[en] Cocoa agroforestry has evolved into an accepted natural resource conservation strategy in the tropics. It is regularly proposed as one of the main uses for REDD+ projects (Reducing Emissions from Deforestation and forest Degradation and the role of conservation, sustainable management of forests, and enhancement of forest carbon stocks in developing countries) in the Democratic Republic of the Congo. However, few studies have characterized the cocoa agroforestry systems in this country. Hence, this research proposes to determine the impact of distance from Kisangani (the unique city in the landscape) and land-use intensity on the floristic composition of cocoa agroforests in Bengamisa-Yangambi forest landscape in the Congo Basin. The results revealed that species diversity and density of plants associated with cocoa are influenced by the distance from Kisangani (the main city in the landscape and province). Farmers maintain/introduce trees that play one or more of several roles. They may host caterpillars, provide food, medicine, or timber, or deliver other functions such as providing shade to the cocoa tree. Farmers maintain plants with edible products (mainly oil palms) in their agroforests more than other plants. Thus, these agroforests play key roles in conserving the floristic diversity of degraded areas. As cocoa agroforestry has greater potential for production, biodiversity conservation, and environmental protection, it should be used to slow down or even stop deforestation and forest degradation.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Batsi, Germain; Faculty of Renewable Natural Resources Management, The University of Kisangani, Kisangani, Democratic Republic Congo
Sonwa, Denis Jean ; Center for International Forestry Research (CIFOR), Messa, Cameroon
EU - European Union NORAD - Norwegian Agency for Development Cooperation
Funding text :
Funding: This research was funded by EU (Contrat FED/2016/381-145) and NORAD Grant agreement code No: NOR114.Acknowledgments: The authors would like to thank the European Union (EU) and CIFOR for funding through the Training and Research in Tshopo (FORETS: Formation, Recherche, Environment dans la Tshopo) project. We also thank the Resources & Synergies Development design office for its logistical support. We thank all cocoa farmers in the Bengamisa-Yangambi landscape for their support during the data collection period. Finally, we would like to thank all those who accompanied us in the field during this period (guides and botanical identifiers). This research was carried out to partially complete the requirements of a master’s degree, but also as part of the CIFOR GCS-REDD+ project funded by the Norwegian Agency for Development Cooperation (NORAD).
Clough, Y.; Barkmann, J.; Juhrbandt, J.; Kessler, M.; Wanger, T.C.; Anshary, A.; Buchori, D.; Cicuzza, D.; Darras, K.; Dwi Putra, D.; et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl. Acad. Sci. USA 2011, 108, 8311–8316. [CrossRef] [PubMed]
Rice, R.A.; Greenberg, R. Cacao cultivation and the conservation of biological diversity. Ambio 2000, 29, 167–173. [CrossRef]
Götz, S.; Harvey, C.A.; Grégoire, V. Agroforestry and biodiversity conservation in tropical landscapes. In Agroforestry Systems; Götz, S., da Fonseca, G., Harvey, C.A., Gascon, C., Vasconcelos, H., Izac, A.-M., Eds.; Island Press: Washington, DC, USA, 2004; Volume 68, pp. 247–249.
Cicuzza, D.; Kessler, M.; Clough, Y.; Pitopang, R.; Leitner, D.; Tjitrosoedirdjo, S.S. Conservation value of cacao agroforestry systems for terrestrial herbaceous species in Central Sulawesi, Indonesia. Biotropica 2011, 43, 755–762. [CrossRef]
Sonwa, D.J.; Weise, S.F.; Schroth, G.; Janssens, M.J.J. Howard-Yana Shapiro Plant diversity management in cocoa agroforestry systems in West and Central Africa—Effects of markets and household needs. Agrofor. Syst. 2014, 88, 1021–1034. [CrossRef]
Blaser, W.J.; Oppong, J.; Yeboah, E.; Six, J. Shade trees have limited benefits for soil fertility in cocoa agroforests. Agric. Ecosyst. Environ. 2017, 243, 83–91. [CrossRef]
Schroth, G.; Harvey, C.A. Biodiversity conservation in cocoa production landscapes: An overview. Biodivers. Conserv. 2007, 16, 2237–2244. [CrossRef]
Toppo, P.; Raj, A. Role of agroforestry in climate change mitigation. J. Pharmacogn. Phytochem. 2018, 7, 241–243.
Vebrova, H.; Lojka, B.; Husband, T.P.; Zans, M.E.C.; Van Damme, P.; Rollo, A.; Kalousova, M. Tree diversity in cacao agroforests in San Alejandro, Peruvian Amazon. Agrofor. Syst. 2014, 88, 1101–1115. [CrossRef]
Sari, R.R.; Saputra, D.D.; Hairiah, K.; Rozendaal, D.M.A.; Roshetko, J.M.; van Noordwijk, M. Gendered species preferences link tree diversity and carbon stocks in Cacao agroforest in Southeast Sulawesi, Indonesia. Land 2020, 9, 108. [CrossRef]
Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [CrossRef]
Merijn, B.; Simone, S. Biodiversity conservation in cacao agroforestry systems. In Biodiversity Conservation in Agroforestry Landscapes: Challenges and Opportunities; Simonetti, J.A., Ed.; Editorial Universitaria: Santiago, Chile, 2013; pp. 61–76.
Daghela Bisseleua, H.B.; Fotio, D.; Yede; Missoup, A.D.; Vidal, S. Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PLoS ONE 2013, 8, e56115. [CrossRef]
Rajab, Y.; Leuschner, C.; Barus, H.; Tjoa, A.; Hertel, D. Cacao cultivation under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PLoS ONE 2016, 11, e0149949. [CrossRef] [PubMed]
Ruf, F.O. The myth of complex cocoa agroforests: The case of Ghana. Hum. Ecol. 2011, 39, 373–388. [CrossRef]
Wessel, M.; Quist-Wessel, P.M.F. Cocoa production in West Africa, a review and analysis of recent developments. NJAS Wagening. J. Life Sci. 2015, 74–75, 1–7. [CrossRef]
Anderson Bitty, E.; Bi, S.G.; Bene, J.C.K.; Kouassi, P.K.; Scott McGraw, W. Cocoa farming and primate extirpation inside Cote d’Ivoire’s protected areas. Trop. Conserv. Sci. 2015, 8, 95–113. [CrossRef]
Kroeger, A.; Bakhtary, H.; Haupt, F.; Streck, C. Eliminating Deforestation from the Cocoa Supply Chain; World Bank: Washington, DC, USA, 2017; pp. 1–61.
Bernard, F.; Minang, P.A. Community forestry and REDD+ in Cameroon: What future? Ecol. Soc. 2019, 24, 14. [CrossRef]
Downie, R. Assessing the Growth Potential of Eastern Congo’s Coffee and Cocoa Sectors; Center for Strategic and International Studies: Washington, DC, USA, 2018; pp. 1–24.
Jassogne, L.; van Asten, P.; De Beule, H. Cocoa: Driver of deforestation in the Democratic Republic of Congo? CGIAR: Copenhagen, Denmark, 2014; pp. 1–31.
Schroth, G.; Jeusset, A.; da Silva Gomes, A.; Florence, C.T.; Coelho, N.A.P.; Faria, D.; Läderach, P. Climate friendliness of cocoa agroforests is compatible with productivity increase. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 67–80. [CrossRef]
Nowak, A.; Rosenstock, T.S.; Hammond, J.; Degrande, A.; Smith, E. Livelihoods of Households Living Near Yangambi Biosphere Reserve, Democratic Republic of Congo; Center for International Forestry Research: Bogor, Indonesia, 2019; pp. 1–10.
Ngo Bieng, M.A.; Gidoin, C.; Avelino, J.; Cilas, C.; Deheuvels, O.; Wery, J. Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic Appl. Ecol. 2013, 14, 329–336. [CrossRef]
Kyale Koy, J.; Wardell, D.A.; Mikwa, J.; Kabuanga, J.M.; Monga Ngonga, A.M.; Oszwald, J.; Doumenge, C. Dynamics of déforestation dans la Réserve de biosphère de Yangambi (République Démocratique du Congo): Variabilité spatiale et temporelle au cours des 30 dernières années. Bois Forets Trop. 2019, 341, 15. [CrossRef]
Moloba, Y.; Mobula, V.; Ntoto, R.; Mahungu, M. Dynamique socio-économique de l’adoption des variétés améliorées du manioc en République Démocratique du Congo (RDC): Cas des provinces de Kongo Central et la Tshopo. Eur. Sci. J. ESJ 2019, 15, 346–362.
Kearsley, E.; Verbeeck, H.; Hufkens, K.; Van de Perre, F.; Doetterl, S.; Baert, G.; Beeckman, H.; Boeckx, P.; Huygens, D. Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecol. Evol. 2017, 7, 295–304. [CrossRef]
Termote, C.; Van Damme, P.; Djailo, B.D. Eating from the wild: Turumbu, Mbole and Bali traditional knowledge on non-cultivated edible plants, District Tshopo, DR Congo. Genet. Resour. Crop Evol. 2011, 58, 585–618. [CrossRef]
Moonen, P.C.J.; Verbist, B.; Schaepherders, J.; Bwama Meyi, M.; Van Rompaey, A.; Muys, B. Actor-based identification of deforestation drivers paves the road to effective REDD+ in DR Congo. Landuse Policy 2016, 58, 123–132. [CrossRef]
Moonen, P.C.J.; Verbist, B.; Boyemba Bosela, F.; Norgrove, L.; Dondeyne, S.; Van Meerbeek, K.; Kearsley, E.; Verbeeck, H.; Vermeir, P.; Boeckx, P.; et al. Disentangling how management affects biomass stock and productivity of tropical secondary forests fallows. Sci. Total Environ. 2019, 659, 101–114. [CrossRef]
Akkermans, T.; Van Rompaey, A.; Van Lipzig, N.; Moonen, P.; Verbist, B. Quantifying successional land cover after clearing of tropical rainforest along forest frontiers in the Congo Basin. Phys. Geogr. 2013, 34, 417–440. [CrossRef]
Bamba, I.; Barima, Y.S.; Bogaert, J. Influence de la densité de la population sur la structure spatiale d’un paysage forestier dans le Bassin du congo en R. D. Congo. Trop. Conserv. Sci. 2010, 3, 31–44. [CrossRef]
Béguin, H. Densité de population, productivité et développement agricole. Espace Géogr. 1974, 4, 267–272. [CrossRef]
Ministère de l’Environnement Conservation de la Nature et Tourisme (MECNT). Potentiel REDD + de la RDC; MECNT: Kinshasa, Democratic Republic of the Congo, 2009; p. 66.
Torres, B.; Maza, O.J.; Aguirred, P.; Und, L.H.; Günter, S. Contribution of traditional agroforestry to climate change adaptation in the Ecuadorian Amazon: The Chakra System. In Handbook of Climate Change Adaptation; Filho, W.L., Ed.; Springer: Berlin/Heidleberg, Germany, 2014; Volume 1, pp. 1–19.
Zapfack, L.; Engwald, S.; Sonke, B.; Achoundong, G.; Madong, B.A. The impact of land conversion on plant biodiversity in the forest zone of Cameroon. Biodivers. Conserv. 2002, 11, 2047–2061. [CrossRef]
Lejoly, J.L.; Djele, M.N.; Eerinck, D.G. Catalogue-Flore des Plantes Vasculaires des Districts de Kisangani et de la Tshopo (RD Congo); 4ème.; Taxonomania: Bruxelles, Belgium, 2012; pp. 1–313.
Oke, D.O.; Odebiyi, K.A. Traditional cocoa-based agroforestry and forest species conservation in Ondo State, Nigeria. Agric. Ecosyst. Environ. 2007, 122, 305–311. [CrossRef]
Sonwa, D.J.; Nkongmeneck, B.A.; Weise, S.F.; Tchatat, M.; Adesina, A.A.; Janssens, M.J.J. Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodivers. Conserv. 2007, 16, 2385–2400. [CrossRef]
Abada Mbolo, M.M.; Zekeng, J.C.; Mala, W.A.; Fobane, J.L.; Djomo Chimi, C.; Ngavounsia, T.; Nyako, C.M.; Menyene, L.F.E.; Tamanjong, Y.V. The role of cocoa agroforestry systems in conserving forest tree diversity in the Central region of Cameroon. Agrofor. Syst. 2016, 90, 577–590. [CrossRef]
Dawoe, K.; Asante, W.; Acheampong, E.; Bosu, P. Shade tree diversity and aboveground carbon stocks in Theobroma cacao agroforestry systems: Implications for REDD+ implementation in a West African cacao landscape. Carbon Balance Manag. 2016, 11, 1–13. [CrossRef] [PubMed]
Jadán, O.; Cifuentes, M.; Torres, B.; Selesi, D.; Veintimilla, D.; Günter, S. Influence of tree cover on diversity, carbon sequestration and productivity of cocoa systems in the Ecuadorian Amazon. Bois Forets Trop. 2015, 325, 35–47. [CrossRef]
Noiha, V.N.; Zapfack, L.; Mbade, L.F. Biodiversity management and plant dynamic in a Cocoa Agroforest (Cameroon). Int. J. Plant Soil Sci. 2015, 6, 101–108. [CrossRef]
Somarriba, E.; Cerda, R.; Orozco, L.; Cifuentes, M.; Dávila, H.; Espin, T.; Mavisoy, H.; Ávila, G.; Alvarado, E.; Poveda, V.; et al. Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric. Ecosyst. Environ. 2013, 173, 46–57. [CrossRef]
Hervé, B.; Vidal, S. Plant biodiversity and vegetation structure in traditional cocoa forest gardens in southern Cameroon under different management. Biodivers. Conserv. 2008, 17, 1821–1835.
Sullivan, M.J.P.; Talbot, J.; Lewis, S.L.; Phillips, O.L.; Qie, L.; Begne, S.K.; Chave, J.; Cuni-sanchez, A.; Hubau, W.; Lopez, G.; et al. Diversity and carbon storage across the tropical forest biome. Sci. Rep. 2017, 7–39102, 1–12. [CrossRef]
Shahid, M.; Joshi, S.P. Relationship between tree species diversity and carbon stock density in moist deciduous forest of Western Himalayas, India. J. For. Environ. Sci. 2017, 33, 39–48. [CrossRef]
Grall, J.; Coic, N. Synthèse des Méthodes D’évaluation de la Qualité du Benthos en Milieu Côtier Préliminaire; Institut Universitaire Européen de la Mer–Université de Bretagne Occidentale Laboratoire des Sciences de l’Environnement MARin: Bretagne, France, 2006; pp. 1–90.
R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; pp. 1–3636.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4.
Kindt, R.; Coe, R. Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2005; ISBN 92-9059-179-X.
Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R package version 2.5-6. Available online: https://CRAN.R-project.org/package=vegan (accessed on 18 July 2020).
Temgoua, L.F.; Dongmo, W.; Nguimdo, V.; Nguena, C. Diversité ligneuse et stock de carbone des systèmes agroforestiers à base de cacaoyers à l’Est Cameroun: Cas de la forêt d’enseignement et de recherche de l’Université de Dschang. J. Appl. Biosci. 2018, 122, 12274–12286. [CrossRef]
Zapfack, L.; Chimi Djomo, C.; Noiha Noumi, V.; Zekeng, J.C.; Meyan-ya Daghela, G.R.; Tabue Mbobda, R. Correlation between associated trees, cocoa trees and carbon stocks potential in cocoa agroforests of Southern Cameroon. Sustain. Environ. 2016, 1, 71–84.
Salazar, J.C.S.; Bieng, M.A.N.; Melgarejo, L.M.; Di Rienzo, J.A.; Casanoves, F. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. PLoS ONE 2018, 13, e0191003. [CrossRef] [PubMed]
Yao, C.Y.A.; Kpangui, K.B.; Vroh, B.T.A.; Ouattara, D. Pratiques culturales, valeurs d’usage et perception des paysans des espèces compagnes du cacaoyer dans des agroforêts traditionnelles au centre de la Côte d’Ivoire. Rev. d’ethnoécologie 2016, 9, 1–19. [CrossRef]
Sonwa, D.; Weise, L.; Chimi Djomo, C.; Kabelong Banoho, L.-P.; Forbi Preasious, F.; Tsopmejio Temfack, I.; Tajeukem Vice, C.; Ntonmen Yonkeu, A.; Tabue Mboba, R.; Nasang, J. Carbon storage potential of cacao agroforestry systems of different age and management intensity. Clim. Dev. 2018, 1–12. [CrossRef]
Santhyami, S.; Basukriadi, A.; Patria, M.P.; Abdulhadi, R. The comparison of aboveground C-stock between cocoa-based agroforestry system and cocoa monoculture practice in West Sumatra, Indonesia. Biodiversitas 2018, 19, 472–479. [CrossRef]
Häger, A.; Fernández Otárola, M.; Stuhlmacher, M.F.; Acuña Castillo, R.; Contreras Arias, A. Effects of management and landscape composition on the diversity and structure of tree species assemblages in coffee agroforests. Agric. Ecosyst. Environ. 2014, 199, 43–51. [CrossRef]
Bisseleua, D.H.B.; Missoup, A.D.; Vidal, S. Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conserv. Biol. 2009, 23, 1176–1184. [CrossRef]
Omatoko, J.; Nshimba, H.; Bogaert, J.; Lejoly, J.; Shutsha, R.; Shaumba, J.P.; Asimonyio, J.; Ngbolua, K.N. Etudes floristique et structurale des peuplements sur sols argileux à Pericopsis elata et sableux à Julbernardia seretii dans la forêt de plaine d’UMA en République Démocratique du Congo. Int. J. Innov. Appl. Stud. 2015, 13, 452–463.
Kambale, J.K.; Asimonyio, J.A.; Shutsha, R.E.; Katembo, E.W.; Tsongo, J.M.; Kavira, P.K. Etudes floristique et structurale des forêts dans le domaine de chasse de Rubi-Télé (Province de Bas-Uélé, République Démocratique du Congo). Int. J. Innov. Sci. Res. 2016, 24, 309–321.
Koubouana, F.; Ifo, S.A.; Ndzai, S.F.; Stoffenne, B. Étude comparative d ’ une forêt primaire et d ’ une forêt dégradée au Nord de la République du Congo par référence à la structure des forêts tropicales humides. Rev. Sci. Tech. Forêt Environ. du Bassin du Congo 2018, 11, 11–25.
Sonwa, D.; Weise, S.F.; Tchatat, M.; Nkongmeneck, B.; Adesina, A.A.; Ndoye, O.; Gockowski, J. Rôle des agroforêts cacao dans la foresterie paysanne et communautaire au Sud-Cameroun. Réseau For. Pour Développement Rural, document du réseau 2001, 25g, 1–11.
Asare, R.; Asare, R.A.; Asante, W.A.; Markussen, B.; RÆbild, A. Influences of shading and fertilization on on-farm yields of cocoa in Ghana. Exp. Agric. 2017, 53, 416–431. [CrossRef]
Bohlman, S.A.; Bourg, N.A.; Brinks, J.; Bunyavejchewin, S.; Butt, N.; Chisholm, R.A.; Muller-Landau, H.C.; Rahman, K.A.; Bebber, D.P.; Bin, Y.; et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 2013, 101, 1214–1224.
Sagar, R.; Singh, J.S. Tree density, basal area and species diversity in a disturbed dry tropical forest of northern India: Implications for conservation. Environ. Conserv. 2006, 33, 256–262. [CrossRef]
Blanc, L.; Florès, O.; Molino, J.F.; Gourlet-Fleury, S.; Sabatier, D. Diversité spécifique et regroupement d’espéces arborescentes en Forêt Guyanaise. Rev. For. Fr. 2003, 55, 131–146. [CrossRef]
Asase, A.; Ofori-frimpong, K.; Ekpe, P. Impact of cocoa farming on vegetation in an agricultural landscape in Ghana. Afr. J. Ecol. 2009, 48, 338–346. [CrossRef]
Middendorp, R.; Vanacker, V.; Lambin, E. Impacts of shaded agroforestry management on carbon sequestration, biodiversity and farmers income in cocoa production landscapes. Landsc. Ecol. 2018, 33, 1953–1974. [CrossRef]
Asigbaase, M.; Sjogersten, S.; Lomax, B.; Dawoe, E. Tree diversity and its ecological importance value in organic and conventional cocoa agroforests in Ghana. PLoS ONE 2019, 14, e0210557. [CrossRef]
Niether, W.; Armengot, L.; Andres, C.; Schneider, M.; Gerold, G. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann. For. Sci. 2018, 75, 38. [CrossRef]
Redd-RDC. Mambasa Pays: République Démocratique Du Congo, Rapport D’évaluation du Projet; Banque Africaine de Développement: Kinshasa, Democratic Republic of the Congo, 2010; pp. 1–18.
Mason, J.J.; Asare, R.; Cenamo, M.; Soares, P.; Carrero, G.; Murphy, A.J.; Bandari, C. Ghana Cocoa REDD+ Programme: Draft Implementation Report; Ghana cocoa Reed+ programme: Accra, Ghana, 2016; pp. 1–77.
Carodenuto, S.; Gromko, D.; Chia, E.L. Zero deforestation cocoa in Cameroon: Private sector engagement to support Reducing Emissions from Deforestation and forest Degradation (REDD+). GIZ-ProPFE Policy Br. 2017, 4, 1–3.
Fernandes, C.D.A.F.; Matsumoto, S.N.; Fernandes, V.S. Carbon stock in the development of different designs of biodiverse agroforestry systems. Rev. Bras. Eng. Agrícola Ambient. 2018, 22, 720–725. [CrossRef]
Sonwa, D.J.; Weise, S.F.; Bernard, A.; Nkongmeneck, M.T.; Janssens, M.J.J. Profiling carbon storage/stocks of cocoa agroforests in the forest landscape of southern Cameroon. In Agroforestry: Anecdotal to Modern Science; Dagar, J., Tewari, V., Eds.; Springer: Singapore, 2017; pp. 739–752.