[en] Liquid chromatography-mass spectrometry (LC-MS/MS) extends the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) Zooarcheology by Mass Spectrometry (ZooMS) "mass fingerprinting" approach to species identification by providing fragmentation spectra for each peptide. However, ancient bone samples generate sparse data containing only a few collagen proteins, rendering target-decoy strategies unusable and increasing uncertainty in peptide annotation. To ameliorate this issue, we present a ZooMS/MS data pipeline that builds on a manually curated Collagen database and comprises two novel algorithms: isoBLAST and ClassiCOL. isoBLAST first extends peptide ambiguity by generating all "potential peptide candidates" isobaric to the annotated precursor. The exhaustive set of candidates created is then used to retain or reject different potential paths at each taxonomic branching point from superkingdom to species, until the greatest possible specificity is reached. Uniquely, ClassiCOL allows for the identification of taxonomic mixtures, including contaminated samples, as well as suggesting taxonomies not represented in sequence databases, including extinct taxa. All considered ambiguity is then graphically represented with clear prioritization of the potential taxa in the sample. Using public as well as in-house data acquired on different instruments, we demonstrate the performance of this universal postprocessing and explore the identification of both genetic and sample mixtures. Diet reconstruction from 40,000-year-old cave hyena coprolites illustrates the exciting potential of this approach.
Disciplines :
Archaeology Laboratory medicine & medical technology
Author, co-author :
Engels, Ian ; ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000,Belgium
Burnett, Alexandra ; ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000,Belgium ; ArcheOs Laboratory for Biological Anthropology, Faculty of Arts and Philosophy, Ghent University, Ghent 9000, Belgium
Robert, Prudence; ArcheOs Laboratory for Biological Anthropology, Faculty of Arts and Philosophy, Ghent University, Ghent 9000, Belgium
Pironneau, Camille; ArcheOs Laboratory for Biological Anthropology, Faculty of Arts and Philosophy, Ghent University, Ghent 9000, Belgium
Abrams, Grégory; ArcheOs Laboratory for Biological Anthropology, Faculty of Arts and Philosophy, Ghent University, Ghent 9000, Belgium ; Scladina Cave Archaeological Centre, Espace muséal d'Andenne, Andenne 5300, Belgium
Bouwmeester, Robbin ; VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium ; Department of Biomolecular Medicine, Ghent University, Ghent 9052 Belgium
Van der Plaetsen, Peter
Di Modica, Kévin; Scladina Cave Archaeological Centre, Espace muséal d'Andenne, Andenne 5300, Belgium
Otte, Marcel
Straus, Lawrence Guy; Dept. of Anthropology, MSC01 1040, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
Fischer, Valentin ; Université de Liège - ULiège > Département de géologie > Evolution and diversity dynamics lab
Bray, Fabrice ; CNRS, UAR 3290 - MSAP - Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Univ. Lille, Lille F-59000, France
Mesuere, Bart ; VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium ; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent B-9000, Belgium ; Department of Biochemistry, Ghent University, Ghent B-9000 Belgium
De Groote, Isabelle; ArcheOs Laboratory for Biological Anthropology, Faculty of Arts and Philosophy, Ghent University, Ghent 9000, Belgium ; School of Biological and Environmental Sciences, Research Centre in Evolutionary Anthropology and Palaeoecologys, Liverpool John Moores University, Liverpool L3 3AF, U.K
Deforce, Dieter; ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000,Belgium
Daled, Simon ; ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000,Belgium
Dhaenens, Maarten ; ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000,Belgium
Le Meillour, L.; Zazzo, A.; Lesur, J.; et al. Identification of degraded bone and tooth splinters from arid environments using palaeoproteomics. Palaeogeogr., Palaeoclimatol., Palaeoecol. 2018, 511, 472−482.
Demarchi, B.; Mackie, M.; Li, Z.; et al. Survival of mineral-bound peptides into the Miocene. eLife 2022, 11, No. e82849, DOI: 10.7554/ eLife.82849.
Demarchi, B.; Hall, S.; Roncal-Herrero, T.; et al. Protein sequences bound to mineral surfaces persist into deep time. eLife 2016, 5, No. e17092, DOI: 10.7554/eLife.17092.
Hendy, J.; et al. Ancient proteins from ceramic vessels at Çatalhöyük West reveal the hidden cuisine of early farmers. Nat. Commun. 2018, 9, No. 4064.
Buckley, M.; Wadsworth, C. Proteome degradation in ancient bone: Diagenesis and phylogenetic potential. Palaeogeogr., Palaeoclimatol., Palaeoecol. 2014, 416, 69−79.
Buckley, M.; Lawless, C.; Rybczynski, N. Collagen sequence analysis of fossil camels, Camelops and c.f. Paracamelus, from the Arctic and sub-Arctic of Plio-Pleistocene North America. J. Proteomics 2019, 194, 218−225.
Paterson, R. S.et al. A 20+ Ma old enamel proteome from Canada’s High Arctic reveals diversification of Rhinocerotidae in the middle Eocene-Oligocene bioRxiv 2024 DOI: 10.1101/2024.06.07.597871.
Rüther, P. L.; Husic, I. M.; Bangsgaard, P.; et al. SPIN enables high throughput species identification of archaeological bone by proteomics. Nat. Commun. 2022, 13, No. 2458.
Le Meillour, L.; Sinet-Mathiot, V.; Ásmundsdóttir, R. D.; et al. Increasing sustainability in palaeoproteomics by optimizing digestion times for large-scale archaeological bone analyses. iScience 2024, 27, No. 109432.
Mylopotamitaki, D.; Harking, F. S.; Taurozzi, A. J.; et al. Comparing extraction method efficiency for high-throughput palaeoproteomic bone species identification. Sci. Rep. 2023, 13, No. 18345.
Horn, I. R.; Kenens, Y.; Palmblad, N. M.; et al. Palaeoproteomics of bird bones for taxonomic classification. Zool. J. Linn. Soc. 2019, 186, 650−665.
Shoulders, M. D.; Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929−958.
Bray, F.; Fabrizi, I.; Flament, S.; et al. Robust High-Throughput Proteomics Identification and Deamidation Quantitation of Extinct Species up to Pleistocene with Ultrahigh-Resolution MALDI-FTICR Mass Spectrometry. Anal. Chem. 2023, 95, 7422−7432.
Buckley, M.; Collins, M.; Thomas-Oaies, J.; Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 3843−3854.
Brown, S.; Higham, T.; Slon, V.; et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Sci. Rep. 2016, 6, No. 23559.
Ostrom, P. H.; Schall, M.; Gandhi, H.; et al. New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry. Geochim. Cosmochim. Acta 2000, 64, 1043−1050.
Richter, K. K.; Codlin, M. C.; Seabrook, M.; Warinner, C. A primer for ZooMS applications in archaeology. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, No. e2109323119.
Bekker-Jensen, D. B.; Martínez-Val, A.; Steigerwald, S.; et al. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients. Mol. Cell. Proteomics 2020, 19, 716−729.
Dallongeville, S.; Garnier, N.; Rolando, C.; Tokarski, C. Proteins in Art, Archaeology, and Paleontology: From Detection to Identification. Chem. Rev. 2016, 116, 2−79.
Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347−355.
Verheggen, K.; Ræder, H.; Berven, F. S.; et al. Anatomy and evolution of database search engines―a central component of mass spectrometry based proteomic workflows. Mass Spectrom Rev. 2020, 39, 292−306.
Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data Electrophoresis, 20 3551 3567 DOI: 10.1002/(SICI)1522-2683(19991201)20:183.0.CO;2-2.
Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protoc. 2016, 11, 2301−2319.
Cox, J.; Neuhauser, N.; Michalski, A.; et al. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011, 10, 1794−1805.
Elias, J. E.; Gygi, S. P. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. In Methods in Molecular Biology; Springer, 2010; Vol. 604, pp 55−71.
Elias, J. E.; Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 2007, 4, 207−214.
Ma, K.; Vitek, O.; Nesvizhskii, A. I. A statistical model-building perspective to identification of MS/MS spectra with PeptideProphet. BMC Bioinf. 2012, 13, No. S1.
Käll, L.; Canterbury, J. D.; Weston, J.; Noble, W. S.; MacCoss, M. J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 2007, 4, 923−925.
The, M.; MacCoss, M. J.; Noble, W. S.; Käll, L. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. J. Am. Soc. Mass Spectrom. 2016, 27, 1719−1727.
Demichev, V.; Messner, C. B.; Vernardis, S. I.; Lilley, K. S.; Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41−44.
Van Puyvelde, B.; et al. Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries. Proteomics 2020, 20, No. 1900306.
Buckley, M.; et al. Collagen Sequence Analysis of the Extinct Giant Ground Sloths Lestodon and Megatherium. PLoS One 2015, 10, No. e0139611.
Buckley, M.; Harvey, V. L.; Orihuela, J.; et al. Collagen Sequence Analysis Reveals Evolutionary History of Extinct West Indies Nesophontes (Island-Shrews). Mol. Biol. Evol. 2020, 37, 2931−2943.
Behrensmeyer, A. K. Taphonomy. Encyclopedia of Geology 2021, 12−22.
Grupe, G. Taphonomy and Fossilization. In International Encyclopedia of Biological Anthropology; Wiley, 2018; pp 1−8.
Mesuere, B.; Devreese, B.; Debyser, G.; et al. Unipept: Tryptic peptide-based biodiversity analysis of metaproteome samples. J. Proteome Res. 2012, 11, 5773−5780.
Schallert, K.; Verschaffelt, P.; Mesuere, B.; et al. Pout2Prot: An Efficient Tool to Create Protein (Sub)groups from Percolator Output Files. J. Proteome Res. 2022, 21, 1175−1180.
Rahir, E. L’habitat Tardenoisien Des Grottes de Remouchamps, Chaleux et Montaigle. (Bruxelles, 1921).
Dewez, M. Remouchamps - Préhistoire. Bull. Soc. R. Belg. Anthropol. Préhistoire 1974, 85, 42−111.
Crombé, P.; Pironneau, C.; Robert, P.; et al. Human response to the Younger Dryas along the southern North Sea basin, Northwest Europe. Sci. Rep. 2024, 14, No. 18074.
Léotard, J. M. Occupations préhistoriques à l’Abri du Pape (Roches de Freyr − Dinant). Notae Praehistoricae 1989, 9, 27−28.
Léotard, J. M.; Straus, L. G.; Otte, M.L’abri du Pape. Bivouacs, Enterrements et Cachettes sur la Haute Meuse Belge: du Mésolithique au Bas Empire Romain − Bivouacs, Burials and Retreats along the Upper Belgian Meuse: from the Mesolithic to the Low Roman Empire; ERAUL (Etudes et Recherches Archeologiques de l’Universite de Liege), 1999; Vol. 88, p 365.
Noiret, P.; et al. Recherches paléolithiques et meśolithiques en Belgique, 1993: le Trou Magrite, Huccorgne et l’Abri du Pape. Notae Praehistoricae 1994, 1994, 45−62.
Otte, M.; et al. Fouilles 1994 à l’Abri du Pape et à la grotte du Bois Laiterie (Province de Namur). Notae Praehistoricae 1994, 14, 45−68.
Parent, J.-P.; Van der Plaetsen, P.; Vanmoerkerke, J. Mesolithische en neolithische sites aan de Donk te Oudenaarde. Archeol. Belg. 1986, 2, 15−18.
Parent, J.-P.; Van Plaetsen, P.; Vanmoerkerke, J. Les Fouilles de Sauvetage d’Oudenaarde-Donk. Les Cahiers de Préhistoire Du Nord. 1989; Vol. 6.
Parent, J.-P.; Van Der Plaetsen, P.; Vanmoerkerke, J. Prehistorische jagers en veetelers aan de donk te Oudenaarde. VOBOV-Inf. 1986, 24−25.
Ameels, V.; et al. Recent steentijdonderzoek in de regio Oudenaarde (Oost-Vlaanderen, Belgie)̈. Notae Praehistoricae 2003, 23, 61−65.
Otte, M. Recherches Aux Grottes de Sclayn; Etudes et Recherches Archeólogiques de l’Université de Liège, 1992; Vol. 1, p 182.
Abrams, G.; Devièse, T.; Pirson, S.; et al. Investigating the co-occurrence of Neanderthals and modern humans in Belgium through direct radiocarbon dating of bone implements. J. Hum. Evol. 2024, 186, No. 103471.
Pirson, S.et al. The Palaeoenvironmental Context and Chronostratigraphic Framework of the Scladina Cave Sedimentary Sequence (units 5 to 3-SUP). In Scladina I-4A Juvenile Neandertal; Etudes et Recherches Archéologiques de l’Université de Lieg̀e: Andenne, Belgium, 2014; pp 69−92.
Pirson, S. The Stratigraphic Sequence of Scladina Cave. In The Scladina I-4A Juvenile Neandertal; Toussaint, M.; Bonjean, D., Eds.; Etudes et Recherches Archéologiques de l’Université de Lieg̀e: Andenne, Belgium, 2014; pp 49−68.
Charters, D.; Brown, R. P.; Abrams, G.; et al. Morphological evolution of the cave bear (Ursus spelaeus) mandibular molars: coordinated size and shape changes through the Scladina Cave chronostratigraphy. Palaeogeogr., Palaeoclimatol., Palaeoecol. 2022, 587, No. 110787.
Charters, D.; Brown, R. P.; Abrams, G.; et al. Mandibular ecomorphology in the genus ursus (Ursidae, Carnivora): relevance for the palaeoecological adaptations of cave bears (U. spelaeus) from Scladina cave. Hist. Biol. 2024, 1−15.
Abrams, G.; Bello, S. M.; Di Modica, K.; Pirson, S.; Bonjean, D. When Neanderthals used cave bear (Ursus spelaeus) remains: Bone retouchers from unit 5 of Scladina Cave (Belgium). Quat. Int. 2014, 326-327, 274−287.
Abrams, G. Palaeolithic Bone Retouchers from Belgium: A Preliminary Overview of the Recent Research through Historic and Modern Bone Collections. In Origins of Bone Tool Technologies; Hutson, J. M., Ed.; Roman-Germanic Central Museum - Leibniz Research Institute for Archaeology, 2018; pp 197−214.
Pirson, S. Contribution à L’et́ude des deṕôts d’Entreé de Grotte en Belgique au Pléistocène SupérieurFaculté des Sciences Université de Liège: Lieg̀e, 2007; p 435.
Chambers, M. C.; Maclean, B.; Burke, R.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918−920.
Frankenfield, A. M.; Ni, J.; Ahmed, M.; Hao, L. Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics. J. Proteome Res. 2022, 21, 2104−2113.
Bray, F.; Flament, S.; Abrams, G.; et al. Extinct species identification from late middle Pleistocene and earlier Upper Pleistocene bone fragments and tools not recognizable from their osteomorphological study by an enhanced proteomics protocol. Archaeometry 2023, 65, 196−212.
Gilbert, C.; Krupicka, V.; Galluzzi, F.; et al. Species identification of ivory and bone museum objects using minimally invasive proteomics. Sci. Adv. 2024, 10, No. eadi9028, DOI: 10.1126/sciadv.adi9028.
The, M.; Edfors, F.; Perez-Riverol, Y.; et al. A Protein Standard That Emulates Homology for the Characterization of Protein Inference Algorithms. J. Proteome Res. 2018, 17, 1879−1886.
Degroeve, S.; Martens, L. MS2PIP: a tool for MS/MS peak intensity prediction. Bioinformatics 2013, 29, 3199−3203.
Bray, J. R.; Curtis, J. T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325− 349.
Cappellini, E.; Jensen, L. J.; Szklarczyk, D.; et al. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J. Proteome Res. 2012, 11, 917−926.
Feng, X. dong.; Li, L. W.; Zhang, J. H.; et al. Using the entrapment sequence method as a standard to evaluate key steps of proteomics data analysis process. BMC Genomics 2017, 18, No. 143.
Haghighi, Z.; Mackie, M.; Apalnes Ørnhøi, A.; et al. Palaeoproteomic identification of the original binder and modern contaminants in distemper paints from Uvdal stave church, Norway. Sci. Rep. 2024, 14, No. 12858.
Ge, R.; Zhou, L.; Zhang, Y.; Liu, J.; Yang, L. A scientific study of a Han ancient adhesive: First discovery of the use of cattle bone powder in pottery bonding. J. Cultural Heritage 2024, 67, 277−283.
Fremout, W.; Dhaenens, M.; Saverwyns, S.; et al. Tryptic peptide analysis of protein binders in works of art by liquid chromatography− tandem mass spectrometry. Anal. Chim. Acta 2010, 658, 156−162.
Scibè, C.; Eng-Wilmot, K.; Lam, T.; et al. Palaeoproteomics and microanalysis reveal techniques of production of animal-based metal threads in medieval textiles. Sci. Rep. 2024, 14, No. 5320.
Hendy, J. Ancient protein analysis in archaeology. Sci. Adv. 2021, 7, 9314−9329.