[en] Lupinus species are valuable for sustainable agriculture due to their high protein content, adaptability, and bioactive compounds. This study assessed the morphological, nutritional, and phytochemical diversity of Lupinus albus, L. luteus, and L. pilosus using 27 agro-morphological traits and analytical techniques (GC-MS, GC-FID, HPLC, and spectrophotometry). L. pilosus, with its dense leaf pubescence, thrives in arid environments, whereas L. luteus and L. albus, with glabrous leaves, are adaptable to humid conditions. L. albus has the shortest ripening period (208.61 ± 12.79 days) and the highest protein (37.18 ± 2.37%) and nitrogen (5.95 ± 0.38%) content. L. pilosus exhibits the strongest antioxidant activity (ABTS: 84.5%) due to its rich flavonoid and phenolic profile, while L. albus differ with its nutraceutical potential. Additionally, 38.88% of L. albus seeds are “sweet”, improving edibility. These findings highlight L. albus as an optimal candidate for genetic improvement and sustainable agriculture, particularly in Mediterranean regions.
Disciplines :
Agriculture & agronomy Chemistry
Author, co-author :
Akremi, Imen; Laboratory of microorganisms and active biomolecules (LR03ES03), Department of Biology, Faculty of Sciences of Tunis, University Campus, El-Manar University, Tunisia
Kabtni, Souhir; Laboratory of microorganisms and active biomolecules (LR03ES03), Department of Biology, Faculty of Sciences of Tunis, University Campus, El-Manar University, Tunisia
Ammar, Ben; Laboratory of microorganisms and active biomolecules (LR03ES03), Department of Biology, Faculty of Sciences of Tunis, University Campus, El-Manar University, Tunisia
Genva, Manon ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Hejazi, Sondos; Dipartimento di Agraria, University of Napels "Federico II", Portici, Italy ; Departement of nutrition and Food Technology, An-Najah National University, Nabuls, Palestine
Elbok, Safia; Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11ES09), Department of Biology, Faculty of Sciences of Tunis, University Campus, El-Manar University, Tunisia
Rouz, Slim; Institution of Agricultural Research and Higher Education, Department of Agronomy, Tunisia
Marghali, Sonia; Laboratory of microorganisms and active biomolecules (LR03ES03), Department of Biology, Faculty of Sciences of Tunis, University Campus, El-Manar University, Tunisia
Fauconnier, Marie-Laure ; Université de Liège - ULiège > TERRA Research Centre > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Language :
English
Title :
Comparative highlights of morphological, phytochemical and nutritional key characteristics of Mediterranean Lupinus species
Abraham, E.M., Ganopoulos, I., Madesis, P., Mavromatis, A., Mylona, P., Nianiou-Obeidat, I., Vlachostergios, D., The use of lupin as a source of protein in animal feeding: Genomic tools and breeding approaches. International Journal of Molecular Sciences, 20(4), 2019, 851, 10.3390/ijms20040851.
Abreu, B., Lima, J., Rocha, A., Consumer Perception and acceptability of lupine-derived products: A systematic review. Foods, 12 (6), 2023, 1241 https://doi.org/10.3390/foods12061241.
Al-Amrousi, E.F., Badr, A.N., Abdel-Razek, A.G., Gromadzka, K., Drzewiecka, K., Hassanein, M.M., A comprehensive study of lupin seed oils and the roasting effect on their chemical and biological activity. Plants, 11(17), 2022, 2301, 10.3390/plants11172301.
Alqaisi, O., Hemme, T., Latacz-Lohmann, U., Susenbeth, A., Evaluation of food industry by-products as feed in semi-arid dairy farming systems: The case of Jordan. Sustainability Science 9 (2014), 361–377, 10.1007/s11625-013-0240-6.
Annicchiarico, P., Harzic, N., Carroni, A.M., Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Research 119:1 (2010), 114–124, 10.1016/j.fcr.2010.06.022.
Baptista, D.M.S., Farid, M., Fayad, D., Kemoe, L., Lanci, L.S., Mitra, P., Unsal, F.D., Climate Change and Chronic Food Insecurity in Sub-Saharan, 2022, Africa.Chicago.
Ben Hassine, A., Rocchetti, G., Zhang, L., Senizza, B., Zengin, G., Mahomoodally, M.F., El-Bok, S., Untargeted phytochemical profile, antioxidant capacity and enzyme inhibitory activity of cultivated and wild lupin seeds from Tunisia. Molecules, 26(11), 2021, 3452, 10.3390/molecules26113452.
Boschin, G., D'Agostina, A., Annicchiarico, P., Arnoldi, A., The fatty acid composition of the oil from Lupinus albus cv. Luxe as affected by environmental and agricultural factors. European Food Research and Technology 225 (2007), 769–776, 10.1007/s00217-006-0480-0.
Bryant, L., Rangan, A., Grafenauer, S., Lupins and Health Outcomes: A Systematic Literature Review. Nutrients, 14(2), 2022, 327 https://doi.org/10.3390/nu14020327.
Cernay, C., Makowski, D., Pelzer, E., Preceding cultivation of grain legumes increases cereal yields under low nitrogen input conditions. Environmental Chemistry Letters 16 (2018), 631–636, 10.1007/s10311-017-0698-z.
Cheng, L., Bucciarelli, B., Shen, J., Allan, D., Vance, C.P., Update on white lupin cluster root acclimation to phosphorus deficiency. Plant Physiology 156:3 (2011), 1025–1032, 10.1104/pp.111.175174.
Clemente, A., Olias, R., Olias, J.M., Purification and characterization of broad bean lipoxygenase isoenzymes. Journal of Agricultural and Food Chemistry 48 (2000), 1070–1075, 10.1021/jf990463s.
Core Team R, R: A language and environment for statistical computing. 2022, R Foundation for Statistical Computing, Vienna, Austria URL https://www.R-project.org/.
Cu, S.T., Hutson, J., Schuller, K.A., Mixed culture of wheat (Triticum aestivum L.) with white lupin (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheat. Plant and Soil 272 (2005), 143–151, 10.1007/s11104-004-4336-8.
De Mendiburu, F., Agricolae: Statistical procedures for agricultural research. 2017 R package version 1.2–8. https:// CRAN.R-project.org/package=agricolae.
El Maadoudi, E.H., El Housni, A., Grain de lupin doux et amer dans des rations pour ovins en croissance-engraissement. Options Méditerranéennes 108 (2013), 103–107 http://om.ciheam.org/om/pdf/a108/00007621.
Erbaş, M., Certel, M., Uslu, M.K., Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chemistry 89:3 (2005), 341–345, 10.1016/j.foodchem.2004.02.040.
Estivi, L., Brandolini, A., Gasparini, A., Hidalgo, A., Lupine as a source of bioactive antioxidant compounds for food products. Molecules, 28(22), 2023, 7529 https://doi.org/10.3390/molecules28227529.
Ezeagu, I.E., Petzke, J.K., Metges, C.C., Akinsoyinu, A.O., Ologhobo, A.D., Seed protein contents and nitrogen-to-protein conversion factors for some uncultivated tropical plant seeds. Food Chemistry 78:1 (2002), 105–109, 10.1016/S0308-8146(02)00105-X.
Fox, J., Getting started with the R commander: A basic- statistics graphical user interface to R. Journal of Statistical Software 14:9 (2005), 1–42 http://www.jstatsoft.org/.
Fox, J., Using the R commander: A point-and-click interface for R. Chapman & Hall/CRC, NewYork. Journal of Statistical Software 75:3 (2016), 1–4, 10.18637/jss.v075.b03.
Georgieva, N.A., Ivanov, K.V., Genov Genov, N., Butnariu, M., Morphological and biological characteristics of white lupine cultivars (Lupinus albus L.). Romanian Agricultural Research, 35, 2018 2018 https://www.incda-fundulea.ro/rar/nr35/rar35.15.pdf.
Gnieszka, A, Iotrowicz-Cieslak, P.(2005). Composition of seed soluble carbohydrates and ultrastructural diversity of testa in lupins from the mediterranean region. Acta Societatis Botanicorum Poloniae. Vol. 74, No. 4/ 281-286, 2005. https://doi.org/10.5586/asbp.2005.036.
Gori, D.F., Floral color change in Lupinus argenteus (Fabaceae): Why should plants advertise the location of unrewarding flowers to pollinators?. Evolution 43:4 (1989), 870–881, 10.1111/j.1558-5646.1989.tb05184.x.
Gresta, F., Oteri, M., Scordia, D., Costale, A., Armone, R., Meineri, G., Chiofalo, B., White lupin (Lupinus albus L.), an alternative legume for animal feeding in the mediterranean area. Agriculture, 13(2), 2023, 434, 10.3390/agriculture13020434.
Hseu, Y.C., Chang, W.H., Chen, C.S., Liao, J.W., Huang, C.J., Lu, F.J., Yang, H.L., Antioxidant activities of Toona Sinensis leaves extracts using different antioxidant models. Food and Chemical Toxicology 46:1 (2008), 105–114, 10.1016/j.fct.2007.07.003.
Jha, U.C., Nayyar, H., Parida, S.K., Deshmukh, R., von Wettberg, E.J., Siddique, K.H., Ensuring global food security by improving protein content in major grain legumes using breeding and ‘omics’ tools. International Journal of Molecular Sciences, 23(14), 2022, 7710, 10.3390/ijms23147710.
Jul, LB, Flengmark, P., Gylling, M., Itenov, K., Lupine seed (Lupinus albus and Lupinus luteus) as a protein source for fermentation use. Industrial Crops and Products, 18 (3), (2003), 199–211 https://doi.org/10.1016/S0926-6690(02)00076-6.
Karadag, A., Ozcelik, B., Saner, S., Review of methods to determine antioxidant capacities. Food Analytical Methods 2 (2009), 41–60, 10.1007/s12161-008-9067-7.
Krakowska, A., Rafińska, K., Walczak, J., Kowalkowski, T., Buszewski, B., Comparison of various extraction techniques of Medicago sativa: Yield, antioxidant activity, and content of phytochemical constituents. Journal of AOAC International 100:6 (2017), 1681–1693, 10.5740/jaoacint.17-0234.
Kroc, M., Tomaszewska, M., Czepiel, K., Bitocchi, E., Oppermann, M., Neumann, K., Susek, K., Towards development, maintenance, and standardized phenotypic characterization of single-seed-descent genetic resources for Lupins. Current Protocols, 1(7), 2021, e191, 10.1002/cpz1.191.
Kulisic, T., Radonic, A., Katalinic, V., Milos, M., Use of different methods for testing antioxidative activity of oregano essential oil. Food Chemistry 85:4 (2004), 633–640, 10.1016/j.foodchem.2003.07.024.
Lê, S., Josse, J., Husson, F., FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25:1 (2008), 1–18.
Lee, J.H., Kang, B.S., Hwang, K.H., Kim, G.H., Evaluation for anti-inflammatory effects of Siegesbeckia glabrescens extract in vitro. Food and Agricultural Immunology 22:2 (2011), 145–160, 10.1080/09540105.2010.549210.
Lichtin, N., Salvo-Garrido, H., Till, B., Caligari, PD, Rupayan, A., Westermeyer, F., Olivos, M., Genetic and comparative mapping of Lupinus luteus L. highlight syntenic regions with major orthologous genes controlling anthracnose resistance and flowering time. Scientific Reports, 10 (1), 2020, 19174 https://doi.org/10.1038/s41598-020-76197-w.
Loizzo, M.R., Sicari, V., Pellicanò, T., Xiao, J., Poiana, M., Tundis, R., Comparative analysis of chemical composition, antioxidant and anti-proliferative activities of Italian Vitis vinifera by-products for a sustainable agro-industry. Food and Chemical Toxicology 127 (2019), 127–134, 10.1016/j.fct.2019.03.007.
Mane, S.P., Johnson, S.K., Duranti, M., Pareek, V.K., Utikar, R.P., Lupin seed γ-conglutin: Extraction and purification methods - a review. Trends in Food Science and Technology 73 (2018), 1–11, 10.1016/j.tifs.2017.12.008.
Mavromatis, A., Nianiou-Obeidat, I., Polidoros, A., Parissi, Z., Tani, E., Irakli, M., Abraham, E.M., Characterization of lupin cultivars based on phenotypical, molecular and metabolomic analyses. Agronomy, 13(2), 2023, 370, 10.3390/agronomy13020370.
Munteanu, I.G., Apetrei, C., Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 2021, 3380, 10.3390/ijms22073380.
Pastor-Cavada, E., Juan, R., Pastor, J., Alaiz, M., Vioque, J., Nutritional characteristics of seed proteins in 15 Lathyrus species (Fabaceae) from southern Spain. LWT- Food Science and Technology 44 (2011), 1059–1064, 10.1016/j.lwt.2010.09.021.
Porres, J.M., Aranda, P., López-Jurado, M., Urbano, G., Nitrogen fractions and mineral content in different lupin species (Lupinus albus, Lupinus angustifolius, and Lupinus luteus). Changes induced by the α-galactoside extraction process. Journal of Agricultural and Food Chemistry 55:18 (2007), 7445–7452.
Ragunathan, M., Solomon, M., The study of spiritual remedies in orthodox rural churches and traditional medicinal practice in Gondar Zuria district, northwestern Ethiopia. Pharmacognosy Journal 1:3 (2009), 178–183, 10.1155/2022/1589877.
Reid, C., Floral longevity and attraction of Arctic lupine, Lupinus arcticus: Implications for pollination efficiency. The Arbutus Review (TAR) 10:1 (2019), 83–99, 10.18357/tar101201918921.
Ridolfi, M., Terenziani, S., Patumi, M., Fontanazza, G., Characterization of the lipoxygenases in some olive cultivars and determination of their role in volatile compounds formation. Journal of Agricultural and Food Chemistry 50 (2002), 835–839, 10.1021/jf0109118.
Saha Tchinda, J.B., Ndikontar, K.M., Fouda Belinga, A.D., Mounguengui, S., Njankouo, J.M., Durmaçay, S., Gerardin, P., Inhibition of fungi with wood extractives and natural durability of five Cameroonian wood species. Industrial Crops and Products 123 (2018), 183–191, 10.1016/j.indcrop.2018.06.078.
Sánchez-Vioque, R., Clemente, A., Vioque, J., Bautista, J., Millán, F.J.F.C., Protein isolates from chickpea (Cicer arietinum L.): Chemical composition, functional properties and protein characterization. Food Chemistry 64:2 (1999), 237–243, 10.1016/S0308-8146(98)00133-2.
Sbihi, H.M., Nehdi, I.A., Tan, C.P., Al-Resayes, S.I., Bitter and sweet lupin (Lupinus albus L.) seeds and seed oils: A comparison study of their compositions and physicochemical properties. Industrial Crops and Products 49 (2013), 573–579, 10.1016/j.indcrop.2013.05.020.
Schweiggert, U., Schieber, A., Carle, R., Inactivation of peroxidase, polyphenoloxidase, and lipoxygenase in paprika and chili powder after immediate thermal treatment of the plant material. Innovative Food Science & Emerging Technologies 6:4 (2005), 403–411, 10.1016/j.ifset.2005.05.001.
Siger, A., Czubinski, J., Kachlicki, P., Dwiecki, K., Lampart-Szczapa, E., Nogala-Kalucka, M., Antioxidant activity and phenolic content in three lupin species. Journal of Food Composition and Analysis 25:2 (2012), 190–197, 10.1016/j.jfca.2011.10.002.
Stankovic, M.S., Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac Journal Science 33:2011 (2011), 63–72.
Szczepański, A., Adamek-Urbańska, D., Kasprzak, R., Szudrowicz, H., Śliwiński, J., & Kamaszewski, M. (2022). Lupine: A promising alternative protein source for aquaculture feeds?. Aquaculture Reports, 26, 101281. https://doi.org/10.1016/j.aqrep.2022.101281.
Tepe, B., Sokmen, M., Sokmen, A., Daferera, D., Polissiou, M., Antimicrobial and antioxidative activity of the essential oil and various extracts of Cyclotrichium origanifolium (Labill.). Manden. & Scheng. Journal of Food Engineering 69:3 (2005), 335–342, 10.1016/j.jfoodeng.2004.08.024.
Trunschke, J., Lunau, K., Pyke, G.H., Ren, Z.X., Wang, H., Flower color evolution and the evidence of pollinator-mediated selection. Frontiers in Plant Science 12 (2021), 617–851, 10.3389/fpls.2021.617851.
Tsenov, N., Atanasova, D., Nankova, M., Ivanova, A., Tsenova, E., Chamurliiski, P., Raykov, G., Approaches for grading breeding evaluation of winter wheat varieties for grain yield. Scientific Works of Institute of Agriculture–Karnobat 3:1 (2014), 21–35.
Vázquez, S., Agha, R., Granado, A., Sarro, M.J., Esteban, E., Peñalosa, J.M., Carpena, R.O., Use of white lupin plant for phytostabilization of cd and as polluted acid soil. Water, Air, and Soil Pollution 177 (2006), 349–365, 10.1007/s11270-006-9178-y.
Wang, H., Wang, R., Harrison, S.P., Prentice, I.C., Leaf morphological traits as adaptations to multiple climate gradients. Journal of Ecology 110 (2022), 1344–1355, 10.1111/1365-2745.13873.
Wu, W., Shah, F., Ma, B.L., Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change. Crop and Environment 1:2 (2022), 133–144, 10.1016/j.crope.2022.05.005.
Yoshie-Stark, Y., Wäsche, A., Characteristics of crude lipoxygenase from commercially de-oiled lupin flakes for different types of lupins (Lupinus albus, Lupinus angustifolius). Food Chemistry 88:2 (2004), 287–292, 10.1016/j.foodchem.2004.02.005.