[en] In the perspective of using cocoa as a response to climate change, a preliminary carbon stock assessment was conducted in cocoa agroforests of the Bengamisa-Yangambi forest landscape in the north-east of Democratic Republic of Congo (DRC). Data were collected in 25 plots of 2500 m2 each, spread over 16 villages. Above-ground carbon stock assessment on cocoa trees and their associated plants revealed that cocoa agroforests store on average 44.48 Mg ha−1 of above-ground carbon of which, cocoa-associated plants represent 83.68%. The diversity (species richness) of cocoa associated plants determine the level of above-ground carbon stored in cocoa agroforests. Trees less than 50 cm in diameter stored a larger amount of above-ground carbon. Cocoa agroforests with associated plants dominated by forest species (Model F) store 1.76 and 1.72 times more carbon, respectively, than those where associated plants are dominated by oil palm (Model P) and a mixture of plant types (forest species mixed with oil palm plants, or Model FP). Associated plants inside cocoa agroforests also play additional roles to support livelihoods such as health care, household consumption and timber. Therefore, beyond carbon storage, cocoa agroforest is an important reservoir of some local species and thus useful for biodiversity conservation and local livelihoods. As cocoa agroforests in DRC are recognized as one of the main responses to climate change, this study constitutes an early contribution to the process of reducing emissions from deforestation and forest degradation (REDD +) in forest landscapes in this country of the Congo Basin.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Batsi, Germain ; Faculty of Renewable Natural Resources Management, The University of Kisangani, Kisangani, Democratic Republic Congo
Sonwa, Denis Jean ; Center for International Forestry Research (CIFOR), Yaoundé, Cameroon
Mangaza Nondo, Lisette ; Université de Liège - ULiège > TERRA Research Centre ; UNIGOM - University of Goma > Faculty of Sciences and Technologies
Ebuy, Jérôme; Faculty of Renewable Natural Resources Management, The University of Kisangani, Kisangani, Democratic Republic Congo
Kahindo, Jean-Marie; Faculty of Science, University of Kisangani, Kisangani, Democratic Republic Congo
Language :
English
Title :
Preliminary estimation of above-ground carbon storage in cocoa agroforests of Bengamisa-Yangambi forest landscape (Democratic Republic of Congo)
CIFOR - Centre for International Forestry Research
Funding text :
This research was funded by EU (Contrat FED/2016/381-145) and NORAD Grant agreement code No: NOR114.The authors would like to thank the European Union (EU) and CIFOR for funding through the Training and Research in Tshopo (FORETS: Formation, Recherche, Environment dans la Tshopo) project. We also thank the Resources & Synergies Development design office for its logistical support. We thank all cocoa farmers in the Bengamisa-Yangambi landscape for their support during the data collection period. Finally, we would like to thank all those who accompanied us in the field during this period (guides and botanical identifiers). This research was carried out to partially complete the requirements of a master’s degree, but also as part of the CIFOR GCS-REDD+ project funded by the Norwegian Agency for Development Cooperation (NORAD).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27. 10.1016/S0167-8809(03)00138-5 DOI: 10.1016/S0167-8809(03)00138-5
Alemagi D, Duguma L, Minang PA et al (2015) Intensification of cocoa agroforestry systems as a REDD+ strategy in Cameroon: hurdles, motivations, and challenges. Int J Agric Sustain 13:187–203. 10.1080/14735903.2014.940705 DOI: 10.1080/14735903.2014.940705
Andrade H, Segura M, Somarriba E, Villalobos M (2008) Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, CATIE, Turrialba, Costa Rica. Agroforestería en las Américas 46:45–50
Asigbaase M, Dawoe E, Lomax BH, Sjogersten S (2020) Biomass and carbon stocks of organic and conventional cocoa agroforests. Ghana Agric Ecosyst Environ. 10.1016/j.agee.2020.107192 DOI: 10.1016/j.agee.2020.107192
Batsi G, Sonwa DJ, Mangaza L et al (2020) Biodiversity of the cocoa agroforests of the bengamisa-yangambi forest landscape in the democratic republic of the congo (Drc). Forests 11:1–21. 10.3390/f11101096 DOI: 10.3390/f11101096
Béguin (1974) Densité de population, productivité et développement agricole. In: Doin (ed) Espace géographique, tome 3, no4, Paris, pp 267–272. 10.3406/spgeo.1974.1498
Besar NA, Suardi H, Phua MH et al (2020) Carbon stock and sequestration potential of an agroforestry system in Sabah, Malaysia. Forests 11:1–16. 10.3390/f11020210 DOI: 10.3390/f11020210
Bisseleua H, Vidal S (2008) Plant biodiversity and vegetation structure in traditional cocoa forest gardens in southern Cameroon under different management. Biodivers Conserv 17:1821–1835. 10.1007/s10531-007-9276-1 DOI: 10.1007/s10531-007-9276-1
Blaser WJ, Oppong J, Hart SP et al (2018) Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat Sustain 1:234–239. 10.1038/s41893-018-0062-8 DOI: 10.1038/s41893-018-0062-8
Carodenuto S (2019) Governance of zero deforestation cocoa in West Africa: neEw forms of public–private interaction. Environ Policy Gov 29:55–66. 10.1002/eet.1841 DOI: 10.1002/eet.1841
Cerda R, Deheuvels O, Calvache D et al (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst 88:957–981. 10.1007/s10457-014-9691-8 DOI: 10.1007/s10457-014-9691-8
Chave J, Réjou-Méchain M, Búrquez A et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190. 10.1111/gcb.12629 DOI: 10.1111/gcb.12629
Dawoe E, Asante W, Acheampong E, Bosu P (2016) Shade tree diversity and aboveground carbon stocks in Theobroma cacao agroforestry systems: implications for REDD+ implementation in a West African cacao landscape. Carbon Balance Manag 11:1–13. 10.1186/s13021-016-0061-x DOI: 10.1186/s13021-016-0061-x
Deheuvels O, Rousseau GX, Soto Quiroga G et al (2014) Biodiversity is affected by changes in management intensity of cocoa-based agroforests. Agrofor Syst 88:1081–1099. 10.1007/s10457-014-9710-9 DOI: 10.1007/s10457-014-9710-9
Dhyani SK, Ram A, Newaj R et al (2020) Agroforestry for carbon sequestration in tropical India. In: Ghosh PK, Kumar S et al (eds) Carbon management in tropical and sub-tropical terrestrial systems. Springer Nature Singapore, Singapore, pp 313–331 DOI: 10.1007/978-981-13-9628-1_19
Doetterl S, Kearsley E, Bauters M et al (2015) Aboveground vs. belowground carbon stocks in African tropical lowland rainforest: drivers and implications. PLoS One 10:1–14. 10.1371/journal.pone.0143209 DOI: 10.1371/journal.pone.0143209
Downie R (2018) Assessing the growth potential of Eastern Congo’s coffee and cocoa sectors. Center for Strategic and International Studies (CSIS), Washington, DC
Frangi JL, Lugo AE (1985) Ecosystem dynamics of a subtropical floodplain forest published by: ecological society of America ecosystem dynamics of a subtropical. Ecol Monogr 55:351–369 DOI: 10.2307/1942582
Götz S, Harvey CA, Grégoire V (2004) Agroforestry and biodiversity conservation in tropical landscapes. In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL (eds) Agroforestry and biodiversity conservation in tropical landscapes. ISLAND PRE, Washington, Covelo, London, pp 227–260
Gusli S, Sumeni S, Sabodin R et al (2020) Soil organic matter, mitigation of and adaptation to climate change in cocoa-based agroforestry systems. Land 9:1–18. 10.3390/LAND9090323 DOI: 10.3390/LAND9090323
Hosseini-Bai S, Trueman SJ, Nevenimo T et al (2019) The effects of tree spacing regime and tree species composition on mineral nutrient composition of cocoa beans and canarium nuts in 8-year-old cocoa plantations. Environ Sci Pollut Res 26:22021–22029. 10.1007/s11356-019-05519-x DOI: 10.1007/s11356-019-05519-x
Jadán O, Cifuentes M, Bolier T et al (2015) Influence of tree cover on diversity, carbon sequestration and productivity of cocoa systems in the Ecuadorian Amazon. Bois for Des Trop 325:35–47 DOI: 10.19182/bft2015.325.a31271
Jassogne L, van Asten P, De Beule H (2014) Cocoa: driver of deforestation in the Democratic Republic of the Congo? CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Working Paper No. 65
Kearsley E, De Haulleville T, Hufkens K et al (2013) Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat Commun 4:1–8. 10.1038/ncomms3269 DOI: 10.1038/ncomms3269
Kearsley E, Verbeeck H, Hufkens K et al (2017) Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecol Evol 7:295–304. 10.1002/ece3.2589 DOI: 10.1002/ece3.2589
Kroeger A, Bakhtary H, Haupt F, Streck C (2017) Eliminating deforestation from the cocoa supply chain. The World Bank Group, Washington, DC
Lojka B, Pawera L, Kalousová M et al (2017) Multistrata systems: potentials and challenges of cocoa-based agroforests in the humid tropics. Agroforestry. Springer, Singapore, pp 587–628 DOI: 10.1007/978-981-10-7650-3_23
Loubota G, Fayolle A, Feldpausch TR et al (2018) Forest ecology and management what controls local-scale aboveground biomass variation in central Africa? Testing structural, composition and architectural attributes. For Ecol Manage 429:570–578. 10.1016/j.foreco.2018.07.056 DOI: 10.1016/j.foreco.2018.07.056
Madountsap N, Zapfack L, Chimi C et al (2017) Biodiversity and carbon stock in the SODECAO agroforestry system of center region of cameroon: case of talba locality. Am J Agric for 5:121. 10.11648/j.ajaf.20170504.16 DOI: 10.11648/j.ajaf.20170504.16
Madountsap N, Zapfack L, Chimi C et al (2018) Carbon storage potential of cacao agroforestry systems of different age and management intensity. Clim Dev 11:543–554. 10.1080/17565529.2018.1456895 DOI: 10.1080/17565529.2018.1456895
Middendorp RS, Vanacker V, Lambin EF (2018) Impacts of shaded agroforestry management on carbon sequestration, biodiversity and farmers income in cocoa production landscapes. Landsc Ecol. 10.1007/s10980-018-0714-0 DOI: 10.1007/s10980-018-0714-0
Minang PA, Duguma LA, Bernard F et al (2014) Prospects for agroforestry in REDD+ landscapes in Africa. Curr Opin Environ Sustain 6:78–82. 10.1016/j.cosust.2013.10.015 DOI: 10.1016/j.cosust.2013.10.015
Moloba Y, Mobula V, Ntoto R, Mahungu M (2019) Dynamique socio-économique de l’adoption des variétés améliorées du manioc en république démocratique du congo (RDC): cas des provinces de kongo central et la tshopo. Eur Sci J 15:346–362. 10.19044/esj.2019.v15n15p346 DOI: 10.19044/esj.2019.v15n15p346
Moonen PCJ, Verbist B, Schaepherders J et al (2016) Actor-based identification of deforestation drivers paves the road to effective REDD+ in DR Congo. Land Use Policy 58:123–132. 10.1016/j.landusepol.2016.07.019 DOI: 10.1016/j.landusepol.2016.07.019
Moonen PCJ, Verbist B, Boyemba F et al (2019) Disentangling how management affects biomass stock and productivity of tropical secondary forests fallows. Sci Total Environ 659:101–114. 10.1016/j.scitotenv.2018.12.138 DOI: 10.1016/j.scitotenv.2018.12.138
Mortimer R, Saj S, David C (2017) Supporting and regulating ecosystem services in cacao agroforestry systems. Agrofor Syst 92:1639–1657. 10.1007/s10457-017-0113-6 DOI: 10.1007/s10457-017-0113-6
Mustari K, Asrul L, Kaimuddin FL (2020) Carbon stock analysis of some cocoa planting systems in South Sulawesi. IOP Conf Ser Earth Environ Sci. 10.1088/1755-1315/486/1/012085 DOI: 10.1088/1755-1315/486/1/012085
Mutuo PK, Cadisch G, Albrecht A et al (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54. 10.1007/s10705-004-5285-6 DOI: 10.1007/s10705-004-5285-6
Obeng EA, Aguilar FX (2015) Marginal effects on biodiversity, carbon sequestration and nutrient cycling of transitions from tropical forests to cacao farming systems. Agrofor Syst 89:19–35. 10.1007/s10457-014-9739-9 DOI: 10.1007/s10457-014-9739-9
R Core Team (2019) R: a language and environment for statistical computing. R Found. Stat. Comput., Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
Rajab YA, Leuschner C, Barus H et al (2016) Cacao cultivation under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PLoS One 11:1–22. 10.1371/journal.pone.0149949 DOI: 10.1371/journal.pone.0149949
Réjou-Méchain M, Tanguy A, Piponiot C et al (2017) biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol 8:1163–1167. 10.1111/2041-210X.12753 DOI: 10.1111/2041-210X.12753
Rosenstock T, Wilkes A, Jallo C et al (2018a) Making trees count: measurement, reporting and verification of agroforestry under the UNFCCC. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Working Paper No. 240
Rosenstock T, Wilkes A, Jallo C et al (2018b) Faire compter les arbres en Afrique: Une meilleure stratégie de MRV de l’agroforesterie pour satisfaire aux ambitions de l’Afrique. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Info Note. http://CCAFS.cgiar.org/donors
Saj S, Jagoret P, Todem Ngogue H (2013) Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agrofor Syst 87:1309–1320. 10.1007/s10457-013-9639-4 DOI: 10.1007/s10457-013-9639-4
Santhyami BA, Patria MP, Abdulhadi R (2018) The comparison of aboveground C-stock between cocoa-based agroforestry system and cocoa monoculture practice in West Sumatra, Indonesia. Biodiversitas 19:472–479. 10.13057/biodiv/d190214 DOI: 10.13057/biodiv/d190214
Saputra DD, Sari RR, Hairiah K et al (2020) Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use? Agrofor Syst 94:2261–2276. 10.1007/s10457-020-00548-9 DOI: 10.1007/s10457-020-00548-9
Sari RR, Saputra DD, Hairiah K et al (2020) Gendered species preferences link tree diversity and carbon stocks in Cacao agroforest in Southeast Sulawesi, Indonesia. Land 9:1–15. 10.3390/land9040108 DOI: 10.3390/land9040108
Schroth G, Bede LC, Paiva AO et al (2013) Contribution of agroforests to landscape carbon storage. Mitig Adapt Strateg Glob Change 20:1175–1190. 10.1007/s11027-013-9530-7 DOI: 10.1007/s11027-013-9530-7
Somarriba E, Cerda R, Orozco L et al (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ 173:46–57. 10.1016/j.agee.2013.04.013 DOI: 10.1016/j.agee.2013.04.013
Sonwa DJ, Weise SF, Schroth G et al (2014) Plant diversity management in cocoa agroforestry systems in West and Central Africa—effects of markets and household needs. Agrofor Syst 88:1021–1034. 10.1007/s10457-014-9714-5 DOI: 10.1007/s10457-014-9714-5
Sonwa DJ, Weise SF, Nkongmeneck BA, Tchatat M, Janssens MJJ (2017a) Profiling carbon storage/stocks of cocoa agroforests in the forest landscape of Southern Cameroon. In: Dagar J, Tewari V (eds) Agroforestry. Springer, Singapore, pp 739–752. https://doi.org/10.1007/978-981-10-7650-3_30
Sonwa DJ, Weise SF, Nkongmeneck BA et al (2017b) Structure and composition of cocoa agroforests in the humid forest zone of Southern Cameroon. Agrofor Syst 91:451–470. 10.1007/s10457-016-9942-y DOI: 10.1007/s10457-016-9942-y
Sonwa DJ, Weise SF, Schroth G et al (2018) Structure of cocoa farming systems in West and Central Africa: a review. Agrofor Syst 93:2009–2025. 10.1007/s10457-018-0306-7 DOI: 10.1007/s10457-018-0306-7
Tesfaye MA, Gardi O, Bekele T, Blaser J (2019) Temporal variation of ecosystem carbon pools along altitudinal gradient and slope: The case of Chilimo dry afromontane natural forest, Central Highlands of Ethiopia. J Ecol Environ 43:1–22. 10.1186/s41610-019-0112-9 DOI: 10.1186/s41610-019-0112-9
Thomas C, Martin A (2012) Carbon content of tree tissues: a synthesis. Forests 3:332–352. 10.3390/f3020332 DOI: 10.3390/f3020332
Toppo P, Raj A (2018) Role of agroforestry in climate change mitigation. J Pharmacogn Phytochem 7:241–243
Torres B, Maza OJ, Aguirred P et al (2014) Contribution of traditional agroforestry to climate change adaptation in the Ecuadorian Amazon: the chakra system bolier. Handb Clim Change Adapt. 10.1007/978-3-642-40455-9_102-1 DOI: 10.1007/978-3-642-40455-9_102-1
Verchot LV, Van Noordwijk M, Kandji S et al (2007) Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strateg Glob Chang 12:901–918. 10.1007/s11027-007-9105-6 DOI: 10.1007/s11027-007-9105-6
Vroh Bi Tra A, Adou Yao Y, Kouame D et al (2010) Diversités floristique et structurale sur le site d’une réserve naturelle volontaire à azaguié, sud-est de la Côte d’Ivoire. Eur J Sci Res 45:311–326. 10.4314/acsj.v23i4.2 DOI: 10.4314/acsj.v23i4.2
World Bank (2017) Forest carbon partnership facility: annual report. Washington, DC. www.forestcarbonpartnership.org
Zanne A, Lopez-Gonzalez G, Coomes D, Ilic J, Jansen S, Lewis S, Miller R, Swenson N, Wiemann M, Chave J (2009) Data from: towards a worldwide wood economics spectrum. Dryad, Dataset. 10.5061/dryad.234
Zapfack L, Engwald S, Sonke B et al (2002) The impact of land conversion on plant biodiversity in the forest zone of Cameroon. Biodivers Conserv 11:2047–2061. 10.1023/A:1020861925294 DOI: 10.1023/A:1020861925294
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.