Article (Scientific journals)
Introducing q-deformed binomial coefficients of words
Renard, Antoine; Rigo, Michel; Whiteland, Markus A.
2025In Journal of Algebraic Combinatorics, 61 (2)
Peer Reviewed verified by ORBi
 

Files


Full Text
univariateR2.pdf
Author postprint (378.47 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Binomial coefficients of words; Formal series; p-Group languages; q-Binomials; q-Deformations; Algebra and Number Theory; Discrete Mathematics and Combinatorics
Abstract :
[en] Gaussian binomial coefficients are q-analogues of the binomial coefficients of integers. On the other hand, binomial coefficients have been extended to finite words, i.e., elements of a finitely generated free monoid. In this paper, we bring these two notions together by introducing q-analogues of binomial coefficients of words. We study their basic properties, e.g., by extending classical formulas such as the q-Vandermonde and Manvel–Meyerowitz–Schwenk–Smith–Stockmeyer identities to our setting. These q-deformations contain much richer information than the original coefficients. From an algebraic perspective, we introduce a q-shuffle and a family of q-infiltration products for non-commutative formal power series. Finally, we apply our results to generalize a theorem of Eilenberg characterizing so-called p-group languages. We show that a language is of this type if and only if it is a Boolean combination of specific languages defined through q-binomial coefficients seen as polynomials over Fp.
Disciplines :
Mathematics
Author, co-author :
Renard, Antoine  ;  Université de Liège - ULiège > Mathematics
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Whiteland, Markus A. ;  Department of Computer Science, Loughborough University, Loughborough, United Kingdom
Language :
English
Title :
Introducing q-deformed binomial coefficients of words
Publication date :
March 2025
Journal title :
Journal of Algebraic Combinatorics
ISSN :
0925-9899
eISSN :
1572-9192
Publisher :
Springer
Volume :
61
Issue :
2
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
Michel Rigo Supported by the FNRS Research grant T.196.23 (PDR) Markus A. Whiteland Supported by the FNRS Research grant 1.B.466.21F, ORCID
Available on ORBi :
since 18 March 2025

Statistics


Number of views
103 (3 by ULiège)
Number of downloads
94 (2 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi