W. Y.; Wei, S.; Dai, J. Analysis of Emerging Per- and Polyfluoroalkyl Substances: Progress and Current Issues. TrAC - Trends Anal. Chem. 2020, 124, 115481, 10.1016/j.trac.2019.04.013
Wang, Z.; Cousins, I. T.; Scheringer, M.; Hungerbuehler, K. Hazard Assessment of Fluorinated Alternatives to Long-Chain Perfluoroalkyl Acids (PFAAs) and Their Precursors: Status Quo, Ongoing Challenges and Possible Solutions. Environ. Int. 2015, 75, 172- 179, 10.1016/j.envint.2014.11.013
Steeves, K.; Cahill, L. S.; Jobst, K. J. Emerging Perfluoroalkyl Substances in Environmental Waters Revealed by Non-Targeted Screening. Curr. Opin. Environ. Sci. Health 2024, 37, 100531, 10.1016/j.coesh.2024.100531
Liu, Y.; D’Agostino, L. A.; Qu, G.; Jiang, G.; Martin, J. W. High-Resolution Mass Spectrometry (HRMS) Methods for Nontarget Discovery and Characterization of Poly- and per-Fluoroalkyl Substances (PFAS) in Environmental and Human Samples. TrAC - Trends Anal. Chem. 2019, 121, 115420, 10.1016/j.trac.2019.02.021
Dodds, J. N.; Hopkins, Z. R.; Knappe, D. R. U.; Baker, E. S. Rapid Characterization of Per- And Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS). Anal. Chem. 2020, 92 ( 6), 4427- 4435, 10.1021/acs.analchem.9b05364
Kirkwood, K. I.; Fleming, J.; Nguyen, H.; Reif, D. M.; Baker, E. S.; Belcher, S. M. Utilizing Pine Needles to Temporally and Spatially Profile Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci. Technol. 2022, 56 ( 6), 3441- 3451, 10.1021/acs.est.1c06483
Ahmed, E.; Mohibul Kabir, K. M.; Wang, H.; Xiao, D.; Fletcher, J.; Donald, W. A. Rapid Separation of Isomeric Perfluoroalkyl Substances by High-Resolution Differential Ion Mobility Mass Spectrometry. Anal. Chim. Acta 2019, 1058, 127- 135, 10.1016/j.aca.2019.01.038
D’Atri, V.; Causon, T.; Hernandez-Alba, O.; Mutabazi, A.; Veuthey, J. L.; Cianferani, S.; Guillarme, D. Adding a New Separation Dimension to MS and LC-MS: What Is the Utility of Ion Mobility Spectrometry?. J. Sep. Sci. 2018, 41 ( 1), 20- 67, 10.1002/jssc.201700919
Gabelica, V. CHAPTER 1: Ion Mobility-Mass Spectrometry: an Overview. Ion Mobility-Mass Spectrometry: Fundamentals and Applications 2021, 1- 25, 10.1039/9781839162886-00001
Gabelica, V.; Marklund, E. Fundamentals of Ion Mobility Spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 51- 59, 10.1016/j.cbpa.2017.10.022
Foster, M.; Rainey, M.; Watson, C.; Dodds, J. N.; Kirkwood, K. I.; Fernández, F. M.; Baker, E. S. Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning. Environ. Sci. Technol. 2022, 56 ( 12), 9133- 9143, 10.1021/acs.est.2c00201
Belova, L.; Caballero-Casero, N.; Van Nuijs, A. L. N.; Covaci, A. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. 2021, 93 ( 16), 6428- 6436, 10.1021/acs.analchem.1c00142
Valdiviezo, A.; Aly, N. A.; Luo, Y. S.; Cordova, A.; Casillas, G.; Foster, M. K.; Baker, E. S.; Rusyn, I. Analysis of Per- and Polyfluoroalkyl Substances in Houston Ship Channel and Galveston Bay Following a Large-Scale Industrial Fire Using Ion-Mobility-Spectrometry-Mass Spectrometry. J. Environ. Sci. (China) 2022, 115, 350- 362, 10.1016/j.jes.2021.08.004
Vera, P.; Canellas, E.; Dreolin, N.; Goshawk, J.; Nerín, C. The Analysis of the Migration of per and Poly Fluoroalkyl Substances (PFAS) from Food Contact Materials Using Ultrahigh Performance Liquid Chromatography Coupled to Ion-Mobility Quadrupole Time-of-Flight Mass Spectrometry (UPLC- IMS-QTOF). Talanta 2024, 266, 124999, 10.1016/j.talanta.2023.124999
Díaz-Galiano, F. J.; Murcia-Morales, M.; Monteau, F.; Le Bizec, B.; Dervilly, G. Collision Cross-Section as a Universal Molecular Descriptor in the Analysis of PFAS and Use of Ion Mobility Spectrum Filtering for Improved Analytical Sensitivities. Anal. Chim. Acta 2023, 1251, 341026, 10.1016/j.aca.2023.341026
Cheng, J.; Psillakis, E.; Hoffmann, M. R.; Colussi, A. J. Acid Dissociation versus Molecular Association of Perfluoroalkyl Oxoacids: Environmental Implications. J. Phys. Chem. A 2009, 113 ( 29), 8152- 8156, 10.1021/jp9051352
Cai, W.; Navarro, D. A.; Du, J.; Ying, G.; Yang, B.; McLaughlin, M. J.; Kookana, R. S. Increasing Ionic Strength and Valency of Cations Enhance Sorption through Hydrophobic Interactions of PFAS with Soil Surfaces. Sci. Total Environ. 2022, 817, 152975, 10.1016/j.scitotenv.2022.152975
Shen, Z.; Ge, J.; Ye, H.; Tang, S.; Li, Y. Cholesterol-like Condensing Effect of Perfluoroalkyl Substances on a Phospholipid Bilayer. J. Phys. Chem. B 2020, 124 ( 26), 5415- 5425, 10.1021/acs.jpcb.0c00980
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford CT, 2016.
Larriba, C.; Hogan, C. J. Ion Mobilities in Diatomic Gases: Measurement versus Prediction with Non-Specular Scattering Models. J. Phys. Chem. A 2013, 117 ( 19), 3887- 3901, 10.1021/jp312432z
Kim, H.; Kim, H. I.; Johnson, P. V.; Beegle, L. W.; Beauchamp, J. L.; Goddard, W. A.; Kanik, I. Experimental and Theoretical Investigation into the Correlation between Mass and Ion Mobility for Choline and Other Ammonium Cations in N2. Anal. Chem. 2008, 80 ( 6), 1928- 1936, 10.1021/ac701888e
Gabelica, V.; Shvartsburg, A. A.; Afonso, C.; Barran, P.; Benesch, J. L. P.; Bleiholder, C.; Bowers, M. T.; Bilbao, A.; Bush, M. F.; Campbell, J. L.; Campuzano, I. D. G.; Causon, T.; Clowers, B. H.; Creaser, C. S.; De Pauw, E.; Far, J.; Fernandez-Lima, F.; Fjeldsted, J. C.; Giles, K.; Groessl, M.; Hogan, C. J.; Hann, S.; Kim, H. I.; Kurulugama, R. T.; May, J. C.; McLean, J. A.; Pagel, K.; Richardson, K.; Ridgeway, M. E.; Rosu, F.; Sobott, F.; Thalassinos, K.; Valentine, S. J.; Wyttenbach, T. Recommendations for reporting ion mobility Mass Spectrometry measurements. Mass Spectrom Rev. 2019, 38 ( 3), 291- 320, 10.1002/mas.21585
Haler, J. R. N.; Morsa, D.; Lecomte, P.; Jérôme, C.; Far, J.; De Pauw, E. Predicting Ion Mobility-Mass Spectrometry Trends of Polymers Using the Concept of Apparent Densities. Methods 2018, 144, 125- 133, 10.1016/j.ymeth.2018.03.010
Haler, J. R. N.; Béchet, E.; Kune, C.; Far, J.; De Pauw, E. Geometric Analysis of Shapes in Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2022, 33 ( 2), 273- 283, 10.1021/jasms.1c00266
Colby, S. M.; Thomas, D. G.; Nuñez, J. R.; Baxter, D. J.; Glaesemann, K. R.; Brown, J. M.; Pirrung, M. A.; Govind, N.; Teeguarden, J. G.; Metz, T. O.; Renslow, R. S. ISiCLE: A Quantum Chemistry Pipeline for Establishing in Silico Collision Cross Section Libraries. Anal. Chem. 2019, 91 ( 7), 4346- 4356, 10.1021/acs.analchem.8b04567
Lee, J. W.; Lee, H. H. L.; Davidson, K. L.; Bush, M. F.; Kim, H. I. Structural Characterization of Small Molecular Ions by Ion Mobility Mass Spectrometry in Nitrogen Drift Gas: Improving the Accuracy of Trajectory Method Calculations. Analyst 2018, 143 ( 8), 1786- 1796, 10.1039/C8AN00270C
Nielson, F. F.; Colby, S. M.; Thomas, D. G.; Renslow, R. S.; Metz, T. O. Exploring the Impacts of Conformer Selection Methods on Ion Mobility Collision Cross Section Predictions. Anal. Chem. 2021, 93 ( 8), 3830- 3838, 10.1021/acs.analchem.0c04341
Das, S.; Dinpazhoh, L.; Tanemura, K. A.; Merz, K. M. Rapid and Automated Ab Initio Metabolite Collisional Cross Section Prediction from SMILES Input. J. Chem. Inf. Model. 2023, 63 ( 16), 4995- 5000, 10.1021/acs.jcim.3c00890
Rayne, S.; Forest, K. Comparative Semiempirical, Ab Initio, and Density Functional Theory Study on the Thermodynamic Properties of Linear and Branched Perfluoroalkyl Sulfonic Acids/Sulfonyl Fluorides, Perfluoroalkyl Carboxylic Acid/Acyl Fluorides, and Perhydroalkyl Sulfonic Acids, Alkanes, and Alcohols. J. Mol. Struct. THEOCHEM 2010, 941 ( 1-3), 107- 118, 10.1016/j.theochem.2009.11.015
Stewart, J. J. P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13 ( 12), 1173- 1213, 10.1007/s00894-007-0233-4
Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120 ( 1-3), 215- 241, 10.1007/s00214-007-0310-x
Hidalgo, A.; Giroday, T.; Mora-Diez, N. Thermodynamic Stability of Neutral and Anionic PFOAs. Theor. Chem. Acc. 2015, 134 ( 11), 124, 10.1007/s00214-015-1725-4
Giroday, T.; Montero-Campillo, M. M.; Mora-Diez, N. Thermodynamic Stability of PFOS: M06-2X and B3LYP Comparison. Comput. Theor. Chem. 2014, 1046, 81- 92, 10.1016/j.comptc.2014.08.003
Rayne, S.; Forest, K. Theoretical Studies on the pKa Values of Perfluoroalkyl Carboxylic Acids. J. Mol. Struct. THEOCHEM 2010, 949 ( 1-3), 60- 69, 10.1016/j.theochem.2010.03.003
Larriba-Andaluz, C.; Prell, J. S. Fundamentals of Ion Mobility in the Free Molecular Regime. Interlacing the Past, Present and Future of Ion Mobility Calculations. Int. Rev. Phys. Chem. 2020, 39 ( 4), 569- 623, 10.1080/0144235X.2020.1826708
Larriba-Andaluz, C.; Fernández-García, J.; Ewing, M. A.; Hogan, C. J.; Clemmer, D. E. Gas Molecule Scattering & Ion Mobility Measurements for Organic Macro-Ions in He versus N 2 Environments. Phys. Chem. Chem. Phys. 2015, 17 ( 22), 15019- 15029, 10.1039/C5CP01017A
Stow, S. M.; Causon, T. J.; Zheng, X.; Kurulugama, R. T.; Mairinger, T.; May, J. C.; Rennie, E. E.; Baker, E. S.; Smith, R. D.; McLean, J. A.; Hann, S.; Fjeldsted, J. C. An Interlaboratory Evaluation of Drift Tube Ion Mobility-Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 2017, 89 ( 17), 9048- 9055, 10.1021/acs.analchem.7b01729
Bursch, M.; Mewes, J.; Hansen, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angew. Chem., Int. Ed. 2022, 61 ( 42), e202205735 10.1002/anie.202205735
Isayev, O.; Gorb, L.; Leszczynski, J. Theoretical Calculations: Can Gibbs Free Energy for Intermolecular Complexes Be Predicted Efficiently and Accurately?. J. Comput. Chem. 2007, 28 ( 9), 1598- 1609, 10.1002/jcc.20696
McTaggart, M.; Malardier-Jugroot, C. The Role of Helicity in PFAS Resistance to Degradation: DFT Simulation of Electron Capture and Defluorination. Phys. Chem. Chem. Phys. 2024, 26 ( 5), 4692- 4701, 10.1039/D3CP04973F
Lorpaiboon, W.; Ho, J. High-Level Quantum Chemical Prediction of C-F Bond Dissociation Energies of Perfluoroalkyl Substances. J. Phys. Chem. A 2023, 127 ( 38), 7943- 7953, 10.1021/acs.jpca.3c04750
Schilberg, R. N.; Wei, S.; Twagirayezu, S.; Neill, J. L. Conformational Dynamics of Perfluorooctanoic Acid (PFOA) Studied by Molecular Rotational Resonance (MRR) Spectroscopy. Chem. Phys. Lett. 2021, 778, 138789, 10.1016/j.cplett.2021.138789
Mu, H.; Yang, Z.; Chen, L.; Gu, C.; Ren, H.; Wu, B. Suspect and Nontarget Screening of Per- and Polyfluoroalkyl Substances Based on Ion Mobility Mass Spectrometry and Machine Learning Techniques. J. Hazard. Mater. 2024, 461, 132669, 10.1016/j.jhazmat.2023.132669
Cormanich, R. A.; Rittner, R.; O’Hagan, D.; Bühl, M. Inter- and Intramolecular CF···C = O Interactions on Aliphatic and Cyclohexane Carbonyl Derivatives. J. Comput. Chem. 2016, 37 ( 1), 25- 33, 10.1002/jcc.23918
Cormanich, R. A.; O’Hagan, D.; Bühl, M. Hyperconjugation Is the Source of Helicity in Perfluorinated n -Alkanes. Angew. Chem., Int. Ed. 2017, 56 ( 27), 7867- 7870, 10.1002/anie.201704112
Alabugin, I. V.; Dos Passos Gomes, G.; Abdo, M. A. Hyperconjugation. WIREs Comput. Mol. Sci. 2019, 9 ( 2), e1389 10.1002/wcms.1389
Omorodion, H.; Twamley, B.; Platts, J. A.; Baker, R. J. Further Evidence on the Importance of Fluorous-Fluorous Interactions in Supramolecular Chemistry: A Combined Structural and Computational Study. Cryst. Growth Des. 2015, 15 ( 6), 2835- 2841, 10.1021/acs.cgd.5b00254
Hasegawa, T. Understanding of the Intrinsic Difference between Normal- and Perfluoro-Alkyl Compounds toward Total Understanding of Material Properties. Chem. Phys. Lett. 2015, 627, 64- 66, 10.1016/j.cplett.2015.03.046
Wu, T.; Derrick, J.; Nahin, M.; Chen, X.; Larriba-Andaluz, C. Optimization of Long-Range Potential Interaction Parameters in Ion Mobility Spectrometry. J. Chem. Phys. 2018, 148 ( 7), 074102 10.1063/1.5016170