scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J 2019;40:237–269. https://doi.org/10.1093/eurheartj/ehy462
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392:1736–1788. https://doi.org/10.1016/s0140-6736(18)32203-7
Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J 2022;43: 716–799. https://doi.org/10.1093/eurheartj/ehab892
Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018;39:119–177. https://doi.org/10.1093/eurheartj/ehx393
Diercks DB, Peacock WF, Hiestand BC, Chen AY, Pollack CV, Kirk JD, et al. Frequency and consequences of recording an electrocardiogram >10 minutes after arrival in an emergency room in non-ST-segment elevation acute coronary syndromes (from the CRUSADE Initiative). Am J Cardiol 2006;97:437–442. https://doi.org/10.1016/j.amjcard.2005.09.073
Lopez-Sendon J, Coma-Canella I, Alcasena S, Seoane J, Gamallo C. Electrocardiographic findings in acute right ventricular infarction: sensitivity and specificity of electrocardiographic alterations in right precordial leads V4R, V3R, V1, V2, and V3. J Am Coll Cardiol 1985;6:1273–1279. https://doi.org/10.1016/s0735-1097(85) 80213-8
Schmitt C, Lehmann G, Schmieder S, Karch M, Neumann F-J, Scho¨mig A. Diagnosis of acute myocardial infarction in angiographically documented occluded infarct vessel: limitations of ST-segment elevation in standard and extended ECG leads. Chest 2001;120:1540–1546. https://doi.org/10.1378/chest.120.5.1540
Kosuge M, Kimura K, Ishikawa T, Hongo Y, Shigemasa T, Sugiyama M, et al. Implications of the absence of ST-segment elevation in lead V4R in patients who have inferior wall acute myocardial infarction with right ventricular involvement. Clin Cardiol 2001;24: 225–230. https://doi.org/10.1002/clc.4960240310
Yan AT, Yan RT, Kennelly BM, Anderson FA, Budaj A, López-Sendón J, et al. Relationship of ST elevation in lead aVR with angiographic findings and outcome in non-ST elevation acute coronary syndromes. Am Heart J 2007;154:71–78. https://doi.org/10.1016/j.ahj.2007.03.037
Hirano T, Tsuchiya K, Nishigaki K, Sou K, Kubota T, Ojio S, et al. Clinical features of emergency electrocardiography in patients with acute myocardial infarction caused by left main trunk obstruction. Circ J 2006;70:525–529. https://doi.org/10.1253/circj.70.525
Yamaji H, Iwasaki K, Kusachi S, Murakami T, Hirami R, Hamamoto H, et al. Prediction of acute left main coronary artery obstruction by 12-lead electrocardiography. ST segment elevation in lead aVR with less ST segment elevation in lead V(1). J Am Coll Cardiol 2001;38:1348–1354. doi: doi:10.1016/S0735-1097(01)01563-7
Chapman AR, Shah ASV, Lee KK, Anand A, Francis O, Adamson P, et al. Long-term outcomes in patients with type 2 myocardial infarction and myocardial injury. Circulation 2018;137:1236–1245. https://doi.org/10.1161/CIRCULATIONAHA.117. 031806
Nestelberger T, Boeddinghaus J, Badertscher P, Twerenbold R, Wildi K, Breitenbücher D, et al. Effect of definition on incidence and prognosis of type 2 myocardial infarction. J Am Coll Cardiol 2017;70:1558–1568. https://doi.org/10.1016/j.jacc.2017.07.774
Neumann JT, Sorensen NA, Rubsamen N, Ojeda F, Renné T, Qaderi V, et al. Discrimination of patients with type 2 myocardial infarction. Eur Heart J 2017;38: 3514–3520. https://doi.org/10.1093/eurheartj/ehx457
Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK, Chapman AR, et al. High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet 2018;392:919–928. https://doi.org/10.1016/S0140-6736(18)31923-8
Mandelzweig L, Battler A, Boyko V, Bueno H, Danchin N, Filippatos G, et al. The second Euro Heart Survey on acute coronary syndromes: characteristics, treatment, and outcome of patients with ACS in Europe and the Mediterranean Basin in 2004. Eur Heart J 2006;27:2285–2293. https://doi.org/10.1093/eurheartj/ehl196
Twerenbold R, Boeddinghaus J, Nestelberger T, Wildi K, Rubini Gimenez M, Badertscher P, et al. Clinical use of high-sensitivity cardiac troponin in patients with suspected myocardial infarction. J Am Coll Cardiol 2017;70:996–1012. https://doi.org/10.1016/j.jacc.2017.07.718
Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021;42:1289–1367. https://doi.org/10.1093/eurheartj/ehaa575
Rokos IC, French WJ, Koenig WJ, Stratton SJ, Nighswonger B, Strunk B, et al. Integration of pre-hospital electrocardiograms and ST-elevation myocardial infarction receiving center (SRC) networks: impact on door-to-balloon times across 10 independent regions. JACC Cardiovasc Interv 2009;2:339–346. https://doi.org/10.1016/j.jcin.2008.11.013
O’Doherty M, Tayler DI, Quinn E, Vincent R, Chamberlain DA. Five hundred patients with myocardial infarction monitored within one hour of symptoms. Br Med J (Clin Res Ed) 1983;286:1405–1408. https://doi.org/10.1136/bmj.286.6375.1405
Mehta RH, Starr AZ, Lopes RD, Hochman JS, Widimsky P, Pieper KS, et al. Incidence of and outcomes associated with ventricular tachycardia or fibrillation in patients undergoing primary percutaneous coronary intervention. JAMA 2009;301:1779–1789. https://doi.org/10.1001/jama.2009.600
Kulkarni AU, Brown R, Ayoubi M, Banka VS. Clinical use of posterior electrocardiographic leads: a prospective electrocardiographic analysis during coronary occlusion. Am Heart J 1996;131:736–741. https://doi.org/10.1016/s0002-8703(96)90280-x
Casas RE, Marriott HJL, Glancy DL. Value of leads V7-V9 in diagnosing posterior wall acute myocardial infarction and other causes of tall R waves in V1-V2. Am J Cardiol 1997;80:508–509. https://doi.org/10.1016/s0002-9149(97)00404-9
Zalenski RJ, Rydman RJ, Sloan EP, Hahn KH, Cooke D, Fagan J, et al. Value of posterior and right ventricular leads in comparison to the standard 12-lead electrocardiogram in evaluation of ST-segment elevation in suspected acute myocardial infarction. Am J Cardiol 1997;79:1579–1585. https://doi.org/10.1016/s0002-9149(97)00202-6
Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med 2009; 361:858–867. https://doi.org/10.1056/NEJMoa0900428
Reichlin T, Twerenbold R, Reiter M, Steuer S, Bassetti S, Balmelli C, et al. Introduction of high-sensitivity troponin assays: impact on myocardial infarction incidence and prognosis. Am J Med 2012;125:1205–1213.e1. https://doi.org/10.1016/j.amjmed.2012.07. 015
Neumann JT, Twerenbold R, Ojeda F, Sörensen NA, Chapman AR, Shah ASV, et al. Application of high-sensitivity troponin in suspected myocardial infarction. N Engl J Med 2019;380:2529–2540. https://doi.org/10.1056/NEJMoa1803377
Boeddinghaus J, Twerenbold R, Nestelberger T, Badertscher P, Wildi K, Puelacher C, et al. Clinical validation of a novel high-sensitivity cardiac troponin I assay for early diagnosis of acute myocardial infarction. Clin Chem 2018;64:1347–1360. https://doi.org/10.1373/clinchem.2018.286906
Neumann JT, Sorensen NA, Rubsamen N, Ojeda F, Schock A, Seddighizadeh P, et al. Evaluation of a new ultra-sensitivity troponin I assay in patients with suspected myocardial infarction. Int J Cardiol 2019;283:35–40. https://doi.org/10.1016/j.ijcard.2018.12. 001
Neumann JT, Sorensen NA, Schwemer T, Ojeda F, Bourry R, Sciacca V, et al. Diagnosis of myocardial infarction using a high-sensitivity troponin I 1-hour algorithm. JAMA Cardiol 2016;1:397–404. https://doi.org/10.1001/jamacardio.2016.0695
Reichlin T, Schindler C, Drexler B, Twerenbold R, Reiter M, Zellweger C, et al. One-hour rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Arch Intern Med 2012;172:1211–1218. https://doi.org/10.1001/archinternmed.2012.3698
Boeddinghaus J, Twerenbold R, Nestelberger T, Koechlin L, Wussler D, Meier M, et al. Clinical use of a new high-sensitivity cardiac troponin I assay in patients with suspected myocardial infarction. Clin Chem 2019;65:1426–1436. https://doi.org/10.1373/clinchem.2019.304725
Boeddinghaus J, Lopez-Ayala P, Nestelberger T, Koechlin L, Münch T, Miro O, et al. Prospective validation of the ESC 0/1h-algorithm using high-sensitivity cardiac troponin I. Am J Cardiol 2021;158:152–153. https://doi.org/10.1016/j.amjcard.2021.08.007
Boeddinghaus J, Nestelberger T, Twerenbold R, Neumann JT, Lindahl B, Giannitsis E, et al. Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. Eur Heart J 2018;39:3780–3794. https://doi.org/10.1093/eurheartj/ehy514
Twerenbold R, Badertscher P, Boeddinghaus J, Nestelberger T, Wildi K, Puelacher C, et al. 0/1-Hour triage algorithm for myocardial infarction in patients with renal dysfunction. Circulation 2018;137:436–451. https://doi.org/10.1161/CIRCULATIONAHA.117.028901
Boeddinghaus J, Reichlin T, Cullen L, Greenslade JH, Parsonage WA, Hammett C, et al. Two-hour algorithm for triage toward rule-out and rule-in of acute myocardial infarction by use of high-sensitivity cardiac troponin I. Clin Chem 2016;62:494–504. https://doi.org/10.1373/clinchem.2015.249508
Wildi K, Cullen L, Twerenbold R, Greenslade JH, Parsonage W, Boeddinghaus J, et al. Direct comparison of 2 rule-out strategies for acute myocardial infarction: 2-h accelerated diagnostic protocol vs 2-h algorithm. Clin Chem 2017;63:1227–1236. https://doi.org/10.1373/clinchem.2016.268359
Nestelberger T, Boeddinghaus J, Greenslade J, Parsonage WA, Than M, Wussler D, et al. Two-hour algorithm for rapid triage of suspected acute myocardial infarction using a high-sensitivity cardiac troponin I assay. Clin Chem 2019;65:1437–1447. https://doi.org/10.1373/clinchem.2019.305193
Koechlin L, Boeddinghaus J, Nestelberger T, Lopez-Ayala P, Wussler D, Shrestha S, et al. Performance of the ESC 0/2h-algorithm using high-sensitivity cardiac troponin I in the early diagnosis of myocardial infarction. Am Heart J 2021;242:132–137. https://doi.org/10.1016/j.ahj.2021.08.008
Wildi K, Nelles B, Twerenbold R, Rubini Giménez M, Reichlin T, Singeisen H, et al. Safety and efficacy of the 0 h/3 h protocol for rapid rule out of myocardial infarction. Am Heart J 2016;181:16–25. https://doi.org/10.1016/j.ahj.2016.07.013
Badertscher P, Boeddinghaus J, Twerenbold R, Nestelberger T, Wildi K, Wussler D, et al. Direct comparison of the 0/1h and 0/3h algorithms for early rule-out of acute myocardial infarction. Circulation 2018;137:2536–2538. https://doi.org/10.1161/CIRCULATIONAHA.118.034260
Chapman AR, Anand A, Boeddinghaus J, Ferry AV, Sandeman D, Adamson PD, et al. Comparison of the efficacy and safety of early rule-out pathways for acute myocardial infarction. Circulation 2017;135:1586–1596. https://doi.org/10.1161/CIRCULATIONAHA.116.025021
Chapman AR, Fujisawa T, Lee KK, Andrews JP, Anand A, Sandeman D, et al. Novel high-sensitivity cardiac troponin I assay in patients with suspected acute coronary syndrome. Heart 2019;105:616–622. https://doi.org/10.1136/heartjnl-2018-314093
Chew DP, Lambrakis K, Blyth A, Seshadri A, Edmonds MJR, Briffa T, et al. A randomized trial of a 1-hour troponin T protocol in suspected acute coronary syndromes: the rapid assessment of possible acute coronary syndrome in the emergency department with high-sensitivity troponin T study (RAPID-TnT). Circulation 2019;140: 1543–1556. https://doi.org/10.1161/CIRCULATIONAHA.119.042891
Nestelberger T, Wildi K, Boeddinghaus J, Twerenbold R, Reichlin T, Giménez MR, et al. Characterization of the observe zone of the ESC 2015 high-sensitivity cardiac troponin 0h/1h-algorithm for the early diagnosis of acute myocardial infarction. Int J Cardiol 2016;207:238–245. https://doi.org/10.1016/j.ijcard.2016.01.112
Lopez-Ayala P, Nestelberger T, Boeddinghaus J, Koechlin L, Ratmann PD, Strebel I, et al. Novel criteria for the observe-zone of the ESC 0/1h-hs-cTnT algorithm. Circulation 2021;144:773–787. https://doi.org/10.1161/CIRCULATIONAHA.120. 052982
Granger CB, Goldberg RJ, Dabbous O, Pieper KS, Eagle KA, Cannon CP, et al. Predictors of hospital mortality in the global registry of acute coronary events. Arch Intern Med 2003;163:2345–2353. https://doi.org/10.1001/archinte.163.19.2345
Fox KA, Fitzgerald G, Puymirat E, Huang W, Carruthers K, Simon T, et al. Should patients with acute coronary disease be stratified for management according to their risk? Derivation, external validation and outcomes using the updated GRACE risk score. BMJ Open 2014;4:e004425. https://doi.org/10.1136/bmjopen-2013-004425
Wenzl FA, Kraler S, Ambler G, Weston C, Herzog SA, Räber L, et al. Sex-specific evaluation and redevelopment of the GRACE score in non-ST-segment elevation acute coronary syndromes in populations from the UK and Switzerland: a multinational analysis with external cohort validation. Lancet 2022;400:744–756. https://doi.org/10.1016/s0140-6736(22)01483-0
Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986;1:397–402.
Boersma E, Maas AC, Deckers JW, Simoons ML. Early thrombolytic treatment in acute myocardial infarction: reappraisal of the golden hour. Lancet 1996;348:771–775. https://doi.org/10.1016/s0140-6736(96)02514-7
Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 2003;361:13–20. https://doi.org/10.1016/s0140-6736(03)12113-7
Reichlin T, Twerenbold R, Maushart C, Reiter M, Moehring B, Schaub N, et al. Risk stratification in patients with unstable angina using absolute serial changes of 3 high-sensitive troponin assays. Am Heart J 2013;165:371–378.e3. https://doi.org/10.1016/j. ahj.2012.11.010
Anand A, Lee KK, Chapman AR, Ferry AV, Adamson PD, Strachan FE, et al. High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomized controlled trial. Circulation 2021;143: 2214–2224. https://doi.org/10.1161/CIRCULATIONAHA.120.052380
Mueller C. Biomarkers and acute coronary syndromes: an update. Eur Heart J 2014;35: 552–556. https://doi.org/10.1093/eurheartj/eht530
Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2016;37:267–315. https://doi.org/10.1093/eurheartj/ehv320
Mueller C, Giannitsis E, Mockel M, Huber K, Mair J, Plebani M, et al. Rapid rule out of acute myocardial infarction: novel biomarker-based strategies. Eur Heart J Acute Cardiovasc Care 2017;6:218–222. https://doi.org/10.1177/2048872616653229
Mockel M, Giannitsis E, Mueller C, Huber K, Jaffe AS, Mair J, et al. Rule-in of acute myocardial infarction: focus on troponin. Eur Heart J Acute Cardiovasc Care 2017;6:212–217. https://doi.org/10.1177/2048872616653228
Roe MT, Harrington RA, Prosper DM, Pieper KS, Bhatt DL, Lincoff AM, et al. Clinical and therapeutic profile of patients presenting with acute coronary syndromes who do not have significant coronary artery disease. The Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy (PURSUIT) trial investigators. Circulation 2000;102:1101–1106. https://doi.org/10.1161/01.cir.102.10. 1101
Westermann D, Neumann JT, Sorensen NA, Blankenberg S. High-sensitivity assays for troponin in patients with cardiac disease. Nat Rev Cardiol 2017;14:472–483. https://doi.org/10.1038/nrcardio.2017.48
Rubini Gimenez M, Twerenbold R, Reichlin T, Wildi K, Haaf P, Schaefer M, et al. Direct comparison of high-sensitivity-cardiac troponin I vs. T for the early diagnosis of acute myocardial infarction. Eur Heart J 2014;35:2303–2311. https://doi.org/10.1093/eurheartj/ehu188
Boeddinghaus J, Nestelberger T, Twerenbold R, Koechlin L, Meier M, Troester V, et al. High-sensitivity cardiac troponin I assay for early diagnosis of acute myocardial infarction. Clin Chem 2019;65:893–904. https://doi.org/10.1373/clinchem.2018.300061
Keller T, Zeller T, Peetz D, Tzikas S, Roth A, Czyz E, et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med 2009;361:868–877. https://doi.org/10.1056/NEJMoa0903515
Collinson PO, Saenger AK, Apple FS; IFCC C-CB. High sensitivity, contemporary and point-of-care cardiac troponin assays: educational aids developed by the IFCC Committee on Clinical Application of Cardiac Bio-Markers. Clin Chem Lab Med 2019;57:623–632. https://doi.org/10.1515/cclm-2018-1211
Camaro C, Aarts GWA, Adang EMM, van Hout R, Brok G, Hoare A, et al. Rule-out of non-ST-segment elevation acute coronary syndrome by a single, pre-hospital troponin measurement: a randomized trial. Eur Heart J 2023;44:1705–1714. https://doi.org/10.1093/eurheartj/ehad056
Pickering JW, Young JM, George PM, Watson AS, Aldous SJ, Troughton RW, et al. Validity of a novel point-of-care troponin assay for single-test rule-out of acute myocardial infarction. JAMA Cardiol 2018;3:1108–1112. https://doi.org/10.1001/jamacardio.2018.3368
Apple FS, Schulz K, Schmidt CW, van Domburg TSY, Fonville JM, de Theije FK. Determination of sex-specific 99th percentile upper reference limits for a point of care high sensitivity cardiac troponin I assay. Clin Chem Lab Med 2021;59: 1574–1578. https://doi.org/10.1515/cclm-2021-0262
Sorensen NA, Neumann JT, Ojeda F, Giannitsis E, Spanuth E, Blankenberg S, et al. Diagnostic evaluation of a high-sensitivity troponin I point-of-care assay. Clin Chem 2019;65:1592–1601. https://doi.org/10.1373/clinchem.2019.307405
Azmy C, Guerard S, Bonnet X, Gabrielli F, Skalli W. EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty. Orthop Traumatol Surg Res 2010;96:28–36. https://doi.org/10.1016/j.rcot.2009.12.003
Chapman AR, Lee KK, McAllister DA, Cullen L, Greenslade JH, Parsonage W, et al. Association of high-sensitivity cardiac troponin I concentration with cardiac outcomes in patients with suspected acute coronary syndrome. JAMA 2017;318:1913–1924. https://doi.org/10.1001/jama.2017.17488
Hillinger P, Twerenbold R, Wildi K, Rubini Gimenez M, Jaeger C, Boeddinghaus J, et al. Gender-specific uncertainties in the diagnosis of acute coronary syndrome. Clin Res Cardiol 2017;106:28–37. https://doi.org/10.1007/s00392-016-1020-y
Miller-Hodges E, Anand A, Shah ASV, Chapman AR, Gallacher P, Lee KK, et al. High-sensitivity cardiac troponin and the risk stratification of patients with renal impairment presenting with suspected acute coronary syndrome. Circulation 2018; 137:425–435. https://doi.org/10.1161/CIRCULATIONAHA.117.030320
Twerenbold R, Neumann JT, Sorensen NA, Ojeda F, Karakas M, Boeddinghaus J, et al. Prospective validation of the 0/1-h algorithm for early diagnosis of myocardial infarction. J Am Coll Cardiol 2018;72:620–632. https://doi.org/10.1016/j.jacc.2018.05.040
Rubini Gimenez M, Twerenbold R, Boeddinghaus J, Nestelberger T, Puelacher C, Hillinger P, et al. Clinical effect of sex-specific cutoff values of high-sensitivity cardiac troponin T in suspected myocardial infarction. JAMA Cardiol 2016;1:912–920. https://doi.org/10.1001/jamacardio.2016.2882
Mueller-Hennessen M, Lindahl B, Giannitsis E, Biener M, Vafaie M, deFilippi CR, et al. Diagnostic and prognostic implications using age- and gender-specific cut-offs for high-sensitivity cardiac troponin T-sub-analysis from the TRAPID-AMI study. Int J Cardiol 2016;209:26–33. https://doi.org/10.1016/j.ijcard.2016.01.213
Sorensen NA, Neumann JT, Ojeda F, Schäfer S, Magnussen C, Keller T, et al. Relations of sex to diagnosis and outcomes in acute coronary syndrome. J Am Heart Assoc 2018; 7:e007297. https://doi.org/10.1161/JAHA.117.007297
Rubini Gimenez M, Badertscher P, Twerenbold R, Boeddinghaus J, Nestelberger T, Wussler D, et al. Impact of the US Food and Drug Administration-approved sex-specific cutoff values for high-sensitivity cardiac troponin T to diagnose myocardial infarction. Circulation 2018;137:1867–1869. https://doi.org/10.1161/circulationaha.117. 031940
Lee KK, Ferry AV, Anand A, Strachan FE, Chapman AR, Kimenai DM, et al. Sex-specific thresholds of high-sensitivity troponin in patients with suspected acute coronary syndrome. J Am Coll Cardiol 2019;74:2032–2043. https://doi.org/10.1016/j.jacc.2019.07. 082
Kimenai DM, Lindahl B, Jernberg T, Bekers O, Meex SJR, Eggers KM. Sex-specific effects of implementing a high-sensitivity troponin I assay in patients with suspected acute coronary syndrome: results from SWEDEHEART registry. Sci Rep 2020;10: 15227. https://doi.org/10.1038/s41598-020-72204-2
Peacock WF, Baumann BM, Rivers EJ, Davis TE, Handy B, Jones CW, et al. Using sex-specific cutoffs for high-sensitivity cardiac troponin T to diagnose acute myocardial infarction. Acad Emerg Med 2021;28:463–466. https://doi.org/10.1111/acem.14098
Zhao Y, Izadnegahdar M, Lee MK, Kavsak PA, Singer J, Scheuermeyer F, et al. High-sensitivity cardiac troponin-optimizing the diagnosis of acute myocardial infarction/injury in women (CODE-MI): rationale and design for a multicenter, stepped-wedge, cluster-randomized trial. Am Heart J 2020;229:18–28. https://doi.org/10.1016/j.ahj.2020.06.013
Reichlin T, Irfan A, Twerenbold R, Reiter M, Hochholzer W, Burkhalter H, et al. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation 2011;124:136–145. https://doi.org/10.1161/CIRCULATIONAHA.111.023937
Wildi K, Boeddinghaus J, Nestelberger T, Twerenbold R, Badertscher P, Wussler D, et al. Comparison of fourteen rule-out strategies for acute myocardial infarction. Int J Cardiol 2019;283:41–47. https://doi.org/10.1016/j.ijcard.2018.11.140
Ambavane A, Lindahl B, Giannitsis E, Roiz J, Mendivil J, Frankenstein L, et al. Economic evaluation of the one-hour rule-out and rule-in algorithm for acute myocardial infarction using the high-sensitivity cardiac troponin T assay in the emergency department. PLoS One 2017;12:e0187662. https://doi.org/10.1371/journal.pone.0187662
Boeddinghaus J, Nestelberger T, Twerenbold R, Wildi K, Badertscher P, Cupa J, et al. Direct comparison of 4 very early rule-out strategies for acute myocardial infarction using high-sensitivity cardiac troponin I. Circulation 2017;135:1597–1611. https://doi.org/10.1161/CIRCULATIONAHA.116.025661
Ljung L, Lindahl B, Eggers KM, Frick M, Linder R, Löfmark HB, et al. A rule-out strategy based on high-sensitivity troponin and HEART score reduces hospital admissions. Ann Emerg Med 2019;73:491–499. https://doi.org/10.1016/j.annemergmed.2018.11.039
Odqvist M, Andersson PO, Tygesen H, Eggers KM, Holzmann MJ. High-sensitivity troponins and outcomes after myocardial infarction. J Am Coll Cardiol 2018;71: 2616–2624. https://doi.org/10.1016/j.jacc.2018.03.515
Twerenbold R, Jaeger C, Rubini Gimenez M, Wildi K, Reichlin T, Nestelberger T, et al. Impact of high-sensitivity cardiac troponin on use of coronary angiography, cardiac stress testing, and time to discharge in suspected acute myocardial infarction. Eur Heart J 2016;37:3324–3332. https://doi.org/10.1093/eurheartj/ehw232
Greenslade J, Cho E, Van Hise C, Hawkins T, Parsonage W, Ungerer J, et al. Evaluating rapid rule-out of acute myocardial infarction using a high-sensitivity cardiac troponin I assay at presentation. Clin Chem 2018;64:820–829. https://doi.org/10.1373/clinchem.2017.283887
Pickering JW, Than MP, Cullen L, Aldous S, ter Avest E, Body R, et al. Rapid rule-out of acute myocardial infarction with a single high-sensitivity cardiac troponin T measurement below the limit of detection: a collaborative meta-analysis. Ann Intern Med 2017; 166:715–724. https://doi.org/10.7326/M16-2562
Shah AS, Anand A, Sandoval Y, Lee KK, Smith SW, Adamson PD, et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet 2015;386:2481–2488. https://doi.org/10.1016/S0140-6736(15)00391-8
Boeddinghaus J, Nestelberger T, Lopez-Ayala P, Koechlin L, Buechi M, Miro O, et al. Diagnostic performance of the European Society of Cardiology 0/1-h algorithms in late presenters. J Am Coll Cardiol 2021;77:1264–1267. https://doi.org/10.1016/j.jacc.2021.01.004
Mueller C, Giannitsis E, Christ M, Ordóñez-Llanos J, deFilippi C, McCord J, et al. Multicenter evaluation of a 0-hour/1-hour algorithm in the diagnosis of myocardial infarction with high-sensitivity cardiac troponin T. Ann Emerg Med 2016;68:76–87.e4. https://doi.org/10.1016/j.annemergmed.2015.11.013
Stoyanov KM, Hund H, Biener M, Gandowitz J, Riedle C, Löhr J, et al. RAPID-CPU: a prospective study on implementation of the ESC 0/1-hour algorithm and safety of discharge after rule-out of myocardial infarction. Eur Heart J Acute Cardiovasc Care 2019;9: 39–51. https://doi.org/10.1177/2048872619861911
Twerenbold R, Costabel JP, Nestelberger T, Campos R, Wussler D, Arbucci R, et al. Outcome of applying the ESC 0/1-hour algorithm in patients with suspected myocardial infarction. J Am Coll Cardiol 2019;74:483–494. https://doi.org/10.1016/j.jacc.2019.05.046
Nestelberger T, Boeddinghaus J, Wussler D, Twerenbold R, Badertscher P, Wildi K, et al. Predicting major adverse events in patients with acute myocardial infarction. J Am Coll Cardiol 2019;74:842–854. https://doi.org/10.1016/j.jacc.2019.06.025
Rubini Gimenez M, Wildi K, Wussler D, Koechlin L, Boeddinghaus J, Nestelberger T, et al. Early kinetics of cardiac troponin in suspected acute myocardial infarction. Rev Esp Cardiol (Engl Ed) 2021;74:502–509. https://doi.org/10.1016/j.rec.2020.04.008
Chiang CH, Chiang CH, Lee GH, Gi W-T, Wu Y-K, Huang S-S, et al. Safety and efficacy of the European Society of Cardiology 0/1-hour algorithm for diagnosis of myocardial infarction: systematic review and meta-analysis. Heart 2020;106:985–991. https://doi.org/10.1136/heartjnl-2019-316343
Vigen R, Kutscher P, Fernandez F, Yu A, Bertulfo B, Hashim IA, et al. Evaluation of a novel rule-out myocardial infarction protocol incorporating high-sensitivity troponin T in a US hospital. Circulation 2018;138:2061–2063. https://doi.org/10.1161/circulationaha.118.033861
Katus H, Ziegler A, Ekinci O, Giannitsis E, Stough WG, Achenbach S, et al. Early diagnosis of acute coronary syndrome. Eur Heart J 2017;38:3049–3055. https://doi.org/10.1093/eurheartj/ehx492
Koechlin L, Boeddinghaus J, Lopez-Ayala P, Nestelberger T, Wussler D, Mais F, et al. Diagnostic discrimination of a novel high-sensitivity cardiac troponin I assay and derivation/validation of an assay-specific 0/1h-algorithm. Am Heart J 2023;255:58–70. https://doi.org/10.1016/j.ahj.2022.10.007
Kaier TE, Twerenbold R, Puelacher C, Marjot J, Imambaccus N, Boeddinghaus J, et al. Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the early diagnosis of acute myocardial infarction. Circulation 2017;136:1495–1508. https://doi.org/10.1161/CIRCULATIONAHA.117.028084
Boeddinghaus J, Reichlin T, Nestelberger T, Twerenbold R, Meili Y, Wildi K, et al. Early diagnosis of acute myocardial infarction in patients with mild elevations of cardiac troponin. Clin Res Cardiol 2017;106:457–467. https://doi.org/10.1007/s00392-016-1075-9
Hillinger P, Twerenbold R, Jaeger C, Wildi K, Reichlin T, Gimenez MR, et al. Optimizing early rule-out strategies for acute myocardial infarction: utility of 1-hour copeptin. Clin Chem 2015;61:1466–1474. https://doi.org/10.1373/clinchem.2015.242743
Keller T, Tzikas S, Zeller T, Czyz E, Lillpopp L, Ojeda FM, et al. Copeptin improves early diagnosis of acute myocardial infarction. J Am Coll Cardiol 2010;55:2096–2106. https://doi.org/10.1016/j.jacc.2010.01.029
Möckel M, Searle J, Hamm C, Slagman A, Blankenberg S, Huber K, et al. Early discharge using single cardiac troponin and copeptin testing in patients with suspected acute coronary syndrome (ACS): a randomized, controlled clinical process study. Eur Heart J 2015;36:369–376. https://doi.org/10.1093/eurheartj/ehu178
Mueller C, Mockel M, Giannitsis E, Huber K, Mair J, Plebani M, et al. Use of copeptin for rapid rule-out of acute myocardial infarction. Eur Heart J Acute Cardiovasc Care 2018;7: 570–576. https://doi.org/10.1177/2048872617710791
Mueller-Hennessen M, Lindahl B, Giannitsis E, Vafaie M, Biener M, Haushofer AC, et al. Combined testing of copeptin and high-sensitivity cardiac troponin T at presentation in comparison to other algorithms for rapid rule-out of acute myocardial infarction. Int J Cardiol 2019;276:261–267. https://doi.org/10.1016/j.ijcard.2018.10.084
Reichlin T, Hochholzer W, Stelzig C, Laule K, Freidank H, Morgenthaler NG, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol 2009;54:60–68. https://doi.org/10.1016/j.jacc.2009.01.076
Stallone F, Schoenenberger AW, Puelacher C, Rubini Gimenez M, Walz B, Naduvilekoot Devasia A, et al. Incremental value of copeptin in suspected acute myocardial infarction very early after symptom onset. Eur Heart J Acute Cardiovasc Care 2016;5:407–415. https://doi.org/10.1177/2048872616641289
Vargas KG, Kassem M, Mueller C, Wojta J, Huber K. Copeptin for the early rule-out of non-ST-elevation myocardial infarction. Int J Cardiol 2016;223:797–804. https://doi.org/10.1016/j.ijcard.2016.08.304
Wildi K, Zellweger C, Twerenbold R, Jaeger C, Reichlin T, Haaf P, et al. Incremental value of copeptin to highly sensitive cardiac troponin I for rapid rule-out of myocardial infarction. Int J Cardiol 2015;190:170–176. https://doi.org/10.1016/j.ijcard.2015.04.133
Zellweger C, Wildi K, Twerenbold R, Reichlin T, Naduvilekoot A, Neuhaus JD, et al. Use of copeptin and high-sensitive cardiac troponin T for diagnosis and prognosis in patients with diabetes mellitus and suspected acute myocardial infarction. Int J Cardiol 2015;190:190–197. https://doi.org/10.1016/j.ijcard.2015.04.134
Restan IZ, Sanchez AY, Steiro OT, Lopez-Ayala P, Tjora HL, Langørgen J, et al. Adding stress biomarkers to high-sensitivity cardiac troponin for rapid non-ST-elevation myocardial infarction rule-out protocols. Eur Heart J Acute Cardiovasc Care 2022;11: 201–212. https://doi.org/10.1093/ehjacc/zuab124
Dedic A, Lubbers MM, Schaap J, Lammers J, Lamfers EJ, Rensing BJ, et al. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins: randomized multicenter study. J Am Coll Cardiol 2016;67:16–26. https://doi.org/10.1016/j.jacc.2015.10.045
Hoffmann U, Truong QA, Schoenfeld DA, Chou ET, Woodard PK, Nagurney JT, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med 2012;367:299–308. https://doi.org/10.1056/NEJMoa1201161
Gray AJ, Roobottom C, Smith JE, Goodacre S, Oatey K, O’Brien R, et al. Early computed tomography coronary angiography in patients with suspected acute coronary syndrome: randomised controlled trial. BMJ 2021;374:n2106. https://doi.org/10.1136/bmj.n2106
Lee KK, Bularga A, O’Brien R, Ferry AV, Doudesis D, Fujisawa T, et al. Troponin-guided coronary computed tomographic angiography after exclusion of myocardial infarction. J Am Coll Cardiol 2021;78:1407–1417. https://doi.org/10.1016/j.jacc.2021.07.055
Kofoed KF, Engstrom T, Sigvardsen PE, Linde JJ, Torp-Pedersen C, de Knegt M, et al. Prognostic value of coronary CT angiography in patients with non-ST-segment elevation acute coronary syndromes. J Am Coll Cardiol 2021;77:1044–1052. https://doi.org/10.1016/j.jacc.2020.12.037
Linde JJ, Hove JD, Sorgaard M, Kelbæk H, Jensen GB, Kühl JT, et al. Long-term clinical impact of coronary CT angiography in patients with recent acute-onset chest pain: the randomized controlled CATCH trial. JACC Cardiovasc Imaging 2015;8:1404–1413. https://doi.org/10.1016/j.jcmg.2015.07.015
Linde JJ, Kelbæk H, Hansen TF, Sigvardsen PE, Torp-Pedersen C, Bech J, et al. Coronary CT angiography in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol 2020;75:453–463. https://doi.org/10.1016/j.jacc.2019.12.012
Samad Z, Hakeem A, Mahmood SS, Pieper K, Patel MR, Simel DL, et al. A meta-analysis and systematic review of computed tomography angiography as a diagnostic triage tool for patients with chest pain presenting to the emergency department. J Nucl Cardiol 2012;19:364–376. https://doi.org/10.1007/s12350-012-9520-2
Litt HI, Gatsonis C, Snyder B, Singh H, Miller CD, Entrikin DW, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med 2012;366:1393–1403. https://doi.org/10.1056/NEJMoa1201163
Hulten E, Pickett C, Bittencourt MS, Villines TC, Petrillo S, Di Carli MF, et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol 2013;61:880–892. https://doi.org/10.1016/j.jacc.2012.11.061
Gaibazzi N, Reverberi C, Badano L. Usefulness of contrast stress-echocardiography or exercise-electrocardiography to predict long-term acute coronary syndromes in patients presenting with chest pain without electrocardiographic abnormalities or 12-hour troponin elevation. Am J Cardiol 2011;107:161–167. https://doi.org/10.1016/j.amjcard.2010.08.066
Lim SH, Anantharaman V, Sundram F, Chan ES-Y, Ang ES, Yo SL, et al. Stress myocardial perfusion imaging for the evaluation and triage of chest pain in the emergency department: a randomized controlled trial. J Nucl Cardiol 2013;20:1002–1012. https://doi.org/10.1007/s12350-013-9736-9
Nabi F, Kassi M, Muhyieddeen K, Chang SM, Xu J, Peterson LE, et al. Optimizing evaluation of patients with low-to-intermediate-risk acute chest pain: a randomized study comparing stress myocardial perfusion tomography incorporating stress-only imaging versus cardiac CT. J Nucl Med 2016;57:378–384. https://doi.org/10.2967/jnumed.115. 166595
Jackson AM, Zhang R, Findlay I, Robertson K, Lindsay M, Morris T, et al. Healthcare disparities for women hospitalized with myocardial infarction and angina. Eur Heart J Qual Care Clin Outcomes 2020;6:156–165. https://doi.org/10.1093/ehjqcco/qcz040
Terkelsen CJ, Sørensen JT, Maeng M, Jensen LO, Tilsted HH, Trautner S, et al. System delay and mortality among patients with STEMI treated with primary percutaneous coronary intervention. JAMA 2010;304:763–771. https://doi.org/10.1001/jama.2010. 1139
Jortveit J, Pripp AH, Halvorsen S. Outcomes after delayed primary percutaneous coronary intervention vs. pharmaco-invasive strategy in ST-segment elevation myocardial infarction in Norway. Eur Heart J Cardiovasc Pharmacother 2022;8:442–451. https://doi.org/10.1093/ehjcvp/pvab041
Larsen AI, Løland KH, Hovland S, Bleie Ø, Eek C, Fossum E, et al. Guideline-recommended time less than 90 minutes from ECG to primary percutaneous coronary intervention for ST-segment-elevation myocardial infarction is associated with major survival benefits, especially in octogenarians: a contemporary report in 11 226 patients from NORIC. J Am Heart Assoc 2022;11:e024849. https://doi.org/10.1161/jaha.122.024849
Fordyce CB, Al-Khalidi HR, Jollis JG, Roettig ML, Gu J, Bagai A, et al. Association of rapid care process implementation on reperfusion times across multiple ST-segment-elevation myocardial infarction networks. Circ Cardiovasc Interv 2017; 10:e004061. https://doi.org/10.1161/circinterventions.116.004061
Stowens JC, Sonnad SS, Rosenbaum RA. Using EMS dispatch to trigger STEMI alerts decreases door-to-balloon times. West J Emerg Med 2015;16:472–480. https://doi.org/10.5811/westjem.2015.4.24248
Squire BT, Tamayo-Sarver JH, Rashi P, Koenig W, Niemann JT. Effect of prehospital cardiac catheterization lab activation on door-to-balloon time, mortality, and false-positive activation. Prehosp Emerg Care 2014;18:1–8. https://doi.org/10.3109/10903127.2013.836263
Shavadia JS, Roe MT, Chen AY, Lucas J, Fanaroff AC, Kochar A, et al. Association between cardiac catheterization laboratory pre-activation and reperfusion timing metrics and outcomes in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a report from the ACTION registry. JACC Cardiovasc Interv 2018;11:1837–1847. https://doi.org/10.1016/j.jcin.2018.07.020
Kontos MC, Gunderson MR, Zegre-Hemsey JK, Lange DC, French WJ, Henry TD, et al. Prehospital activation of hospital resources (PreAct) ST-segment-elevation myocardial infarction (STEMI): a standardized approach to prehospital activation and direct to the catheterization laboratory for STEMI recommendations from the American Heart Association’s mission: lifeline program. J Am Heart Assoc 2020;9:e011963. https://doi.org/10.1161/jaha.119.011963
Bagai A, Jollis JG, Dauerman HL, Peng SA, Rokos IC, Bates ER, et al. Emergency department bypass for ST-segment-elevation myocardial infarction patients identified with a prehospital electrocardiogram: a report from the American Heart Association Mission: Lifeline program. Circulation 2013;128:352–359. https://doi.org/10.1161/circulationaha.113.002339
Scholz KH, Friede T, Meyer T, Jacobshagen C, Lengenfelder B, Jung J, et al. Prognostic significance of emergency department bypass in stable and unstable patients with ST-segment elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care 2020; 9:34–44. https://doi.org/10.1177/2048872618813907
Meisel SR, Kleiner-Shochat M, Abu-Fanne R, Frimerman A, Danon A, Minha S, et al. Direct admission of patients with ST-segment-elevation myocardial infarction to the catheterization laboratory shortens pain-to-balloon and door-to-balloon time intervals but only the pain-to-balloon interval impacts short- and long-term mortality. J Am Heart Assoc 2021;10:e018343. https://doi.org/10.1161/jaha.120.018343
Wang TY, Nallamothu BK, Krumholz HM, Li S, Roe MT, Jollis JG, et al. Association of door-in to door-out time with reperfusion delays and outcomes among patients transferred for primary percutaneous coronary intervention. JAMA 2011;305:2540–2547. https://doi.org/10.1001/jama.2011.862
Huber K, De Caterina R, Kristensen SD, Verheugt FWA, Montalescot G, Maestro LB, et al. Pre-hospital reperfusion therapy: a strategy to improve therapeutic outcome in patients with ST-elevation myocardial infarction. Eur Heart J 2005;26:2063–2074. https://doi.org/10.1093/eurheartj/ehi413
Welsh RC, Chang W, Goldstein P, Adgey J, Granger CB, Verheugt FW, et al. Time to treatment and the impact of a physician on prehospital management of acute ST elevation myocardial infarction: insights from the ASSENT-3 PLUS trial. Heart 2005;91: 1400–1406. https://doi.org/10.1136/hrt.2004.054510
Jollis JG, Al-Khalidi HR, Roettig ML, Berger PB, Corbett CC, Doerfler SM, et al. Impact of regionalization of ST-segment-elevation myocardial infarction care on treatment times and outcomes for emergency medical services-transported patients presenting to hospitals with percutaneous coronary intervention: mission: lifeline accelerator-2. Circulation 2018;137:376–387. https://doi.org/10.1161/circulationaha.117.032446
Fosbol EL, Granger CB, Jollis JG, Monk L, Lin L, Lytle BL, et al. The impact of a statewide pre-hospital STEMI strategy to bypass hospitals without percutaneous coronary intervention capability on treatment times. Circulation 2013;127:604–612. https://doi.org/10.1161/circulationaha.112.118463
Kalla K, Christ G, Karnik R, Malzer R, Norman G, Prachar H, et al. Implementation of guidelines improves the standard of care: the Viennese registry on reperfusion strategies in ST-elevation myocardial infarction (Vienna STEMI registry). Circulation 2006; 113:2398–2405. https://doi.org/10.1161/circulationaha.105.586198
Henry TD, Sharkey SW, Burke MN, Chavez IJ, Graham KJ, Henry CR, et al. A regional system to provide timely access to percutaneous coronary intervention for ST-elevation myocardial infarction. Circulation 2007;116:721–728. https://doi.org/10.1161/circulationaha.107.694141
Le May MR, So DY, Dionne R, Glover CA, Froeschl MPV, Wells GA, et al. A citywide protocol for primary PCI in ST-segment elevation myocardial infarction. N Engl J Med 2008;358:231–240. https://doi.org/10.1056/NEJMoa073102
Hofmann R, James SK, Jernberg T, Lindahl B, Erlinge D, Witt N, et al. Oxygen therapy in suspected acute myocardial infarction. N Engl J Med 2017;377:1240–1249. https://doi.org/10.1056/NEJMoa1706222
Stewart RAH, Jones P, Dicker B, Jiang Y, Smith T, Swain A, et al. High flow oxygen and risk of mortality in patients with a suspected acute coronary syndrome: pragmatic, cluster randomised, crossover trial. BMJ 2021;372:n355. https://doi.org/10.1136/bmj. n355
Henrikson CA, Howell EE, Bush DE, Miles JS, Meininger GR, Friedlander T, et al. Chest pain relief by nitroglycerin does not predict active coronary artery disease. Ann Intern Med 2003;139:979–986. https://doi.org/10.7326/0003-4819-139-12-200312160-00007
Charpentier S, Galinski M, Bounes V, Ricard-Hibon A, El-Khoury C, Elbaz M, et al. Nitrous oxide/oxygen plus acetaminophen versus morphine in ST elevation myocardial infarction: open-label, cluster-randomized, non-inferiority study. Scand J Trauma Resusc Emerg Med 2020;28:36. https://doi.org/10.1186/s13049-020-00731-y
Silvain J, Storey RF, Cayla G, Esteve J-B, Dillinger J-G, Rousseau H, et al. P2Y12 receptor inhibition and effect of morphine in patients undergoing primary PCI for ST-segment elevation myocardial infarction. The PRIVATE-ATLANTIC study. Thromb Haemost 2016;116:369–378. https://doi.org/10.1160/th15-12-0944
Parodi G, Bellandi B, Xanthopoulou I, Capranzano P, Capodanno D, Valenti R, et al. Morphine is associated with a delayed activity of oral antiplatelet agents in patients with ST-elevation acute myocardial infarction undergoing primary percutaneous coronary intervention. Circ Cardiovasc Interv 2015;8:e001593. https://doi.org/10.1161/circinterventions.114.001593
Saad M, Meyer-Saraei R, de Waha-Thiele S, Stiermaier T, Graf T, Fuernau G, et al. Impact of morphine treatment with and without metoclopramide coadministration on ticagrelor-induced platelet inhibition in acute myocardial infarction: the randomized MonAMI trial. Circulation 2020;141:1354–1356. https://doi.org/10.1161/circulationaha.119.042816
Stiermaier T, Schaefer P, Meyer-Saraei R, Saad M, de Waha-Thiele S, Pöss J, et al. Impact of morphine treatment with and without metoclopramide coadministration on myocardial and microvascular injury in acute myocardial infarction: insights from the randomized MonAMI trial. J Am Heart Assoc 2021;10:e018881. https://doi.org/10.1161/jaha.120.018881
Kubica J, Adamski P, Ostrowska M, Sikora J, Kubica JM, Sroka WD, et al. Morphine delays and attenuates ticagrelor exposure and action in patients with myocardial infarction: the randomized, double-blind, placebo-controlled IMPRESSION trial. Eur Heart J 2016;37:245–252. https://doi.org/10.1093/eurheartj/ehv547
Zhang Y, Wang N, Gu Q. Effects of morphine on P2Y(12) platelet inhibitors in patients with acute myocardial infarction: a meta-analysis. Am J Emerg Med 2021;41:219–228. https://doi.org/10.1016/j.ajem.2020.11.003
Furtado RHM, Nicolau JC, Guo J, Im K, White JA, Sabatine MS, et al. Morphine and cardiovascular outcomes among patients with non-ST-segment elevation acute coronary syndromes undergoing coronary angiography. J Am Coll Cardiol 2020;75:289–300. https://doi.org/10.1016/j.jacc.2019.11.035
Kubica A, Kosobucka A, Niezgoda P, Adamski P, Buszko K, Lesiak M, et al. ANalgesic Efficacy and safety of MOrphiNe versus methoxyflurane in patients with acute myocardial infarction: the rationale and design of the ANEMON-SIRIO 3 study: a multicentre, open-label, phase II, randomised clinical trial. BMJ Open 2021;11:e043330. https://doi.org/10.1136/bmjopen-2020-043330
Batchelor R, Liu DH, Bloom J, Noaman S, Chan W. Association of periprocedural intravenous morphine use on clinical outcomes in ST-elevation myocardial infarction (STEMI) treated by primary percutaneous coronary intervention: systematic review and meta-analysis. Catheter Cardiovasc Interv 2020;96:76–88. https://doi.org/10.1002/ccd.28561
Bonin M, Mewton N, Roubille F, Morel O, Cayla G, Angoulvant D, et al. Effect and safety of morphine use in acute anterior ST-segment elevation myocardial infarction. J Am Heart Assoc 2018;7:e006833. https://doi.org/10.1161/jaha.117.006833
Clemente-Moragón A, Gómez M, Villena-Gutiérrez R, Lalama DV, García-Prieto J, Martínez F, et al. Metoprolol exerts a non-class effect against ischaemia-reperfusion injury by abrogating exacerbated inflammation. Eur Heart J 2020;41:4425–4440. https://doi.org/10.1093/eurheartj/ehaa733
Ibanez B, Macaya C, Sánchez-Brunete V, Pizarro G, Fernández-Friera L, Mateos A, et al. Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARD-CNIC) trial. Circulation 2013;128:1495–1503. https://doi.org/10.1161/circulationaha.113. 003653
Roolvink V, Ibáñez B, Ottervanger JP, Pizarro G, van Royen N, Mateos A, et al. Early intravenous beta-blockers in patients with ST-segment elevation myocardial infarction before primary percutaneous coronary intervention. J Am Coll Cardiol 2016;67: 2705–2715. https://doi.org/10.1016/j.jacc.2016.03.522
Pizarro G, Fernández-Friera L, Fuster V, Fernández-Jiménez R, García-Ruiz JM, García-Álvarez A, et al. Long-term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial (effect of metoprolol in cardioprotection during an acute myocardial infarction). J Am Coll Cardiol 2014;63:2356–2362. https://doi.org/10.1016/j.jacc.2014.03.014
García-Ruiz JM, Fernández-Jiménez R, García-Alvarez A, Pizarro G, Galán-Arriola C, Fernández-Friera L, et al. Impact of the timing of metoprolol administration during STEMI on infarct size and ventricular function. J Am Coll Cardiol 2016;67:2093–2104. https://doi.org/10.1016/j.jacc.2016.02.050
Hoedemaker NP, Roolvink V, de Winter RJ, van Royen N, Fuster V, García-Ruiz JM, et al. Early intravenous beta-blockers in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: a patient-pooled meta-analysis of randomized clinical trials. Eur Heart J Acute Cardiovasc Care 2020;9:469–477. https://doi.org/10.1177/2048872619830609
Sterling LH, Filion KB, Atallah R, Reynier P, Eisenberg MJ. Intravenous beta-blockers in ST-segment elevation myocardial infarction: a systematic review and meta-analysis. Int J Cardiol 2017;228:295–302. https://doi.org/10.1016/j.ijcard.2016.11.133
Chatterjee S, Chaudhuri D, Vedanthan R, Fuster V, Ibanez B, Bangalore S, et al. Early intravenous beta-blockers in patients with acute coronary syndrome–a meta-analysis of randomized trials. Int J Cardiol 2013;168:915–921. https://doi.org/10.1016/j.ijcard.2012.10.050
Elgendy IY, Elgendy AY, Mahmoud AN, Mansoor H, Mojadidi MK, Bavry AA, et al. Intravenous β-blockers for patients undergoing primary percutaneous coronary intervention: a meta-analysis of randomized trials. Int J Cardiol 2016;223:891–897. https://doi.org/10.1016/j.ijcard.2016.08.293
García-Prieto J, Villena-Gutiérrez R, Gómez M, Bernardo E, Pun-García A, García-Lunar I, et al. Neutrophil stunning by metoprolol reduces infarct size. Nat Commun 2017;8:14780. https://doi.org/10.1038/ncomms14780
Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray JE, et al. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation 2015;131:2143–2150. https://doi.org/10.1161/circulationaha.114.014494
Widimsky P, Wijns W, Fajadet J, de Belder M, Knot J, Aaberge L, et al. Reperfusion therapy for ST elevation acute myocardial infarction in Europe: description of the current situation in 30 countries. Eur Heart J 2010;31:943–957. https://doi.org/10.1093/eurheartj/ehp492
Hall M, Laut K, Dondo TB, Alabas OA, Brogan RA, Gutacker N, et al. Patient and hospital determinants of primary percutaneous coronary intervention in England, 2003–2013. Heart 2016;102:313–319. https://doi.org/10.1136/heartjnl-2015-308616
Widimsky P, Fajadet J, Danchin N, Wijns W. “Stent 4 Life” targeting PCI at all who will benefit the most. A joint project between EAPCI, Euro-PCR, EUCOMED and the ESC Working Group on Acute Cardiac Care. EuroIntervention 2009;4:555–557. doi: doi:10. 4244/EIJV4I5A94
Pinto DS, Kirtane AJ, Nallamothu BK, Murphy SA, Cohen DJ, Laham RJ, et al. Hospital delays in reperfusion for ST-elevation myocardial infarction: implications when selecting a reperfusion strategy. Circulation 2006;114:2019–2025. https://doi.org/10.1161/circulationaha.106.638353
Steg PG, Cambou JP, Goldstein P, Durand E, Sauval P, Kadri Z, et al. Bypassing the emergency room reduces delays and mortality in ST elevation myocardial infarction: the USIC 2000 registry. Heart 2006;92:1378–1383. https://doi.org/10.1136/hrt.2006. 101972
Baran KW, Kamrowski KA, Westwater JJ, Tschida VH, Alexander CF, Beahrs MM, et al. Very rapid treatment of ST-segment-elevation myocardial infarction: utilizing prehospital electrocardiograms to bypass the emergency department. Circ Cardiovasc Qual Outcomes 2010;3:431–437. https://doi.org/10.1161/circoutcomes.110.942631
Huynh T, Perron S, O’Loughlin J, Joseph L, Labrecque M, Tu JV, et al. Comparison of primary percutaneous coronary intervention and fibrinolytic therapy in ST-segment-elevation myocardial infarction: Bayesian hierarchical meta-analyses of randomized controlled trials and observational studies. Circulation 2009;119: 3101–3109. https://doi.org/10.1161/circulationaha.108.793745
Nallamothu BK, Bates ER. Percutaneous coronary intervention versus fibrinolytic therapy in acute myocardial infarction: is timing (almost) everything? Am J Cardiol 2003;92: 824–826. https://doi.org/10.1016/s0002-9149(03)00891-9
Betriu A, Masotti M. Comparison of mortality rates in acute myocardial infarction treated by percutaneous coronary intervention versus fibrinolysis. Am J Cardiol 2005;95: 100–101. https://doi.org/10.1016/j.amjcard.2004.08.069
Boersma E. Does time matter? A pooled analysis of randomized clinical trials comparing primary percutaneous coronary intervention and in-hospital fibrinolysis in acute myocardial infarction patients. Eur Heart J 2006;27:779–788. https://doi.org/10.1093/eurheartj/ehi810
Pinto DS, Frederick PD, Chakrabarti AK, Kirtane AJ, Ullman E, Dejam A, et al. Benefit of transferring ST-segment-elevation myocardial infarction patients for percutaneous coronary intervention compared with administration of onsite fibrinolytic declines as delays increase. Circulation 2011;124:2512–2521. https://doi.org/10.1161/circulationaha.111.018549
Armstrong PW, Gershlick AH, Goldstein P, Wilcox R, Danays T, Lambert Y, et al. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction. N Engl J Med 2013;368:1379–1387. https://doi.org/10.1056/NEJMoa1301092
Gershlick AH, Stephens-Lloyd A, Hughes S, Abrams KR, Stevens SE, Uren NG, et al. Rescue angioplasty after failed thrombolytic therapy for acute myocardial infarction. N Engl J Med 2005;353:2758–2768. https://doi.org/10.1056/NEJMoa050849
Cantor WJ, Fitchett D, Borgundvaag B, Ducas J, Heffernan M, Cohen EA, et al. Routine early angioplasty after fibrinolysis for acute myocardial infarction. N Engl J Med 2009; 360:2705–2718. https://doi.org/10.1056/NEJMoa0808276
Wijeysundera HC, Vijayaraghavan R, Nallamothu BK, Foody JoAnne M, Krumholz HM, Phillips CO, et al. Rescue angioplasty or repeat fibrinolysis after failed fibrinolytic therapy for ST-segment myocardial infarction: a meta-analysis of randomized trials. J Am Coll Cardiol 2007;49:422–430. https://doi.org/10.1016/j.jacc.2006.09.033
Sutton AG, Campbell PG, Graham R, Price DJA, Gray JC, Grech ED, et al. A randomized trial of rescue angioplasty versus a conservative approach for failed fibrinolysis in ST-segment elevation myocardial infarction: the Middlesbrough Early Revascularization to Limit INfarction (MERLIN) trial. J Am Coll Cardiol 2004;44: 287–296. https://doi.org/10.1016/j.jacc.2003.12.059
Schömig A, Mehilli J, Antoniucci D, Ndrepepa G, Markwardt C, Di Pede F, et al. Mechanical reperfusion in patients with acute myocardial infarction presenting more than 12 hours from symptom onset: a randomized controlled trial. JAMA 2005;293: 2865–2872. https://doi.org/10.1001/jama.293.23.2865
Ndrepepa G, Kastrati A, Mehilli J, Antoniucci D, Schömig A. Mechanical reperfusion and long-term mortality in patients with acute myocardial infarction presenting 12 to 48 hours from onset of symptoms. JAMA 2009;301:487–488. https://doi.org/10.1001/jama.2009.32
Bouisset F, Gerbaud E, Bataille V, Coste P, Puymirat E, Belle L, et al. Percutaneous myocardial revascularization in late-presenting patients with STEMI. J Am Coll Cardiol 2021; 78:1291–1305. https://doi.org/10.1016/j.jacc.2021.07.039
Hochman JS, Lamas GA, Buller CE, Dzavik V, Reynolds HR, Abramsky SJ, et al. Coronary intervention for persistent occlusion after myocardial infarction. N Engl J Med 2006;355:2395–2407. https://doi.org/10.1056/NEJMoa066139
Menon V, Pearte CA, Buller CE, Steg PhG, Forman SA, White HD, et al. Lack of benefit from percutaneous intervention of persistently occluded infarct arteries after the acute phase of myocardial infarction is time independent: insights from Occluded Artery Trial. Eur Heart J 2009;30:183–191. https://doi.org/10.1093/eurheartj/ehn486
Ioannidis JPA, Katritsis DG. Percutaneous coronary intervention for late reperfusion after myocardial infarction in stable patients. Am Heart J 2007;154:1065–1071. https://doi.org/10.1016/j.ahj.2007.07.049
Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020;41:407–477. https://doi.org/10.1093/eurheartj/ehz425
O’Donoghue M, Boden WE, Braunwald E, Cannon CP, Clayton TC, de Winter RJ, et al. Early invasive vs conservative treatment strategies in women and men with unstable angina and non-ST-segment elevation myocardial infarction: a meta-analysis. JAMA 2008;300:71–80. https://doi.org/10.1001/jama.300.1.71
Mehta SR, Cannon CP, Fox KAA, Wallentin L, Boden WE, Spacek R, et al. Routine vs selective invasive strategies in patients with acute coronary syndromes: a collaborative meta-analysis of randomized trials. JAMA 2005;293:2908–2917. https://doi.org/10.1001/jama.293.23.2908
Fox KA, Clayton TC, Damman P, Pocock SJ, de Winter RJ, Tijssen JGP, et al. Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data. J Am Coll Cardiol 2010;55:2435–2445. https://doi.org/10.1016/j.jacc.2010.03. 007
Fanning JP, Nyong J, Scott IA, Aroney CN, Walters DL. Routine invasive strategies versus selective invasive strategies for unstable angina and non-ST elevation myocardial infarction in the stent era. Cochrane Database Syst Rev 2016;2016:CD004815. https://doi.org/10.1002/14651858.CD004815.pub4
Elgendy IY, Mahmoud AN, Wen X, Bavry AA. Meta-analysis of randomized trials of long-term all-cause mortality in patients with non-ST-elevation acute coronary syndrome managed with routine invasive versus selective invasive strategies. Am J Cardiol 2017;119:560–564. https://doi.org/10.1016/j.amjcard.2016.11.005
Navarese EP, Gurbel PA, Andreotti F, Tantry U, Jeong Y-H, Kozinski M, et al. Optimal timing of coronary invasive strategy in non-ST-segment elevation acute coronary syndromes: a systematic review and meta-analysis. Ann Intern Med 2013;158:261–270. https://doi.org/10.7326/0003-4819-158-4-201302190-00006
Jobs A, Mehta SR, Montalescot G, Vicaut E, van’t Hof AWJ, Badings EA, et al. Optimal timing of an invasive strategy in patients with non-ST-elevation acute coronary syndrome: a meta-analysis of randomised trials. Lancet 2017;390:737–746. https://doi.org/10.1016/s0140-6736(17)31490-3
Kite TA, Kurmani SA, Bountziouka V, Cooper NJ, Lock ST, Gale CP, et al. Timing of invasive strategy in non-ST-elevation acute coronary syndrome: a meta-analysis of randomized controlled trials. Eur Heart J 2022;43:3148–3161. https://doi.org/10.1093/eurheartj/ehac213
Eggers KM, James SK, Jernberg T, Lindahl B. Timing of coronary angiography in patients with non-ST-elevation acute coronary syndrome: long-term clinical outcomes from the nationwide SWEDEHEART registry. EuroIntervention 2022;18:582–589. https://doi.org/10.4244/eij-d-21-00982
Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Lancet 1994;343:311–322. https://doi.org/10.1016/ S0140-6736(94)91161-4
Morrison LJ, Verbeek PR, McDonald AC, Sawadsky BV, Cook DJ. Mortality and prehospital thrombolysis for acute myocardial infarction: a meta-analysis. JAMA 2000; 283:2686–2692. https://doi.org/10.1001/jama.283.20.2686
Steg PG, Bonnefoy E, Chabaud S, Lapostolle F, Dubien P-Y, Cristofini P, et al. Impact of time to treatment on mortality after prehospital fibrinolysis or primary angioplasty: data from the CAPTIM randomized clinical trial. Circulation 2003;108:2851–2856. https://doi.org/10.1161/01.Cir.0000103122.10021.F2
ASSENT-4 PCI Investigators. Primary versus tenecteplase-facilitated percutaneous coronary intervention in patients with ST-segment elevation acute myocardial infarction (ASSENT-4 PCI): randomised trial. Lancet 2006;367:569–578. https://doi.org/10.1016/s0140-6736(06)68147-6
Fazel R, Joseph TI, Sankardas MA, Pinto DS, Yeh RW, Kumbhani DJ, et al. Comparison of reperfusion strategies for ST-segment-elevation myocardial infarction: a multivariate network meta-analysis. J Am Heart Assoc 2020;9:e015186. https://doi.org/10.1161/jaha.119.015186
Sinnaeve PR, Armstrong PW, Gershlick AH, Goldstein P, Wilcox R, Lambert Y, et al. ST-segment-elevation myocardial infarction patients randomized to a pharmaco-invasive strategy or primary percutaneous coronary intervention: strategic Reperfusion Early After Myocardial Infarction (STREAM) 1-year mortality follow-up. Circulation 2014;130:1139–1145. https://doi.org/10.1161/circulationaha.114.009570
Arbel Y, Ko DT, Yan AT, Cantor WJ, Bagai A, Koh M, et al. Long-term follow-up of the trial of routine angioplasty and stenting after fibrinolysis to enhance reperfusion in acute myocardial infarction (TRANSFER-AMI). Can J Cardiol 2018;34:736–743. https://doi.org/10.1016/j.cjca.2018.02.005
Di Mario C, Dudek D, Piscione F, Mielecki W, Savonitto S, Murena E, et al. Immediate angioplasty versus standard therapy with rescue angioplasty after thrombolysis in the Combined Abciximab REteplase Stent Study in Acute Myocardial Infarction (CARESS-in-AMI): an open, prospective, randomised, multicentre trial. Lancet 2008; 371:559–568. https://doi.org/10.1016/s0140-6736(08)60268-8
Bøhmer E, Hoffmann P, Abdelnoor M, Arnesen H, Halvorsen S. Efficacy and safety of immediate angioplasty versus ischemia-guided management after thrombolysis in acute myocardial infarction in areas with very long transfer distances results of the NORDISTEMI (NORwegian study on DIstrict treatment of ST-elevation myocardial infarction). J Am Coll Cardiol 2010;55:102–110. https://doi.org/10.1016/j.jacc.2009.08. 007
Scheller B, Hennen B, Hammer B, Walle J, Hofer C, Hilpert V, et al. Beneficial effects of immediate stenting after thrombolysis in acute myocardial infarction. J Am Coll Cardiol 2003;42:634–641. https://doi.org/10.1016/s0735-1097(03)00763-0
Le May MR, Wells GA, Labinaz M, Davies RF, Turek M, Leddy D, et al. Combined angioplasty and pharmacological intervention versus thrombolysis alone in acute myocardial infarction (CAPITAL AMI study). J Am Coll Cardiol 2005;46:417–424. https://doi.org/10.1016/j.jacc.2005.04.042
Abdel-Qadir H, Yan AT, Tan M, Borgia F, Piscione F, Di Mario C, et al. Consistency of benefit from an early invasive strategy after fibrinolysis: a patient-level meta-analysis. Heart 2015;101:1554–1561. https://doi.org/10.1136/heartjnl-2015-307815
Madan M, Halvorsen S, Di Mario C, Tan M, Westerhout CM, Cantor WJ, et al. Relationship between time to invasive assessment and clinical outcomes of patients undergoing an early invasive strategy after fibrinolysis for ST-segment elevation myocardial infarction: a patient-level analysis of the randomized early routine invasive clinical trials. JACC Cardiovasc Interv 2015;8:166–174. https://doi.org/10.1016/j.jcin.2014.09. 005
Andersen HR, Nielsen TT, Rasmussen K, Thuesen L, Kelbaek H, Thayssen P, et al. A comparison of coronary angioplasty with fibrinolytic therapy in acute myocardial infarction. N Engl J Med 2003;349:733–742. https://doi.org/10.1056/NEJMoa025142
Dalby M, Bouzamondo A, Lechat P, Montalescot G. Transfer for primary angioplasty versus immediate thrombolysis in acute myocardial infarction: a meta-analysis. Circulation 2003;108:1809–1814. https://doi.org/10.1161/01.Cir.0000091088.63921. 8c
Gierlotka M, Gasior M, Wilczek K, Hawranek M, Szkodzinski J, Paczek P, et al. Reperfusion by primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction within 12 to 24 hours of the onset of symptoms (from a prospective national observational study [PL-ACS]). Am J Cardiol 2011;107:501–508. https://doi.org/10.1016/j.amjcard.2010.10.008
Busk M, Kaltoft A, Nielsen SS, Bottcher M, Rehling M, Thuesen L, et al. Infarct size and myocardial salvage after primary angioplasty in patients presenting with symptoms for<12 h vs. 12–72 h. Eur Heart J 2009;30:1322–1330. https://doi.org/10.1093/eurheartj/ehp113
Borgia F, Goodman SG, Halvorsen S, Cantor WJ, Piscione F, Le May MR, et al. Early routine percutaneous coronary intervention after fibrinolysis vs. standard therapy in ST-segment elevation myocardial infarction: a meta-analysis. Eur Heart J 2010;31: 2156–2169. https://doi.org/10.1093/eurheartj/ehq204
D’Souza SP, Mamas MA, Fraser DG, Fath-Ordoubadi F. Routine early coronary angioplasty versus ischaemia-guided angioplasty after thrombolysis in acute ST-elevation myocardial infarction: a meta-analysis. Eur Heart J 2011;32:972–982. https://doi.org/10.1093/eurheartj/ehq398
Fernandez-Avilés F, Alonso JJ, Castro-Beiras A, Vázquez N, Blanco J, Alonso-Briales J, et al. Routine invasive strategy within 24 hours of thrombolysis versus ischaemia-guided conservative approach for acute myocardial infarction with ST-segment elevation (GRACIA-1): a randomised controlled trial. Lancet 2004;364:1045–1053. https://doi.org/10.1016/s0140-6736(04)17059-1
Hochman JS, Sleeper LA, White HD, Dzavik V, Wong SC, Menon V, et al. One-year survival following early revascularization for cardiogenic shock. JAMA 2001;285: 190–192. https://doi.org/10.1001/jama.285.2.190
Lemkes JS, Janssens GN, van der Hoeven NW, van de Ven PM, Marques KMJ, Nap A, et al. Timing of revascularization in patients with transient ST-segment elevation myocardial infarction: a randomized clinical trial. Eur Heart J 2019;40:283–291. https://doi.org/10.1093/eurheartj/ehy651
Mehta SR, Granger CB, Boden WE, Steg PG, Bassand J-P, Faxon DP, et al. Early versus delayed invasive intervention in acute coronary syndromes. N Engl J Med 2009;360: 2165–2175. https://doi.org/10.1056/NEJMoa0807986
Kofoed KF, Kelbæk H, Hansen PR, Torp-Pedersen C, Høfsten D, Kløvgaard L, et al. Early versus standard care invasive examination and treatment of patients with non-ST-segment elevation acute coronary syndrome. Circulation 2018;138: 2741–2750. https://doi.org/10.1161/circulationaha.118.037152
Butt JH, Kofoed KF, Kelbæk H, Hansen PR, Torp-Pedersen C, Høfsten D, et al. Importance of risk assessment in timing of invasive coronary evaluation and treatment of patients with non-ST-segment-elevation acute coronary syndrome: insights from the VERDICT trial. J Am Heart Assoc 2021;10:e022333. https://doi.org/10.1161/jaha.121.022333
Barbarawi M, Kheiri B, Zayed Y, Barbarawi O, Chahine A, Haykal T, et al. Meta-analysis of optimal timing of coronary intervention in non-ST-elevation acute coronary syndrome. Catheter Cardiovasc Interv 2020;95:185–193. https://doi.org/10.1002/ccd. 28280
Vranckx P, White HD, Huang Z, Mahaffey KW, Armstrong PW, Van de Werf F, et al. Validation of BARC bleeding criteria in patients with acute coronary syndromes: the TRACER trial. J Am Coll Cardiol 2016;67:2135–2144. https://doi.org/10.1016/j.jacc.2016.02.056
Ndrepepa G, Berger PB, Mehilli J, Seyfarth M, Neumann F-J, Schömig A, et al. Periprocedural bleeding and 1-year outcome after percutaneous coronary interventions: appropriateness of including bleeding as a component of a quadruple end point. J Am Coll Cardiol 2008;51:690–697. https://doi.org/10.1016/j.jacc.2007.10.040
Urban P, Mehran R, Colleran R, Angiolillo DJ, Byrne RA, Capodanno D, et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the Academic Research Consortium for High Bleeding Risk. Eur Heart J 2019;40:2632–2653. https://doi.org/10.1093/eurheartj/ehz372
Doomun D, Doomun I, Schukraft S, Arroyo D, Cook S, Huwyler T, et al. Ischemic and bleeding outcomes according to the academic research consortium high bleeding risk criteria in all comers treated by percutaneous coronary interventions. Front Cardiovasc Med 2021;8:620354. https://doi.org/10.3389/fcvm.2021.620354
Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy-I: prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 1994;308:81–106. https://doi.org/10.1136/bmj.308.6921.81
Valgimigli M, Bueno H, Byrne RA, Collet J-P, Costa F, Jeppsson A, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2018;39:213–260. https://doi.org/10.1093/eurheartj/ehx419
Jones WS, Mulder H, Wruck LM, Pencina MJ, Kripalani S, Muñoz D, et al. Comparative effectiveness of aspirin dosing in cardiovascular disease. N Engl J Med 2021;384: 1981–1990. https://doi.org/10.1056/NEJMoa2102137
Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009;361: 1045–1057. https://doi.org/10.1056/NEJMoa0904327
Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007;357:2001–2015. https://doi.org/10.1056/NEJMoa0706482
Aradi D, Kirtane A, Bonello L, Gurbel PA, Tantry US, Huber K, et al. Bleeding and stent thrombosis on P2Y12-inhibitors: collaborative analysis on the role of platelet reactivity for risk stratification after percutaneous coronary intervention. Eur Heart J 2015;36: 1762–1771. https://doi.org/10.1093/eurheartj/ehv104
Aradi D, Storey RF, Komócsi A, Trenk D, Gulba D, Kiss RG, et al. Expert position paper on the role of platelet function testing in patients undergoing percutaneous coronary intervention. Eur Heart J 2014;35:209–215. https://doi.org/10.1093/eurheartj/eht375
Gimbel M, Qaderdan K, Willemsen L, Hermanides R, Bergmeijer T, de Vrey E, et al. Clopidogrel versus ticagrelor or prasugrel in patients aged 70 years or older with non-ST-elevation acute coronary syndrome (POPular AGE): the randomised, open-label, non-inferiority trial. Lancet 2020;395:1374–1381. https://doi.org/10.1016/ s0140-6736(20)30325-1
Husted S, James S, Becker RC, Horrow J, Katus H, Storey RF, et al. Ticagrelor versus clopidogrel in elderly patients with acute coronary syndromes: a substudy from the prospective randomized PLATelet inhibition and patient Outcomes (PLATO) trial. Circ Cardiovasc Qual Outcomes 2012;5:680–688. https://doi.org/10.1161/circoutcomes.111.964395
Schüpke S, Neumann FJ, Menichelli M, Mayer K, Bernlochner I, Wöhrle J, et al. Ticagrelor or prasugrel in patients with acute coronary syndromes. N Engl J Med 2019;381:1524–1534. https://doi.org/10.1056/NEJMoa1908973
Montalescot G, van’t Hof AW, Lapostolle F, Silvain J, Lassen JF, Bolognese L, et al. Prehospital ticagrelor in ST-segment elevation myocardial infarction. N Engl J Med 2014;371:1016–1027. https://doi.org/10.1056/NEJMoa1407024
Koul S, Smith JG, Götberg M, Omerovic E, Alfredsson J, Venetsanos D, et al. No benefit of ticagrelor pretreatment compared with treatment during percutaneous coronary intervention in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Circ Cardiovasc Interv 2018;11: e005528. https://doi.org/10.1161/circinterventions.117.005528
Montalescot G, Bolognese L, Dudek D, Goldstein P, Hamm C, Tanguay J-F, et al. Pretreatment with prasugrel in non-ST-segment elevation acute coronary syndromes. N Engl J Med 2013;369:999–1010. https://doi.org/10.1056/NEJMoa1308075
Tarantini G, Mojoli M, Varbella F, Caporale R, Rigattieri S, Andò G, et al. Timing of oral P2Y(12) inhibitor administration in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol 2020;76:2450–2459. https://doi.org/10.1016/j.jacc.2020.08.053
Boersma E, Harrington RA, Moliterno DJ, White H, Théroux P, Van de Werf F, et al. Platelet glycoprotein IIb/IIIa inhibitors in acute coronary syndromes: a meta-analysis of all major randomised clinical trials. Lancet 2002;359:189–198. https://doi.org/10.1016/ s0140-6736(02)07442-1
Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2019;40:87–165. https://doi.org/10.1093/eurheartj/ehy394
Harrington RA, Stone GW, McNulty S, White HD, Lincoff AM, Gibson CM, et al. Platelet inhibition with cangrelor in patients undergoing PCI. N Engl J Med 2009; 361:2318–2329. https://doi.org/10.1056/NEJMoa0908628
Bhatt DL, Stone GW, Mahaffey KW, Gibson CM, Steg PG, Hamm CW, et al. Effect of platelet inhibition with cangrelor during PCI on ischemic events. N Engl J Med 2013; 368:1303–1313. https://doi.org/10.1056/NEJMoa1300815
Bhatt DL, Lincoff AM, Gibson CM, Stone GW, McNulty S, Montalescot G, et al. Intravenous platelet blockade with cangrelor during PCI. N Engl J Med 2009;361: 2330–2341. https://doi.org/10.1056/NEJMoa0908629
Steg PG, Bhatt DL, Hamm CW, Stone GW, Gibson CM, Mahaffey KW, et al. Effect of cangrelor on periprocedural outcomes in percutaneous coronary interventions: a pooled analysis of patient-level data. Lancet 2013;382:1981–1992. https://doi.org/10.1016/s0140-6736(13)61615-3
Eikelboom JW, Anand SS, Malmberg K, Weitz JI, Ginsberg JS, Yusuf S. Unfractionated heparin and low-molecular-weight heparin in acute coronary syndrome without ST elevation: a meta-analysis. Lancet 2000;355:1936–1942. https://doi.org/10.1016/ s0140-6736(00)02324-2
Ferguson JJ, Califf RM, Antman EM, Cohen M, Grines CL, Goodman S, et al. Enoxaparin vs unfractionated heparin in high-risk patients with non-ST-segment elevation acute coronary syndromes managed with an intended early invasive strategy: primary results of the SYNERGY randomized trial. JAMA 2004;292:45–54. https://doi.org/10.1001/jama.292.1.45
Cohen M, Mahaffey KW, Pieper K, Pollack CV, Antman EM, Hoekstra J, et al. A subgroup analysis of the impact of prerandomization antithrombin therapy on outcomes in the SYNERGY trial: enoxaparin versus unfractionated heparin in non-ST-segment elevation acute coronary syndromes. J Am Coll Cardiol 2006;48:1346–1354. https://doi.org/10.1016/j.jacc.2006.05.058
Montalescot G, Zeymer U, Silvain J, Boulanger B, Cohen M, Goldstein P, et al. Intravenous enoxaparin or unfractionated heparin in primary percutaneous coronary intervention for ST-elevation myocardial infarction: the international randomised open-label ATOLL trial. Lancet 2011;378:693–703. https://doi.org/10.1016/s0140-6736(11)60876-3
Li Y, Liang Z, Qin L, Wang M, Wang X, Zhang H, et al. Bivalirudin plus a high-dose infusion versus heparin monotherapy in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a randomised trial. Lancet 2022;400:1847–1857. https://doi.org/10.1016/s0140-6736(22)01999-7
Yusuf S, Mehta SR, Chrolavicius S, Cohen M, Grines CL, Goodman S, et al. Effects of fondaparinux on mortality and reinfarction in patients with acute ST-segment elevation myocardial infarction: the OASIS-6 randomized trial. JAMA 2006;295: 1519–1530. https://doi.org/10.1001/jama.295.13.joc60038
Silvain J, Beygui F, Barthélémy O, Pollack C, Cohen M, Zeymer U, et al. Efficacy and safety of enoxaparin versus unfractionated heparin during percutaneous coronary intervention: systematic review and meta-analysis. BMJ 2012;344:e553. https://doi.org/10.1136/bmj.e553
The Fifth Organization to Assess Strategies in Acute Ischemic Syndromes Investigators. Comparison of fondaparinux and enoxaparin in acute coronary syndromes. N Engl J Med 2006;354:1464–1476. https://doi.org/10.1056/NEJMoa055443
Mehta SR, Yusuf S, Peters RJ, Bertrand ME, Lewis BS, Natarajan MK, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 2001; 358:527–533. https://doi.org/10.1016/s0140-6736(01)05701-4
Palmerini T, Della Riva D, Benedetto U, Bacchi Reggiani L, Feres F, Abizaid A, et al. Three, six, or twelve months of dual antiplatelet therapy after DES implantation in patients with or without acute coronary syndromes: an individual patient data pairwise and network meta-analysis of six randomized trials and 11 473 patients. Eur Heart J 2017;38:1034–1043. https://doi.org/10.1093/eurheartj/ehw627
Hahn J-Y, Song YB, Oh J-H, Cho D-K, Lee JB, Doh J-H, et al. 6-month versus 12-month or longer dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (SMART-DATE): a randomised, open-label, non-inferiority trial. Lancet 2018;391:1274–1284. https://doi.org/10.1016/s0140-6736(18) 30493-8
Kedhi E, Fabris E, van der Ent M, Buszman P, von Birgelen C, Roolvink V, et al. Six months versus 12 months dual antiplatelet therapy after drug-eluting stent implantation in ST-elevation myocardial infarction (DAPT-STEMI): randomised, multicentre, non-inferiority trial. BMJ 2018;363:k3793. https://doi.org/10.1136/bmj.k3793
De Luca G, Damen SA, Camaro C, Benit E, Verdoia M, Rasoul S, et al. Final results of the randomised evaluation of short-term dual antiplatelet therapy in patients with acute coronary syndrome treated with a new-generation stent (REDUCE trial). EuroIntervention 2019;15:e990–e998. https://doi.org/10.4244/eij-d-19-00539
Hahn J-Y, Song YB, Oh J-H, Chun WJ, Park YH, Jang WJ, et al. Effect of P2Y12 inhibitor monotherapy vs dual antiplatelet therapy on cardiovascular events in patients undergoing percutaneous coronary intervention: the SMART-CHOICE randomized clinical trial. JAMA 2019;321:2428–2437. https://doi.org/10.1001/jama.2019.8146
Vranckx P, Valgimigli M, Jüni P, Hamm C, Steg PG, Heg D, et al. Ticagrelor plus aspirin for 1 month, followed by ticagrelor monotherapy for 23 months vs aspirin plus clopidogrel or ticagrelor for 12 months, followed by aspirin monotherapy for 12 months after implantation of a drug-eluting stent: a multicentre, open-label, randomised superiority trial. Lancet 2018;392:940–949. https://doi.org/10.1016/s0140-6736(18) 31858-0
Watanabe H, Domei T, Morimoto T, Natsuaki M, Shiomi H, Toyota T, et al. Effect of 1-month dual antiplatelet therapy followed by clopidogrel vs 12-month dual antiplatelet therapy on cardiovascular and bleeding events in patients receiving PCI: the STOPDAPT-2 randomized clinical trial. JAMA 2019;321:2414–2427. https://doi.org/10.1001/jama.2019.8145
Mehran R, Baber U, Sharma SK, Cohen DJ, Angiolillo DJ, Briguori C, et al. Ticagrelor with or without aspirin in high-risk patients after PCI. N Engl J Med 2019;381: 2032–2042. https://doi.org/10.1056/NEJMoa1908419
Baber U, Dangas G, Angiolillo DJ, Cohen DJ, Sharma SK, Nicolas J, et al. Ticagrelor alone vs. ticagrelor plus aspirin following percutaneous coronary intervention in patients with non-ST-segment elevation acute coronary syndromes: TWILIGHT-ACS. Eur Heart J 2020;41:3533–3545. https://doi.org/10.1093/eurheartj/ehaa670
Kim BK, Hong SJ, Cho YH, Yun KHo, Kim YH, Suh Y, et al. Effect of ticagrelor monotherapy vs ticagrelor with aspirin on major bleeding and cardiovascular events in patients with acute coronary syndrome: the TICO randomized clinical trial. JAMA 2020;323:2407–2416. https://doi.org/10.1001/jama.2020.7580
Giacoppo D, Matsuda Y, Fovino LN, D’Amico G, Gargiulo G, Byrne RA, et al. Short dual antiplatelet therapy followed by P2Y12 inhibitor monotherapy vs. prolonged dual antiplatelet therapy after percutaneous coronary intervention with second-generation drug-eluting stents: a systematic review and meta-analysis of randomized clinical trials. Eur Heart J 2021;42:308–319. https://doi.org/10.1093/eurheartj/ehaa739
Watanabe H, Morimoto T, Natsuaki M, Yamamoto K, Obayashi Y, Ogita M, et al. Comparison of clopidogrel monotherapy after 1 to 2 months of dual antiplatelet therapy with 12 months of dual antiplatelet therapy in patients with acute coronary syndrome: the STOPDAPT-2 ACS randomized clinical trial. JAMA Cardiol 2022;7: 407–417. https://doi.org/10.1001/jamacardio.2021.5244
Valgimigli M, Frigoli E, Heg D, Tijssen J, Jüni P, Vranckx P, et al. Dual antiplatelet therapy after PCI in patients at high bleeding risk. N Engl J Med 2021;385:1643–1655. https://doi.org/10.1056/NEJMoa2108749
Zettler ME, Peterson ED, McCoy LA, Effron MB, Anstrom KJ, Henry TD, et al. Switching of adenosine diphosphate receptor inhibitor after hospital discharge among myocardial infarction patients: insights from the treatment with adenosine diphosphate receptor inhibitors: longitudinal assessment of treatment patterns and events after acute coronary syndrome (TRANSLATE-ACS) observational study. Am Heart J 2017;183:62–68. https://doi.org/10.1016/j.ahj.2016.10.006
Angiolillo DJ, Rollini F, Storey RF, Bhatt DL, James S, Schneider DJ, et al. International expert consensus on switching platelet P2Y(12) receptor-inhibiting therapies. Circulation 2017;136:1955–1975. https://doi.org/10.1161/circulationaha.117.031164
Sibbing D, Aradi D, Jacobshagen C, Gross L, Trenk D, Geisler T, et al. Guided deescalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial. Lancet 2017;390:1747–1757. https://doi.org/10.1016/s0140-6736(17)32155-4
Claassens DMF, Vos GJA, Bergmeijer TO, Hermanides RS, van’t Hof AWJ, van der Harst P, et al. A genotype-guided strategy for oral P2Y(12) inhibitors in primary PCI. N Engl J Med 2019;381:1621–1631. https://doi.org/10.1056/NEJMoa1907096
Cuisset T, Deharo P, Quilici J, Johnson TW, Deffarges S, Bassez C, et al. Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study. Eur Heart J 2017;38:3070–3078. https://doi.org/10.1093/eurheartj/ehx175
Kim CJ, Park MW, Kim MC, Choo EH, Hwang B-H, Lee KY, et al. Unguided deescalation from ticagrelor to clopidogrel in stabilised patients with acute myocardial infarction undergoing percutaneous coronary intervention (TALOS-AMI): an investigator-initiated, open-label, multicentre, non-inferiority, randomised trial. Lancet 2021;398:1305–1316. https://doi.org/10.1016/s0140-6736(21)01445-8
Kim HS, Kang J, Hwang D, Han J-K, Yang H-M, Kang H-J, et al. Prasugrel-based deescalation of dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (HOST-REDUCE-POLYTECH-ACS): an open-label, multicentre, non-inferiority randomised trial. Lancet 2020;396:1079–1089. https://doi.org/10.1016/s0140-6736(20)31791-8
Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002;324:71–86. https://doi.org/10.1136/bmj.324.7329.71
Antithrombotic Trialists’ (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009;373:1849–1860. https://doi.org/10.1016/ s0140-6736(09)60503-1
Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001;345:494–502. https://doi.org/10.1056/ NEJMoa010746
Bhatt DL, Cryer BL, Contant CF, Cohen M, Lanas A, Schnitzer TJ, et al. Clopidogrel with or without omeprazole in coronary artery disease. N Engl J Med 2010;363: 1909–1917. https://doi.org/10.1056/NEJMoa1007964
Gargiulo G, Costa F, Ariotti S, Biscaglia S, Campo G, Esposito G, et al. Impact of proton pump inhibitors on clinical outcomes in patients treated with a 6- or 24-month dual-antiplatelet therapy duration: insights from the PROlonging Dual-antiplatelet treatment after Grading stent-induced Intimal hyperplasia studY trial. Am Heart J 2016;174:95–102. https://doi.org/10.1016/j.ahj.2016.01.015
Mehta SR, Tanguay JF, Eikelboom JW, Jolly SS, Joyner CD, Granger CB, et al. Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial. Lancet 2010;376: 1233–1243. https://doi.org/10.1016/s0140-6736(10)61088-4
Coughlan JJ, Aytekin A, Lahu S, Ndrepepa G, Menichelli M, Mayer K, et al. Ticagrelor or prasugrel for patients with acute coronary syndrome treated with percutaneous coronary intervention: a prespecified subgroup analysis of a randomized clinical trial. JAMA Cardiol 2021;6:1121–1129. https://doi.org/10.1001/jamacardio.2021.2228
Szummer K, Montez-Rath ME, Alfredsson J, Erlinge D, Lindahl B, Hofmann R, et al. Comparison between ticagrelor and clopidogrel in elderly patients with an acute coronary syndrome: insights from the SWEDEHEART registry. Circulation 2020;142: 1700–1708. https://doi.org/10.1161/circulationaha.120.050645
Giugliano RP, White JA, Bode C, Armstrong PW, Montalescot G, Lewis BS, et al. Early versus delayed, provisional eptifibatide in acute coronary syndromes. N Engl J Med 2009;360:2176–2190. https://doi.org/10.1056/NEJMoa0901316
Dworeck C, Redfors B, Angerås O, Haraldsson I, Odenstedt J, Ioanes D, et al. Association of pretreatment with P2Y12 receptor antagonists preceding percutaneous coronary intervention in non-ST-segment elevation acute coronary syndromes with outcomes. JAMA Netw Open 2020;3:e2018735. https://doi.org/10.1001/jamanetworkopen.2020.18735
Steinhubl SR, Berger PB, Mann JT III, Fry ETA, DeLago A, Wilmer C, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 2002;288:2411–2420. https://doi.org/10.1001/jama.288.19.2411
Dawson LP, Chen D, Dagan M, Bloom J, Taylor A, Duffy SJ, et al. Assessment of pretreatment with oral P2Y12 inhibitors and cardiovascular and bleeding outcomes in patients with non-ST elevation acute coronary syndromes: a systematic review and meta-analysis. JAMA Netw Open 2021;4:e2134322. https://doi.org/10.1001/jamanetworkopen.2021.34322
Oler A, Whooley MA, Oler J, Grady D. Adding heparin to aspirin reduces the incidence of myocardial infarction and death in patients with unstable angina. A meta-analysis. JAMA 1996;276:811–815. doi: doi:10.1001/jama.1996.03540100055028
Antman EM, Cohen M, Radley D, McCabe C, Rush J, Premmereur J, et al. Assessment of the treatment effect of enoxaparin for unstable angina/non-Q-wave myocardial infarction: TIMI 11B-ESSENCE meta-analysis. Circulation 1999;100:1602–1608. https://doi.org/10.1161/01.cir.100.15.1602
Collet JP, Huber K, Cohen M, Zeymer U, Goldstein P, Pollack C, et al. A direct comparison of intravenous enoxaparin with unfractionated heparin in primary percutaneous coronary intervention (from the ATOLL trial). Am J Cardiol 2013;112: 1367–1372. https://doi.org/10.1016/j.amjcard.2013.07.003
Stone GW, McLaurin BT, Cox DA, Bertrand ME, Lincoff AM, Moses JW, et al. Bivalirudin for patients with acute coronary syndromes. N Engl J Med 2006;355: 2203–2216. https://doi.org/10.1056/NEJMoa062437
Valgimigli M, Frigoli E, Leonardi S, Rothenbühler M, Gagnor A, Calabrò P, et al. Bivalirudin or unfractionated heparin in acute coronary syndromes. N Engl J Med 2015;373:997–1009. https://doi.org/10.1056/NEJMoa1507854
Kastrati A, Neumann FJ, Schulz S, Massberg S, Byrne RA, Ferenc M, et al. Abciximab and heparin versus bivalirudin for non-ST-elevation myocardial infarction. N Engl J Med 2011;365:1980–1989. https://doi.org/10.1056/NEJMoa1109596
Erlinge D, Omerovic E, Fröbert O, Linder R, Danielewicz M, Hamid M, et al. Bivalirudin versus heparin monotherapy in myocardial infarction. N Engl J Med 2017;377: 1132–1142. https://doi.org/10.1056/NEJMoa1706443
Han Y, Guo J, Zheng Y, Zang H, Su X, Wang Y, et al. Bivalirudin vs heparin with or without tirofiban during primary percutaneous coronary intervention in acute myocardial infarction: the BRIGHT randomized clinical trial. JAMA 2015;313:1336–1346. https://doi.org/10.1001/jama.2015.2323
Steg PG, Jolly SS, Mehta SR, Afzal R, Xavier D, Rupprecht H-J, et al. Low-dose vs standard-dose unfractionated heparin for percutaneous coronary intervention in acute coronary syndromes treated with fondaparinux: the FUTURA/OASIS-8 randomized trial. JAMA 2010;304:1339–1349. https://doi.org/10.1001/jama.2010.1320
Cannon CP, Bhatt DL, Oldgren J, Lip GYH, Ellis SG, Kimura T, et al. Dual antithrombotic therapy with dabigatran after PCI in atrial fibrillation. N Engl J Med 2017;377: 1513–1524. https://doi.org/10.1056/NEJMoa1708454
Dewilde WJ, Oirbans T, Verheugt FW, Kelder JC, De Smet BJGL, Herrman J-P, et al. Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: an open-label, randomised, controlled trial. Lancet 2013;381:1107–1115. https://doi.org/10.1016/s0140-6736(12) 62177-1
Gibson CM, Mehran R, Bode C, Halperin J, Verheugt FW, Wildgoose P, et al. Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N Engl J Med 2016;375:2423–2434. https://doi.org/10.1056/NEJMoa1611594
Lopes RD, Heizer G, Aronson R, Vora AN, Massaro T, Mehran R, et al. Antithrombotic therapy after acute coronary syndrome or PCI in atrial fibrillation. N Engl J Med 2019; 380:1509–1524. https://doi.org/10.1056/NEJMoa1817083
Vranckx P, Valgimigli M, Eckardt L, Tijssen J, Lewalter T, Gargiulo G, et al. Edoxaban-based versus vitamin K antagonist-based antithrombotic regimen after successful coronary stenting in patients with atrial fibrillation (ENTRUST-AF PCI): a randomised, open-label, phase 3b trial. Lancet 2019;394:1335–1343. https://doi.org/10.1016/s0140-6736(19)31872-0
Gargiulo G, Goette A, Tijssen J, Eckardt L, Lewalter T, Vranckx P, et al. Safety and efficacy outcomes of double vs. triple antithrombotic therapy in patients with atrial fibrillation following percutaneous coronary intervention: a systematic review and meta-analysis of non-vitamin K antagonist oral anticoagulant-based randomized clinical trials. Eur Heart J 2019;40:3757–3767. https://doi.org/10.1093/eurheartj/ehz732
Dewilde WJ, Janssen PW, Kelder JC, Verheugt FWA, De Smet BJGL, Adriaenssens T, et al. Uninterrupted oral anticoagulation versus bridging in patients with long-term oral anticoagulation during percutaneous coronary intervention: subgroup analysis from the WOEST trial. EuroIntervention 2015;11:381–390. https://doi.org/10.4244/ eijy14m06_07
Windecker S, Lopes RD, Massaro T, Jones-Burton C, Granger CB, Aronson R, et al. Antithrombotic therapy in patients with atrial fibrillation and acute coronary syndrome treated medically or with percutaneous coronary intervention or undergoing elective percutaneous coronary intervention: insights from the AUGUSTUS trial. Circulation 2019;140:1921–1932. https://doi.org/10.1161/circulationaha.119.043308
Smits PC, Frigoli E, Tijssen J, Jüni P, Vranckx P, Ozaki Y, et al. Abbreviated antiplatelet therapy in patients at high bleeding risk with or without oral anticoagulant therapy after coronary stenting: an open-label, randomized, controlled trial. Circulation 2021; 144:1196–1211. https://doi.org/10.1161/circulationaha.121.056680
Eikelboom JW, Connolly SJ, Bosch J, Dagenais GR, Hart RG, Shestakovska O, et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med 2017;377:1319–1330. https://doi.org/10.1056/NEJMoa1709118
Connolly SJ, Eikelboom JW, Bosch J, Dagenais G, Dyal L, Lanas F, et al. Rivaroxaban with or without aspirin in patients with stable coronary artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet 2018;391:205–218. https://doi.org/10.1016/s0140-6736(17)32458-3
Mauri L, Kereiakes DJ, Yeh RW, Driscoll-Shempp P, Cutlip DE, Steg PG, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med 2014; 371:2155–2166. https://doi.org/10.1056/NEJMoa1409312
Bonaca MP, Bhatt DL, Steg PG, Storey RF, Cohen M, Im K, et al. Ischaemic risk and efficacy of ticagrelor in relation to time from P2Y12 inhibitor withdrawal in patients with prior myocardial infarction: insights from PEGASUS-TIMI 54. Eur Heart J 2016; 37:1133–1142. https://doi.org/10.1093/eurheartj/ehv531
Bonaca MP, Bhatt DL, Cohen M, Steg PG, Storey RF, Jensen EC, et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med 2015;372: 1791–1800. https://doi.org/10.1056/NEJMoa1500857
Steg PG, Bhatt DL, Simon T, Fox K, Mehta SR, Harrington RA, et al. Ticagrelor in patients with stable coronary disease and diabetes. N Engl J Med 2019;381:1309–1320. https://doi.org/10.1056/NEJMoa1908077
Valgimigli M, Gragnano F, Branca M, Franzone A, Baber U, Jang Y, et al. P2Y12 inhibitor monotherapy or dual antiplatelet therapy after coronary revascularisation: individual patient level meta-analysis of randomised controlled trials. BMJ 2021;373:n1332. https://doi.org/10.1136/bmj.n1332
Shoji S, Kuno T, Fujisaki T, Takagi H, Briasoulis A, Deharo P, et al. De-escalation of dual antiplatelet therapy in patients with acute coronary syndromes. J Am Coll Cardiol 2021; 78:763–777. https://doi.org/10.1016/j.jacc.2021.06.012
Laudani C, Greco A, Occhipinti G, Ingala S, Calderone D, Scalia L, et al. Short duration of DAPT versus de-escalation after percutaneous coronary intervention for acute coronary syndromes. JACC Cardiovasc Interv 2022;15:268–277. https://doi.org/10.1016/j.jcin.2021.11.028
Giustino G, Mehran R, Dangas GD, Kirtane AJ, Redfors B, Généreux P, et al. Characterization of the average daily ischemic and bleeding risk after primary PCI for STEMI. J Am Coll Cardiol 2017;70:1846–1857. https://doi.org/10.1016/j.jacc.2017.08.018
Yasuda S, Kaikita K, Akao M, Ako J, Matoba T, Nakamura M, et al. Antithrombotic therapy for atrial fibrillation with stable coronary disease. N Engl J Med 2019;381: 1103–1113. https://doi.org/10.1056/NEJMoa1904143
Matsumura-Nakano Y, Shizuta S, Komasa A, Morimoto T, Masuda H, Shiomi H, et al. Open-label randomized trial comparing oral anticoagulation with and without single antiplatelet therapy in patients with atrial fibrillation and stable coronary artery disease beyond 1 year after coronary stent implantation. Circulation 2019;139:604–616. https://doi.org/10.1161/circulationaha.118.036768
Chiarito M, Sanz-Sánchez J, Cannata F, Cao D, Sturla M, Panico C, et al. Monotherapy with a P2Y(12) inhibitor or aspirin for secondary prevention in patients with established atherosclerosis: a systematic review and meta-analysis. Lancet 2020;395: 1487–1495. https://doi.org/10.1016/s0140-6736(20)30315-9
Koo BK, Kang J, Park KW, Rhee T-M, Yang H-M, Won KB, et al. Aspirin versus clopidogrel for chronic maintenance monotherapy after percutaneous coronary intervention (HOST-EXAM): an investigator-initiated, prospective, randomised, open-label, multicentre trial. Lancet 2021;397:2487–2496. https://doi.org/10.1016/s0140-6736(21)01063-1
Gilard M, Blanchard D, Helft G, Carrier D, Eltchaninoff H, Belle L, et al. Antiplatelet therapy in patients with anticoagulants undergoing percutaneous coronary stenting (from STENTIng and oral antiCOagulants [STENTICO]). Am J Cardiol 2009;104: 338–342. https://doi.org/10.1016/j.amjcard.2009.03.053
Lip GY, Windecker S, Huber K, Kirchhof P, Marin F, Ten Berg JM, et al. Management of antithrombotic therapy in atrial fibrillation patients presenting with acute coronary syndrome and/or undergoing percutaneous coronary or valve interventions: a joint consensus document of the European Society of Cardiology Working Group on Thrombosis, European Heart Rhythm Association (EHRA), European Association of Percutaneous Cardiovascular Interventions (EAPCI) and European Association of Acute Cardiac Care (ACCA) endorsed by the Heart Rhythm Society (HRS) and Asia-Pacific Heart Rhythm Society (APHRS). Eur Heart J 2014;35:3155–3179. https://doi.org/10.1093/eurheartj/ehu298
Ruiz-Nodar JM, Marín F, Hurtado JA, Valencia J, Pinar E, Pineda J, et al. Anticoagulant and antiplatelet therapy use in 426 patients with atrial fibrillation undergoing percutaneous coronary intervention and stent implantation implications for bleeding risk and prognosis. J Am Coll Cardiol 2008;51:818–825. https://doi.org/10.1016/j.jacc.2007.11. 035
Beyer-Westendorf J, Gelbricht V, Förster K, Ebertz F, Kohler C, Werth S, et al. Peri-interventional management of novel oral anticoagulants in daily care: results from the prospective Dresden NOAC registry. Eur Heart J 2014;35:1888–1896. https://doi.org/10.1093/eurheartj/eht557
Kiviniemi T, Karjalainen P, Pietilä M, Ylitalo A, Niemelä M, Vikman S, et al. Comparison of additional versus no additional heparin during therapeutic oral anticoagulation in patients undergoing percutaneous coronary intervention. Am J Cardiol 2012;110:30–35. https://doi.org/10.1016/j.amjcard.2012.02.045
Fiedler KA, Maeng M, Mehilli J, Schulz-Schüpke S, Byrne RA, Sibbing D, et al. Duration of triple therapy in patients requiring oral anticoagulation after drug-eluting stent implantation: the ISAR-TRIPLE trial. J Am Coll Cardiol 2015;65:1619–1629. https://doi.org/10.1016/j.jacc.2015.02.050
Lopes RD, Leonardi S, Wojdyla DM, Vora AN, Thomas L, Storey RF, et al. Stent thrombosis in patients with atrial fibrillation undergoing coronary stenting in the AUGUSTUS trial. Circulation 2020;141:781–783. https://doi.org/10.1161/circulationaha.119.044584
Alexander JH, Wojdyla D, Vora AN, Thomas L, Granger CB, Goodman SG, et al. Risk/ benefit tradeoff of antithrombotic therapy in patients with atrial fibrillation early and late after an acute coronary syndrome or percutaneous coronary intervention: insights from AUGUSTUS. Circulation 2020;141:1618–1627. https://doi.org/10.1161/circulationaha.120.046534
Lopes RD, Hong H, Harskamp RE, Bhatt DL, Mehran R, Cannon CP, et al. Safety and efficacy of antithrombotic strategies in patients with atrial fibrillation undergoing percutaneous coronary intervention: a network meta-analysis of randomized controlled trials. JAMA Cardiol 2019;4:747–755. https://doi.org/10.1001/jamacardio.2019.1880
Lopes RD, Hong H, Harskamp RE, Bhatt DL, Mehran R, Cannon CP, et al. Optimal antithrombotic regimens for patients with atrial fibrillation undergoing percutaneous coronary intervention: an updated network meta-analysis. JAMA Cardiol 2020;5: 582–589. https://doi.org/10.1001/jamacardio.2019.6175
Capodanno D, Di Maio M, Greco A, Bhatt DL, Gibson CM, Goette A, et al. Safety and efficacy of double antithrombotic therapy with non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation undergoing percutaneous coronary intervention: a systematic review and meta-analysis. J Am Heart Assoc 2020;9: e017212. https://doi.org/10.1161/jaha.120.017212
Lip GYH, Collet JP, Haude M, Byrne R, Chung EH, Fauchier L, et al. 2018 Joint European consensus document on the management of antithrombotic therapy in atrial fibrillation patients presenting with acute coronary syndrome and/or undergoing percutaneous cardiovascular interventions: a joint consensus document of the European Heart Rhythm Association (EHRA), European Society of Cardiology Working Group on Thrombosis, European Association of Percutaneous Cardiovascular Interventions (EAPCI), and European Association of Acute Cardiac Care (ACCA) endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), Latin America Heart Rhythm Society (LAHRS), and Cardiac Arrhythmia Society of Southern Africa (CASSA). Europace 2019;21:192–193. https://doi.org/10.1093/europace/euy174
ISIS-2 Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988;2:349–360.
Chen ZM, Jiang LX, Chen YP, Xie JX, Pan HC, Peto R, et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 2005;366:1607–1621. https://doi.org/10.1016/s0140-6736(05)67660-x
Sabatine MS, Cannon CP, Gibson CM, López-Sendón JL, Montalescot G, Theroux P, et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N Eng J Med 2005;352:1179–1189. https://doi.org/10.1056/NEJMoa050522
Osman M, Kheiri B, Shigle AJ, Saleem M, Osman K, Sengupta PP, et al. Ticagrelor after pharmacological thrombolysis in patients with ST-segment elevation myocardial infarctions: insight from a trial sequential analysis. J Thromb Thrombolysis 2019;48: 661–667. https://doi.org/10.1007/s11239-019-01953-3
Berwanger O, Lopes RD, Moia DDF, Fonseca FA, Jiang L, Goodman SG, et al. Ticagrelor versus clopidogrel in patients with STEMI treated with fibrinolysis: TREAT trial. J Am Coll Cardiol 2019;73:2819–2828. https://doi.org/10.1016/j.jacc.2019.03.011
Kheiri B, Osman M, Abdalla A, Haykal T, Barbarawi M, Zayed Y, et al. Ticagrelor versus clopidogrel after fibrinolytic therapy in patients with ST-elevation myocardial infarction: a systematic review and meta-analysis of randomized clinical trials. J Thromb Thrombolysis 2018;46:299–303. https://doi.org/10.1007/s11239-018-1706-2
Sánchez PL, Gimeno F, Ancillo P, Sanz JJ, Alonso-Briales JH, Bosa F, et al. Role of the paclitaxel-eluting stent and tirofiban in patients with ST-elevation myocardial infarction undergoing postfibrinolysis angioplasty: the GRACIA-3 randomized clinical trial. Circ Cardiovasc Interv 2010;3:297–307. https://doi.org/10.1161/circinterventions.109. 920868
ASSENT-3 Investigators. Efficacy and safety of tenecteplase in combination with enoxaparin, abciximab, or unfractionated heparin: the ASSENT-3 randomised trial in acute myocardial infarction. Lancet 2001;358:605–613. https://doi.org/10.1016/s0140-6736(01)05775-0
Giraldez RR, Nicolau JC, Corbalan R, Gurfinkel EP, Juarez U, Lopez-Sendon J, et al. Enoxaparin is superior to unfractionated heparin in patients with ST elevation myocardial infarction undergoing fibrinolysis regardless of the choice of lytic: an ExTRACT-TIMI 25 analysis. Eur Heart J 2007;28:1566–1573. https://doi.org/10.1093/eurheartj/ehm179
White HD, Braunwald E, Murphy SA, Jacob AJ, Gotcheva N, Polonetsky L, et al. Enoxaparin vs. unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction in elderly and younger patients: results from ExTRACT-TIMI 25. Eur Heart J 2007;28:1066–1071. https://doi.org/10.1093/eurheartj/ehm081
Peters RJ, Joyner C, Bassand JP, Afzal R, Chrolavicius S, Mehta SR, et al. The role of fondaparinux as an adjunct to thrombolytic therapy in acute myocardial infarction: a subgroup analysis of the OASIS-6 trial. Eur Heart J 2008;29:324–331. https://doi.org/10.1093/eurheartj/ehm616
White H. Thrombin-specific anticoagulation with bivalirudin versus heparin in patients receiving fibrinolytic therapy for acute myocardial infarction: the HERO-2 randomised trial. Lancet 2001;358:1855–1863. https://doi.org/10.1016/s0140-6736(01)06887-8
Fernández-Avilés F, Alonso JJ, Peña G, Blanco J, Alonso-Briales J, Lopez-Mesa J, et al. Primary angioplasty vs. early routine post-fibrinolysis angioplasty for acute myocardial infarction with ST-segment elevation: the GRACIA-2 non-inferiority, randomized, controlled trial. Eur Heart J 2007;28:949–960. https://doi.org/10.1093/eurheartj/ ehl461
Björklund E, Stenestrand U, Lindbäck J, Svensson L, Wallentin L, Lindahl B. Pre-hospital thrombolysis delivered by paramedics is associated with reduced time delay and mortality in ambulance-transported real-life patients with ST-elevation myocardial infarction. Eur Heart J 2006;27:1146–1152. https://doi.org/10.1093/eurheartj/ehi886
Bonnefoy E, Steg PG, Boutitie F, Dubien P-Y, Lapostolle F, Roncalli J, et al. Comparison of primary angioplasty and pre-hospital fibrinolysis in acute myocardial infarction (CAPTIM) trial: a 5-year follow-up. Eur Heart J 2009;30:1598–1606. https://doi.org/10.1093/eurheartj/ehp156
Bonnefoy E, Lapostolle F, Leizorovicz A, Steg G, McFadden EP, Dubien PY, et al. Primary angioplasty versus prehospital fibrinolysis in acute myocardial infarction: a randomised study. Lancet 2002;360:825–829. https://doi.org/10.1016/s0140-6736(02) 09963-4
Assessment of the Safety and Efficacy of a New Thrombolytic (ASSENT-2) Investigators. Single-bolus tenecteplase compared with front-loaded alteplase in acute myocardial infarction: the ASSENT-2 double-blind randomised trial. Lancet 1999;354: 716–722. https://doi.org/10.1016/s0140-6736(99)07403-6
GUSTO investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 1993;329:673–682. https://doi.org/10.1056/nejm199309023291001
Wallentin L, Goldstein P, Armstrong PW, Granger CB, Adgey AAJ, Arntz HR, et al. Efficacy and safety of tenecteplase in combination with the low-molecular-weight heparin enoxaparin or unfractionated heparin in the prehospital setting: the Assessment of the Safety and Efficacy of a New Thrombolytic Regimen (ASSENT)-3 PLUS randomized trial in acute myocardial infarction. Circulation 2003;108:135–142. https://doi.org/10.1161/01.Cir.0000081659.72985.A8
Ross AM, Molhoek P, Lundergan C, Knudtson M, Draoui Y, Regalado L, et al. Randomized comparison of enoxaparin, a low-molecular-weight heparin, with unfractionated heparin adjunctive to recombinant tissue plasminogen activator thrombolysis and aspirin: second trial of Heparin and Aspirin Reperfusion Therapy (HART II). Circulation 2001;104:648–652. https://doi.org/10.1161/hc3101.093866
Antman EM, Louwerenburg HW, Baars HF, Wesdorp JCL, Hamer B, Bassand J-P, et al. Enoxaparin as adjunctive antithrombin therapy for ST-elevation myocardial infarction: results of the ENTIRE-Thrombolysis in Myocardial Infarction (TIMI) 23 Trial. Circulation 2002;105:1642–1649. https://doi.org/10.1161/01.cir.0000013402.34759. 46
James SK, Roe MT, Cannon CP, Cornel JH, Horrow J, Husted S, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes intended for non-invasive management: substudy from prospective randomised PLATelet inhibition and patient Outcomes (PLATO) trial. BMJ 2011;342:d3527. https://doi.org/10.1136/bmj.d3527
Wiviott SD, White HD, Ohman EM, Fox KAA, Armstrong PW, Prabhakaran D, et al. Prasugrel versus clopidogrel for patients with unstable angina or non-ST-segment elevation myocardial infarction with or without angiography: a secondary, prespecified analysis of the TRILOGY ACS trial. Lancet 2013;382:605–613. https://doi.org/10.1016/s0140-6736(13)61451-8
Savonitto S, Ferri LA, Piatti L, Grosseto D, Piovaccari G, Morici N, et al. Comparison of reduced-dose prasugrel and standard-dose clopidogrel in elderly patients with acute coronary syndromes undergoing early percutaneous revascularization. Circulation 2018;137:2435–2445. https://doi.org/10.1161/circulationaha.117.032180
Patterson T, Perkins GD, Hassan Y, Moschonas K, Gray H, Curzen N, et al. Temporal trends in identification, management, and clinical outcomes after out-of-hospital cardiac arrest: insights from the myocardial ischaemia national audit project database. Circ Cardiovasc Interv 2018;11:e005346. https://doi.org/10.1161/circinterventions.117. 005346
Byrne R, Constant O, Smyth Y, Callagy G, Nash P, Daly K, et al. Multiple source surveillance incidence and aetiology of out-of-hospital sudden cardiac death in a rural population in the West of Ireland. Eur Heart J 2008;29:1418–1423. https://doi.org/10.1093/eurheartj/ehn155
Kroupa J, Knot J, Ulman J, Bednar F, Dohnalova A, Motovska Z. Characteristics and survival determinants in patients after out-of-hospital cardiac arrest in the era of 24/7 coronary intervention facilities. Heart Lung Circ 2017;26:799–807. https://doi.org/10.1016/j.hlc.2016.11.012
Perkins GD, Graesner JT, Semeraro F, Olasveengen T, Soar J, Lott C, et al. European Resuscitation Council Guidelines 2021: executive summary. Resuscitation 2021;161: 1–60. https://doi.org/10.1016/j.resuscitation.2021.02.003
Dumas F, Cariou A, Manzo-Silberman S, Grimaldi D, Vivien B, Rosencher J, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ Cardiovasc Interv 2010;3:200–207. https://doi.org/10.1161/circinterventions.109.913665
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021;47:369–421. https://doi.org/10.1007/s00134-021-06368-4
Rab T, Kern KB, Tamis-Holland JE, Henry TD, McDaniel M, Dickert NW, et al. Cardiac arrest: a treatment algorithm for emergent invasive cardiac procedures in the resuscitated comatose patient. J Am Coll Cardiol 2015;66:62–73. https://doi.org/10.1016/j.jacc.2015.05.009
Lemkes JS, Janssens GN, van der Hoeven NW, Jewbali LSD, Dubois EA, Meuwissen MM, et al. Coronary angiography after cardiac arrest without ST segment elevation: one-year outcomes of the COACT randomized clinical trial. JAMA Cardiol 2020;5: 1358–1365. https://doi.org/10.1001/jamacardio.2020.3670
Desch S, Freund A, Akin I, Behnes M, Preusch MR, Zelniker TA, et al. Angiography after out-of-hospital cardiac arrest without ST-segment elevation. N Engl J Med 2021;385: 2544–2553. https://doi.org/10.1056/NEJMoa2101909
Lemkes JS, Janssens GN, van der Hoeven NW, Jewbali LSD, Dubois EA, Meuwissen M, et al. Coronary angiography after cardiac arrest without ST-segment elevation. N Engl J Med 2019;380:1397–1407. https://doi.org/10.1056/NEJMoa1816897
Kern KB, Radsel P, Jentzer JC, Seder DB, Lee KS, Lotun K, et al. Randomized pilot clinical trial of early coronary angiography versus no early coronary angiography after cardiac arrest without ST-segment elevation: the PEARL study. Circulation 2020;142: 2002–2012. https://doi.org/10.1161/circulationaha.120.049569
Hauw-Berlemont C, Lamhaut L, Diehl JL, Andreotti C, Varenne O, Leroux P, et al. Emergency vs delayed coronary angiogram in survivors of out-of-hospital cardiac arrest: results of the randomized, multicentric EMERGE trial. JAMA Cardiol 2022;7: 700–707. https://doi.org/10.1001/jamacardio.2022.1416
Viana-Tejedor A, Andrea-Riba R, Scardino C, Ariza-Solé A, Bañeras J, García-García C, et al. Coronary angiography in patients without ST-segment elevation following out-of-hospital cardiac arrest. Rev Esp Cardiol (Engl Ed) 2022;76:94–102. https://doi.org/10.1016/j.rec.2022.05.013
The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002;346:549–556. https://doi.org/10.1056/NEJMoa012689
Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002;346:557–563. https://doi.org/10.1056/NEJMoa003289
Belliard G, Catez E, Charron C, Caille V, Aegerter P, Dubourg O, et al. Efficacy of therapeutic hypothermia after out-of-hospital cardiac arrest due to ventricular fibrillation. Resuscitation 2007;75:252–259. https://doi.org/10.1016/j.resuscitation.2007.04. 014
Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med 2013; 369:2197–2206. https://doi.org/10.1056/NEJMoa1310519
Vaahersalo J, Hiltunen P, Tiainen M, Oksanen T, Kaukonen K-M, Kurola J, et al. Therapeutic hypothermia after out-of-hospital cardiac arrest in Finnish intensive care units: the FINNRESUSCI study. Intensive Care Med 2013;39:826–837. https://doi.org/10.1007/s00134-013-2868-1
Nolan JP, Sandroni C, Andersen LW, Böttiger BW, Cariou A, Cronberg T, et al. ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Resuscitation 2022;172:229–236. https://doi.org/10.1016/j.resuscitation.2022.01.009
Hassager C, Schmidt H, Møller JE, Grand J, Mølstrøm S, Beske RP, et al. Duration of device-based fever prevention after cardiac arrest. N Engl J Med 2023;388:888–897. https://doi.org/10.1056/NEJMoa2212528
Wolfrum S, Roedl K, Hanebutte A, Pfeifer R, Kurowski V, Riessen R, et al. Temperature control after in-hospital cardiac arrest: a randomized clinical trial. Circulation 2022;146: 1357–1366. https://doi.org/10.1161/circulationaha.122.060106
Sandroni C, Geocadin RG. Neurological prognostication after cardiac arrest. Curr Opin Crit Care 2015;21:209–214. https://doi.org/10.1097/mcc.0000000000000202
Garot P, Lefevre T, Eltchaninoff H, Morice M-C, Tamion F, Abry B, et al. Six-month outcome of emergency percutaneous coronary intervention in resuscitated patients after cardiac arrest complicating ST-elevation myocardial infarction. Circulation 2007; 115:1354–1362. https://doi.org/10.1161/circulationaha.106.657619
Spaulding CM, Joly LM, Rosenberg A, Monchi M, Weber SN, Dhainaut J-FA, et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med 1997;336:1629–1633. https://doi.org/10.1056/nejm199706053362302
Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med 2021;384: 2283–2294. https://doi.org/10.1056/NEJMoa2100591
Callaway CW, Schmicker R, Kampmeyer M, Powell J, Rea TD, Daya MR, et al. Receiving hospital characteristics associated with survival after out-of-hospital cardiac arrest. Resuscitation 2010;81:524–529. https://doi.org/10.1016/j.resuscitation.2009.12. 006
Wnent J, Seewald S, Heringlake M, Lemke H, Brauer K, Lefering R, et al. Choice of hospital after out-of-hospital cardiac arrest – a decision with far-reaching consequences: a study in a large German city. Crit Care 2012;16:R164. https://doi.org/10.1186/cc11516
Kragholm K, Malta Hansen C, Dupre ME, Xian Y, Strauss B, Tyson C, et al. Direct transport to a percutaneous cardiac intervention center and outcomes in patients with out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes 2017;10:e003414. https://doi.org/10.1161/circoutcomes.116.003414
Yeo JW, Ng ZHC, Goh AXC, Gao JF, Liu N, Lam SWS, et al. Impact of cardiac arrest centers on the survival of patients with nontraumatic out-of-hospital cardiac arrest: a systematic review and meta-analysis. J Am Heart Assoc 2022;11:e023806. https://doi.org/10.1161/jaha.121.023806
Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. N Engl J Med 1999;341:625–634. https://doi.org/10.1056/nejm199908263410901
White HD, Assmann SF, Sanborn TA, Jacobs AK, Webb JG, Sleeper LA, et al. Comparison of percutaneous coronary intervention and coronary artery bypass grafting after acute myocardial infarction complicated by cardiogenic shock: results from the Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock (SHOCK) trial. Circulation 2005;112:1992–2001. https://doi.org/ 10.1161/circulationaha.105.540948
Hochman JS, Sleeper LA, Webb JG, Dzavik V, Buller CE, Aylward P, et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 2006;295:2511–2515. https://doi.org/10.1001/jama.295.21.2511
Liakopoulos OJ, Schlachtenberger G, Wendt D, Choi Y-H, Slottosch I, Welp H, et al. Early clinical outcomes of surgical myocardial revascularization for acute coronary syndromes complicated by cardiogenic shock: a report from the north-Rhine-Westphalia surgical myocardial infarction registry. J Am Heart Assoc 2019;8:e012049. https://doi.org/10.1161/jaha.119.012049
Thielmann M, Wendt D, Slottosch I, Welp H, Schiller W, Tsagakis K, et al. Coronary artery bypass graft surgery in patients with acute coronary syndromes after primary percutaneous coronary intervention: a current report from the north-Rhine Westphalia surgical myocardial infarction registry. J Am Heart Assoc 2021;10: e021182. https://doi.org/10.1161/jaha.121.021182
Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich H-G, Hausleiter J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 2012; 367:1287–1296. https://doi.org/10.1056/NEJMoa1208410
Schrage B, Ibrahim K, Loehn T, Werner N, Sinning J-M, Pappalardo F, et al. Impella support for acute myocardial infarction complicated by cardiogenic shock. Circulation 2019;139:1249–1258. https://doi.org/10.1161/circulationaha.118.036614
Miller PE, Bromfield SG, Ma Q, Crawford G, Whitney J, DeVries A, et al. Clinical outcomes and cost associated with an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump in patients presenting with acute myocardial infarction complicated by cardiogenic shock. JAMA Intern Med 2022;182:926–933. https://doi.org/10.1001/jamainternmed.2022.2735
Ostadal P, Rokyta R, Karasek J, Kruger A, Vondrakova D, Janotka M, et al. Extracorporeal membrane oxygenation in the therapy of cardiogenic shock: results of the ECMO-CS randomized clinical trial. Circulation 2022;147:454–464. https://doi.org/10.1161/circulationaha.122.062949
Kim Y, Shapero K, Ahn SS, Goldsweig AM, Desai N, Altin SE. Outcomes of mechanical circulatory support for acute myocardial infarction complicated by cardiogenic shock. Catheter Cardiovasc Interv 2022;99:658–663. https://doi.org/10.1002/ccd.29834
Thiele H, Akin I, Sandri M, Fuernau G, de Waha S, Meyer-Saraei R, et al. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med 2017; 377:2419–2432. https://doi.org/10.1056/NEJMoa1710261
Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich H-G, Hausleiter J, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet 2013;382:1638–1645. https://doi.org/10.1016/s0140-6736(13) 61783-3
Unverzagt S, Buerke M, de Waha A, Haerting J, Pietzner D, Seyfarth M, et al. Intra-aortic balloon pump counterpulsation (IABP) for myocardial infarction complicated by cardiogenic shock. Cochrane Database Syst Rev 2015;2015:Cd007398. https://doi.org/10.1002/14651858.CD007398.pub3
Thiele H, Zeymer U, Thelemann N, Neumann F-J, Hausleiter J, Abdel-Wahab M, et al. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: long-term 6-year outcome of the randomized IABP-SHOCK II trial. Circulation 2018;139:395–403. https://doi.org/10.1161/circulationaha.118.038201
Bonnefoy-Cudraz E, Bueno H, Casella G, De Maria E, Fitzsimons D, Halvorsen S, et al. Editor’s Choice – acute cardiovascular care association position paper on intensive cardiovascular care units: an update on their definition, structure, organisation and function. Eur Heart J Acute Cardiovasc Care 2018;7:80–95. https://doi.org/10.1177/ 2048872617724269
Winkler C, Funk M, Schindler DM, Hemsey JZ, Lampert R, Drew BJ. Arrhythmias in patients with acute coronary syndrome in the first 24 hours of hospitalization. Heart Lung 2013;42:422–427. https://doi.org/10.1016/j.hrtlng.2013.07.010
Wasfy JH, Kennedy KF, Masoudi FA, Ferris TG, Arnold SV, Kini V, et al. Predicting length of stay and the need for postacute care after acute myocardial infarction to improve healthcare efficiency. Circ Cardiovasc Qual Outcomes 2018;11:e004635. https://doi.org/10.1161/circoutcomes.118.004635
Melberg T, Jørgensen M, Ørn S, Solli T, Edland U, Dickstein K. Safety and health status following early discharge in patients with acute myocardial infarction treated with primary PCI: a randomized trial. Eur J Prev Cardiol 2015;22:1427–1434. https://doi.org/10.1177/2047487314559276
Berger AK, Duval S, Jacobs DR Jr, Barber C, Vazquez G, Lee S, et al. Relation of length of hospital stay in acute myocardial infarction to postdischarge mortality. Am J Cardiol 2008;101:428–434. https://doi.org/10.1016/j.amjcard.2007.09.090
Grines CL, Marsalese DL, Brodie B, Griffin J, Donohue B, Costantini CR, et al. Safety and cost-effectiveness of early discharge after primary angioplasty in low risk patients with acute myocardial infarction. J Am Coll Cardiol 1998;31:967–972. https://doi.org/10.1016/s0735-1097(98)00031-x
De Luca G, Suryapranata H, van’t Hof AW, de Boer M-J, Hoorntje JCA, Dambrink J-HE, et al. Prognostic assessment of patients with acute myocardial infarction treated with primary angioplasty: implications for early discharge. Circulation 2004;109: 2737–2743. https://doi.org/10.1161/01.Cir.0000131765.73959.87
Novobilsky K, Stipal R, Cerny P, Horak I, Kaucak V, Mrozek J, et al. Safety of early discharge in low risk patients after acute ST-segment elevation myocardial infarction, treated with primary percutaneous coronary intervention. Open label, randomized trial. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019;163:61–66. https://doi.org/10.5507/bp.2018.041
Albanese M, Alpaslan K, Ouarrak T, Merguet P, Schneider S, Schöls W. In-hospital major arrhythmias, arrhythmic death and resuscitation after successful primary percutaneous intervention for acute transmural infarction: a retrospective single-centre cohort study. BMC Cardiovasc Disord 2018;18:116. https://doi.org/10.1186/s12872-018-0851-z
Yndigegn T, Gilje P, Dankiewicz J, Mokhtari A, Isma N, Holmqvist J, et al. Safety of early hospital discharge following admission with ST-elevation myocardial infarction treated with percutaneous coronary intervention: a nationwide cohort study. EuroIntervention 2022;17:1091–1099. https://doi.org/10.4244/eij-d-21-00501
Seto AH, Shroff A, Abu-Fadel M, Blankenship JC, Boudoulas KD, Cigarroa JE, et al. Length of stay following percutaneous coronary intervention: an expert consensus document update from the society for cardiovascular angiography and interventions. Catheter Cardiovasc Interv 2018;92:717–731. https://doi.org/10.1002/ccd.27637
Estévez-Loureiro R, Calviño-Santos R, Vázquez JM, Barge-Caballero E, Salgado-Fernández J, Piñeiro M, et al. Safety and feasibility of returning patients early to their originating centers after transfer for primary percutaneous coronary intervention. Rev Esp Cardiol 2009;62:1356–1364. https://doi.org/10.1016/s1885-5857(09) 73529-7
Morrow DA, Antman EM, Charlesworth A, Cairns R, Murphy SA, de Lemos JA, et al. TIMI risk score for ST-elevation myocardial infarction: a convenient, bedside, clinical score for risk assessment at presentation: an intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation 2000;102:2031–2037. https://doi.org/10.1161/01.cir.102.17.2031
Fox KA, Dabbous OH, Goldberg RJ, Pieper KS, Eagle KA, Van de Werf F, et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE). BMJ 2006;333:1091. https://doi.org/10.1136/bmj.38985.646481.55
Aragam KG, Tamhane UU, Kline-Rogers E, Li J, Fox KAA, Goodman SG, et al. Does simplicity compromise accuracy in ACS risk prediction? A retrospective analysis of the TIMI and GRACE risk scores. PLoS One 2009;4:e7947. https://doi.org/10.1371/journal.pone.0007947
D’Ascenzo F, Biondi-Zoccai G, Moretti C, Bollati M, Omedè P, Sciuto F, et al. TIMI, GRACE and alternative risk scores in Acute Coronary Syndromes: a meta-analysis of 40 derivation studies on 216,552 patients and of 42 validation studies on 31,625 patients. Contemp Clin Trials 2012;33:507–514. https://doi.org/10.1016/j.cct.2012.01.001
Gale CP, Manda SO, Weston CF, Birkhead JS, Batin PD, Hall AS. Evaluation of risk scores for risk stratification of acute coronary syndromes in the Myocardial Infarction National Audit Project (MINAP) database. Heart 2009;95:221–227. https://doi.org/10.1136/hrt.2008.144022
D’Ascenzo F, De Filippo O, Gallone G, Mittone G, Deriu MA, Iannaccone M, et al. Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets. Lancet 2021;397:199–207. https://doi.org/10.1016/s0140-6736(20)32519-8
Ng VG, Lansky AJ, Meller S, Witzenbichler B, Guagliumi G, Peruga JZ, et al. The prognostic importance of left ventricular function in patients with ST-segment elevation myocardial infarction: the HORIZONS-AMI trial. Eur Heart J Acute Cardiovasc Care 2014;3:67–77. https://doi.org/10.1177/2048872613507149
de Waha S, Eitel I, Desch S, Fuernau G, Lurz P, Stiermaier T, et al. Prognosis after ST-elevation myocardial infarction: a study on cardiac magnetic resonance imaging versus clinical routine. Trials 2014;15:249. https://doi.org/10.1186/1745-6215-15-249
Larose E, Côté J, Rodés-Cabau J, Noël B, Barbeau G, Bordeleau E, et al. Contrast-enhanced cardiovascular magnetic resonance in the hyperacute phase of ST-elevation myocardial infarction. Int J Cardiovasc Imaging 2009;25:519–527. https://doi.org/10.1007/s10554-009-9451-4
Stiermaier T, Jobs A, de Waha S, Fuernau G, Pöss J, Desch S, et al. Optimized prognosis assessment in ST-segment-elevation myocardial infarction using a cardiac magnetic resonance imaging risk score. Circ Cardiovasc Imaging 2017;10:e006774. https://doi.org/10.1161/circimaging.117.006774
de Waha S, Desch S, Eitel I, Fuernau G, Zachrau J, Leuschner A, et al. Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur Heart J 2010;31:2660–2668. https://doi.org/10.1093/eurheartj/ ehq247
van Kranenburg M, Magro M, Thiele H, de Waha S, Eitel I, Cochet A, et al. Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging 2014;7:930–939. https://doi.org/10.1016/j.jcmg.2014.05.010
van Loon RB, Veen G, Baur LHB, Kamp O, Bronzwaer JGF, Twisk JWR, et al. Improved clinical outcome after invasive management of patients with recent myocardial infarction and proven myocardial viability: primary results of a randomized controlled trial (VIAMI-trial). Trials 2012;13:1. https://doi.org/10.1186/1745-6215-13-1
van Loon RB, Veen G, Baur LH, Twisk JW, van Rossum AC. Long-term follow-up of the viability guided angioplasty after acute myocardial infarction (VIAMI) trial. Int J Cardiol 2015;186:111–116. https://doi.org/10.1016/j.ijcard.2015.03.152
Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 2015;36:2793–2867. https://doi.org/10.1093/eurheartj/ehv316
Ibanez B, Aletras AH, Arai AE, Arheden H, Bax J, Berry C, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC Scientific Expert Panel. J Am Coll Cardiol 2019;74:238–256. https://doi.org/10.1016/j.jacc.2019.05.024
Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM, et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J Am Coll Cardiol 2016;67:1674–1683. https://doi.org/10.1016/j.jacc.2016.01.069
Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2015;65:1454–1471. https://doi.org/10.1016/j.jacc.2015.02.032
Eitel I, de Waha S, Wöhrle J, Fuernau G, Lurz P, Pauschinger M, et al. Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J Am Coll Cardiol 2014;64:1217–1226. https://doi.org/10.1016/j.jacc.2014.06.1194
Haaf P, Reichlin T, Twerenbold R, Hoeller R, Rubini Gimenez M, Zellweger C, et al. Risk stratification in patients with acute chest pain using three high-sensitivity cardiac troponin assays. Eur Heart J 2014;35:365–375. https://doi.org/10.1093/eurheartj/ eht218
Tveit SH, Myhre PL, Hoff NJS, Le TM, Seljeflot I, Røysland R, et al. Superiority of high sensitivity cardiac troponin T vs. I for long-term prognostic value in patients with chest pain; data from the Akershus Cardiac Examination (ACE) 3 study. Clin Biochem 2020; 78:10–17. https://doi.org/10.1016/j.clinbiochem.2019.12.016
Welsh P, Preiss D, Hayward C, Shah ASV, McAllister D, Briggs A, et al. Cardiac troponin T and troponin I in the general population. Circulation 2019;139:2754–2764. https://doi.org/10.1161/circulationaha.118.038529
Thygesen K, Mair J, Giannitsis E, Mueller C, Lindahl B, Blankenberg S, et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J 2012;33: 2252–2257. https://doi.org/10.1093/eurheartj/ehs154
Anavekar NS, McMurray JJ, Velazquez EJ, Solomon SD, Kober L, Rouleau J-L, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 2004;351:1285–1295. https://doi.org/10.1056/NEJMoa041365
Thygesen K, Mair J, Mueller C, Huber K, Weber M, Plebani M, et al. Recommendations for the use of natriuretic peptides in acute cardiac care: a position statement from the Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Eur Heart J 2012;33:2001–2006. https://doi.org/10.1093/eurheartj/ ehq509
Ducrocq G, Schulte PJ, Budaj A, Cornel JH, Held C, Himmelmann A, et al. Balancing the risk of spontaneous ischemic and major bleeding events in acute coronary syndromes. Am Heart J 2017;186:91–99. https://doi.org/10.1016/j.ahj.2017.01.010
Valgimigli M, Costa F, Lokhnygina Y, Clare RM, Wallentin L, Moliterno DJ, et al. Trade-off of myocardial infarction vs. bleeding types on mortality after acute coronary syndrome: lessons from the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER) randomized trial. Eur Heart J 2017;38:804–810. https://doi.org/10.1093/eurheartj/ehw525
Newby LK, Hasselblad V, Armstrong PW, Van de Werf F, Mark DB, White HD, et al. Time-based risk assessment after myocardial infarction. Implications for timing of discharge and applications to medical decision-making. Eur Heart J 2003;24:182–189. https://doi.org/10.1016/s0195-668x(02)00301-9
Kwok CS, Khan MA, Rao SV, Kinnaird T, Sperrin M, Buchan I, et al. Access and non-access site bleeding after percutaneous coronary intervention and risk of subsequent mortality and major adverse cardiovascular events: systematic review and meta-analysis. Circ Cardiovasc Interv 2015;8:e001645. https://doi.org/10.1161/circinterventions.114.001645
Ndrepepa G, Neumann FJ, Richardt G, Schulz S, Tölg R, Stoyanov KM, et al. Prognostic value of access and non-access sites bleeding after percutaneous coronary intervention. Circ Cardiovasc Interv 2013;6:354–361. https://doi.org/10.1161/circinterventions.113.000433
Rao SV, Cohen MG, Kandzari DE, Bertrand OF, Gilchrist IC. The transradial approach to percutaneous coronary intervention: historical perspective, current concepts, and future directions. J Am Coll Cardiol 2010;55:2187–2195. https://doi.org/10.1016/j.jacc.2010.01.039
Jolly SS, Yusuf S, Cairns J, Niemelä K, Xavier D, Widimsky P, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 2011;377: 1409–1420. https://doi.org/10.1016/s0140-6736(11)60404-2
Valgimigli M, Gagnor A, Calabró P, Frigoli E, Leonardi S, Zaro T, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet 2015;385:2465–2476. https://doi.org/10.1016/s0140-6736(15)60292-6
Vranckx P, Frigoli E, Rothenbühler M, Tomassini F, Garducci S, Andò G, et al. Radial versus femoral access in patients with acute coronary syndromes with or without ST-segment elevation. Eur Heart J 2017;38:1069–1080. https://doi.org/10.1093/eurheartj/ehx048
Lee P, Liew D, Brennan A, Stub D, Lefkovits J, Reid CM, et al. Cost-effectiveness of radial access percutaneous coronary intervention in acute coronary syndrome. Am J Cardiol 2021;156:44–51. https://doi.org/10.1016/j.amjcard.2021.06.034
Kerensky RA, Wade M, Deedwania P, Boden WE, Pepine CJ. Revisiting the culprit lesion in non-Q-wave myocardial infarction. Results from the VANQWISH trial angiographic core laboratory. J Am Coll Cardiol 2002;39:1456–1463. https://doi.org/10.1016/ s0735-1097(02)01770-9
Johnson TW, Räber L, di Mario C, Bourantas C, Jia H, Mattesini A, et al. Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J 2019;40:2566–2584. https://doi.org/10.1093/eurheartj/ehz332
di Mario C, Koskinas KC, Räber L. Clinical benefit of IVUS guidance for coronary stenting: the ULTIMATE step toward definitive evidence? J Am Coll Cardiol 2018;72: 3138–3141. https://doi.org/10.1016/j.jacc.2018.10.029
Gao XF, Wang ZM, Wang F, Gu Y, Ge Z, Kong X-Q, et al. Intravascular ultrasound guidance reduces cardiac death and coronary revascularization in patients undergoing drug-eluting stent implantation: results from a meta-analysis of 9 randomized trials and 4724 patients. Int J Cardiovasc Imaging 2019;35:239–247. https://doi.org/10.1007/ s10554-019-01555-3
Darmoch F, Alraies MC, Al-Khadra Y, Moussa Pacha H, Pinto DS, Osborn EA. Intravascular ultrasound imaging-guided versus coronary angiography-guided percutaneous coronary intervention: a systematic review and meta-analysis. J Am Heart Assoc 2020;9:e013678. https://doi.org/10.1161/jaha.119.013678
Jia H, Dai J, He L, Xu Y, Shi Y, Zhao L, et al. EROSION III: a multicenter RCT of OCT-guided reperfusion in STEMI with early infarct artery patency. JACC Cardiovasc Interv 2022;15:846–856. https://doi.org/10.1016/j.jcin.2022.01.298
Cuculi F, De Maria GL, Meier P, Dall’Armellina E, de Caterina AR, Channon KM, et al. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J Am Coll Cardiol 2014;64:1894–1904. https://doi.org/10.1016/j.jacc.2014.07.987
De Bruyne B, Pijls NH, Bartunek J, Kulecki K, Bech J-W, De Winter H, et al. Fractional flow reserve in patients with prior myocardial infarction. Circulation 2001;104: 157–162. https://doi.org/10.1161/01.cir.104.2.157
Bønaa KH, Mannsverk J, Wiseth R, Aaberge L, Myreng Y, Nygård O, et al. Drug-eluting or bare-metal stents for coronary artery disease. N Engl J Med 2016;375:1242–1252. https://doi.org/10.1056/NEJMoa1607991
Räber L, Kelbæk H, Ostojic M, Baumbach A, Heg D, Tüller D, et al. Effect of biolimus-eluting stents with biodegradable polymer vs bare-metal stents on cardiovascular events among patients with acute myocardial infarction: the COMFORTABLE AMI randomized trial. JAMA 2012;308:777–787. https://doi.org/10.1001/jama.2012. 10065
Sabate M, Cequier A, Iñiguez A, Serra A, Hernandez-Antolin R, Mainar V, et al. Everolimus-eluting stent versus bare-metal stent in ST-segment elevation myocardial infarction (EXAMINATION): 1 year results of a randomised controlled trial. Lancet 2012;380:1482–1490. https://doi.org/10.1016/s0140-6736(12)61223-9
Sabaté M, Brugaletta S, Cequier A, Iñiguez A, Serra A, Jiménez-Quevedo P, et al. Clinical outcomes in patients with ST-segment elevation myocardial infarction treated with everolimus-eluting stents versus bare-metal stents (EXAMINATION): 5-year results of a randomised trial. Lancet 2016;387:357–366. https://doi.org/10.1016/s0140-6736(15)00548-6
Brugaletta S, Gomez-Lara J, Ortega-Paz L, Jimenez-Diaz V, Jimenez M, Jiménez-Quevedo P, et al. 10-Year follow-up of patients with everolimus-eluting versus bare-metal stents after ST-segment elevation myocardial infarction. J Am Coll Cardiol 2021;77:1165–1178. https://doi.org/10.1016/j.jacc.2020.12.059
Räber L, Yamaji K, Kelbæk H, Engstrøm T, Baumbach A, Roffi M, et al. Five-year clinical outcomes and intracoronary imaging findings of the COMFORTABLE AMI trial: randomized comparison of biodegradable polymer-based biolimus-eluting stents with bare-metal stents in patients with acute ST-segment elevation myocardial infarction. Eur Heart J 2019;40:1909–1919. https://doi.org/10.1093/eurheartj/ehz074
Vos NS, Fagel ND, Amoroso G, Herrman J-PR, Patterson MS, Piers LH, et al. Paclitaxel-coated balloon angioplasty versus drug-eluting stent in acute myocardial infarction: the REVELATION randomized trial. JACC Cardiovasc Interv 2019;12: 1691–1699. https://doi.org/10.1016/j.jcin.2019.04.016
Scheller B, Ohlow MA, Ewen S, Kische S, Rudolph TK, Clever YP, et al. Bare metal or drug-eluting stent versus drug-coated balloon in non-ST-elevation myocardial infarction: the randomised PEPCAD NSTEMI trial. EuroIntervention 2020;15: 1527–1533. https://doi.org/10.4244/eij-d-19-00723
Belkacemi A, Agostoni P, Nathoe HM, Voskuil M, Shao CL, Van Belle E, et al. First results of the DEB-AMI (drug eluting balloon in acute ST-segment elevation myocardial infarction) trial: a multicenter randomized comparison of drug-eluting balloon plus bare-metal stent versus bare-metal stent versus drug-eluting stent in primary percutaneous coronary intervention with 6-month angiographic, intravascular, functional, and clinical outcomes. J Am Coll Cardiol 2012;59:2327–2337. https://doi.org/10.1016/j.jacc.2012.02.027
Fröbert O, Lagerqvist B, Olivecrona GK, Omerovic E, Gudnason T, Maeng M, et al. Thrombus aspiration during ST-segment elevation myocardial infarction. N Engl J Med 2013;369:1587–1597. https://doi.org/10.1056/NEJMoa1308789
Lagerqvist B, Fröbert O, Olivecrona GK, Gudnason T, Maeng M, Alström P, et al. Outcomes 1 year after thrombus aspiration for myocardial infarction. N Engl J Med 2014;371:1111–1120. https://doi.org/10.1056/NEJMoa1405707
Jolly SS, Cairns JA, Yusuf S, Meeks B, Pogue J, Rokoss MJ, et al. Randomized trial of primary PCI with or without routine manual thrombectomy. N Engl J Med 2015;372: 1389–1398. https://doi.org/10.1056/NEJMoa1415098
Jolly SS, James S, Džavík V, Cairns JA, Mahmoud KD, Zijlstra F, et al. Thrombus aspiration in ST-segment-elevation myocardial infarction: an individual patient meta-analysis: thrombectomy trialists collaboration. Circulation 2017;135:143–152. https://doi.org/10.1161/circulationaha.116.025371
Jolly SS, Cairns JA, Lavi S, Cantor WJ, Bernat I, Cheema AN, et al. Thrombus aspiration in patients with high thrombus burden in the TOTAL trial. J Am Coll Cardiol 2018;72: 1589–1596. https://doi.org/10.1016/j.jacc.2018.07.047
Thiele H, de Waha S, Zeymer U, Desch S, Scheller B, Lauer B, et al. Effect of aspiration thrombectomy on microvascular obstruction in NSTEMI patients: the TATORT-NSTEMI trial. J Am Coll Cardiol 2014;64:1117–1124. https://doi.org/10.1016/j.jacc.2014.05.064
de Waha S, Patel MR, Granger CB, Ohman EM, Maehara A, Eitel I, et al. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur Heart J 2017;38: 3502–3510. https://doi.org/10.1093/eurheartj/ehx414
Corrigendum to: 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2019;40:3096. https://doi.org/10.1093/eurheartj/ehz507
Sabatine MS, Bergmark BA, Murphy SA, O’Gara PT, Smith PK, Serruys PW, et al. Percutaneous coronary intervention with drug-eluting stents versus coronary artery bypass grafting in left main coronary artery disease: an individual patient data meta-analysis. Lancet 2021;398:2247–2257. https://doi.org/10.1016/s0140-6736(21) 02334-5
Head SJ, Milojevic M, Daemen J, Ahn J-M, Boersma E, Christiansen EH, et al. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data. Lancet 2018;391:939–948. https://doi.org/10.1016/s0140-6736(18)30423-9
Adlam D, Alfonso F, Maas A, Vrints C. European Society of Cardiology, Acute Cardiovascular Care Association, SCAD study group: a position paper on spontaneous coronary artery dissection. Eur Heart J 2018;39:3353–3368. https://doi.org/10.1093/eurheartj/ehy080
Alfonso F, de la Torre Hernández JM, Ibáñez B, Sabaté M, Pan M, Gulati R, et al. Rationale and design of the BA-SCAD (Beta-blockers and Antiplatelet agents in patients with Spontaneous Coronary Artery Dissection) randomized clinical trial. Rev Esp Cardiol (Engl Ed) 2022;75:515–522. https://doi.org/10.1016/j.rec.2021.08.003
Jackson R, Al-Hussaini A, Joseph S, van Soest G, Wood A, Macaya F, et al. Spontaneous coronary artery dissection: pathophysiological insights from optical coherence tomography. JACC Cardiovasc Imaging 2019;12:2475–2488. https://doi.org/10.1016/j.jcmg.2019.01.015
Hayes SN, Kim ESH, Saw J, Adlam D, Arslanian-Engoren C, Economy KE, et al. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation 2018;137:e523–e557. https://doi.org/10.1161/cir.0000000000000564
Tweet MS, Eleid MF, Best PJM, Lennon RJ, Lerman A, Rihal CS, et al. Spontaneous coronary artery dissection: revascularization versus conservative therapy. Circ Cardiovasc Interv 2014;7:777–786. https://doi.org/10.1161/circinterventions.114.001659
Saw J, Aymong E, Sedlak T, Buller CE, Starovoytov A, Ricci D, et al. Spontaneous coronary artery dissection: association with predisposing arteriopathies and precipitating stressors and cardiovascular outcomes. Circ Cardiovasc Interv 2014;7:645–655. https://doi.org/10.1161/circinterventions.114.001760
Lettieri C, Zavalloni D, Rossini R, Morici N, Ettori F, Leonzi O, et al. Management and long-term prognosis of spontaneous coronary artery dissection. Am J Cardiol 2015; 116:66–73. https://doi.org/10.1016/j.amjcard.2015.03.039
Hayes SN, Tweet MS, Adlam D, Kim ESH, Gulati R, Price JE, et al. Spontaneous coronary artery dissection: JACC State-of-the-Art Review. J Am Coll Cardiol 2020;76: 961–984. https://doi.org/10.1016/j.jacc.2020.05.084
Nordmann AJ, Hengstler P, Harr T, Young J, Bucher HC. Clinical outcomes of primary stenting versus balloon angioplasty in patients with myocardial infarction: a meta-analysis of randomized controlled trials. Am J Med 2004;116:253–262. https:// doi.org/10.1016/j.amjmed.2003.08.035
Stone GW, Grines CL, Cox DA, Garcia E, Tcheng JE, Griffin JJ, et al. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med 2002;346:957–966. https://doi.org/10.1056/NEJMoa013404
Belle L, Motreff P, Mangin L, Rangé G, Marcaggi X, Marie A, et al. Comparison of immediate with delayed stenting using the minimalist immediate mechanical intervention approach in acute ST-segment-elevation myocardial infarction: the MIMI study. Circ Cardiovasc Interv 2016;9:e003388. https://doi.org/10.1161/circinterventions.115. 003388
Kelbæk H, Høfsten DE, Køber L, Helqvist S, Kløvgaard L, Holmvang L, et al. Deferred versus conventional stent implantation in patients with ST-segment elevation myocardial infarction (DANAMI 3-DEFER): an open-label, randomised controlled trial. Lancet 2016;387:2199–2206. https://doi.org/10.1016/s0140-6736(16)30072-1
Carrick D, Oldroyd KG, McEntegart M, Haig C, Petrie MC, Eteiba H, et al. A randomized trial of deferred stenting versus immediate stenting to prevent no- or slowreflow in acute ST-segment elevation myocardial infarction (DEFER-STEMI). J Am Coll Cardiol 2014;63:2088–2098. https://doi.org/10.1016/j.jacc.2014.02.530
Hong SJ, Kim BK, Shin DH, Nam CM, Kim JS, Ko Y-G, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA 2015;314:2155–2163. https://doi.org/10.1001/jama.2015.15454
Zhang J, Gao X, Kan J, Ge Z, Han L, Lu S, et al. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: the ULTIMATE trial. J Am Coll Cardiol 2018;72:3126–3137. https://doi.org/10.1016/j.jacc.2018.09.013
Gao XF, Ge Z, Kong XQ, Kan J, Han L, Lu S, et al. 3-Year outcomes of the ULTIMATE trial comparing intravascular ultrasound versus angiography-guided drug-eluting stent implantation. JACC Cardiovasc Interv 2021;14:247–257. https://doi.org/10.1016/j.jcin.2020.10.001
Meneveau N, Souteyrand G, Motreff P, Caussin C, Amabile N, Ohlmann P, et al. Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome: results of the multicenter, randomized DOCTORS study (Does Optical Coherence Tomography Optimize Results of Stenting). Circulation 2016;134:906–917. https://doi.org/10.1161/circulationaha.116.024393
Kala P, Cervinka P, Jakl M, Kanovsky J, Kupec A, Spacek R, et al. OCT guidance during stent implantation in primary PCI: a randomized multicenter study with nine months of optical coherence tomography follow-up. Int J Cardiol 2018;250:98–103. https://doi.org/10.1016/j.ijcard.2017.10.059
Secemsky EA, Butala N, Raja A, Khera R, Wang Y, Curtis JP, et al. Temporal changes and institutional variation in use of percutaneous coronary intervention for ST-elevation myocardial infarction with multivessel coronary artery disease in the United States: an NCDR research to practice project. JAMA Cardiol 2021;6: 574–580. https://doi.org/10.1001/jamacardio.2020.5354
Holmes DR Jr, Berger PB, Hochman JS, Granger CB, Thompson TD, Califf RM, et al. Cardiogenic shock in patients with acute ischemic syndromes with and without ST-segment elevation. Circulation 1999;100:2067–2073. https://doi.org/10.1161/01.cir.100.20.2067
Thiele H, Ohman EM, de Waha-Thiele S, Zeymer U, Desch S. Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J 2019;40: 2671–2683. https://doi.org/10.1093/eurheartj/ehz363
Papolos AI, Kenigsberg BB, Berg DD, Alviar CL, Bohula E, Burke JA, et al. Management and outcomes of cardiogenic shock in cardiac ICUs with versus without shock teams. J Am Coll Cardiol 2021;78:1309–1317. https://doi.org/10.1016/j.jacc.2021.07.044
Rab T, Ratanapo S, Kern KB, Basir MB, McDaniel M, Meraj P, et al. Cardiac shock care centers: JACC review topic of the week. J Am Coll Cardiol 2018;72:1972–1980. https://doi.org/10.1016/j.jacc.2018.07.074
Thiele H, Akin I, Sandri M, de Waha-Thiele S, Meyer-Saraei R, Fuernau G, et al. One-year outcomes after PCI strategies in cardiogenic shock. N Engl J Med 2018; 379:1699–1710. https://doi.org/10.1056/NEJMoa1808788
Sorajja P, Gersh BJ, Cox DA, McLaughlin MG, Zimetbaum P, Costantini C, et al. Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Eur Heart J 2007;28:1709–1716. https://doi.org/10.1093/eurheartj/ehm184
Dziewierz A, Siudak Z, Rakowski T, Zasada W, Dubiel JS, Dudek D. Impact of multivessel coronary artery disease and noninfarct-related artery revascularization on outcome of patients with ST-elevation myocardial infarction transferred for primary percutaneous coronary intervention (from the EUROTRANSFER Registry). Am J Cardiol 2010;106:342–347. https://doi.org/10.1016/j.amjcard.2010.03.029
Wald DS, Morris JK, Wald NJ, Chase AJ, Edwards RJ, Hughes LO, et al. Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med 2013;369: 1115–1123. https://doi.org/10.1056/NEJMoa1305520
Engstrøm T, Kelbæk H, Helqvist S, Høfsten DE, Kløvgaard L, Holmvang L, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): an open-label, randomised controlled trial. Lancet 2015; 386:665–671. https://doi.org/10.1016/s0140-6736(15)60648-1
Smits PC, Abdel-Wahab M, Neumann FJ, Boxma-de Klerk BM, Lunde K, Schotborgh CE, et al. Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N Engl J Med 2017;376:1234–1244. https://doi.org/10.1056/NEJMoa1701067
Mehta SR, Wood DA, Storey RF, Mehran R, Bainey KR, Nguyen H, et al. Complete revascularization with multivessel PCI for myocardial infarction. N Engl J Med 2019; 381:1411–1421. https://doi.org/10.1056/NEJMoa1907775
Bainey KR, Engstrøm T, Smits PC, Gershlick AH, James SK, Storey RF, et al. Complete vs culprit-lesion-only revascularization for ST-segment elevation myocardial infarction: a systematic review and meta-analysis. JAMA Cardiol 2020;5:881–888. https://doi.org/10.1001/jamacardio.2020.1251
Sardella G, Lucisano L, Garbo R, Pennacchi M, Cavallo E, Stio RE, et al. Single-staged compared with multi-staged PCI in multivessel NSTEMI patients: the SMILE trial. J Am Coll Cardiol 2016;67:264–272. https://doi.org/10.1016/j.jacc.2015.10.082
Siebert VR, Borgaonkar S, Jia X, Nguyen HL, Birnbaum Y, Lakkis NM, et al. Meta-analysis comparing multivessel versus culprit coronary arterial revascularization for patients with non-ST-segment elevation acute coronary syndromes. Am J Cardiol 2019;124:1501–1511. https://doi.org/10.1016/j.amjcard.2019.07.071
Rathod KS, Koganti S, Jain AK, Astroulakis Z, Lim P, Rakhit R, et al. Complete versus culprit-only lesion intervention in patients with acute coronary syndromes. J Am Coll Cardiol 2018;72:1989–1999. https://doi.org/10.1016/j.jacc.2018.07.089
Hanratty CG, Koyama Y, Rasmussen HH, Nelson GIC, Hansen PS, Ward MR. Exaggeration of nonculprit stenosis severity during acute myocardial infarction: implications for immediate multivessel revascularization. J Am Coll Cardiol 2002;40:911–916. https://doi.org/10.1016/s0735-1097(02)02049-1
Gibson CM, Ryan KA, Murphy SA, Mesley R, Marble SJ, Giugliano RP, et al. Impaired coronary blood flow in nonculprit arteries in the setting of acute myocardial infarction. J Am Coll Cardiol 1999;34:974–982. https://doi.org/10.1016/s0735-1097(99)00335-6
Ntalianis A, Sels JW, Davidavicius G, Tanaka N, Muller O, Trana C, et al. Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Interv 2010;3:1274–1281. https://doi.org/10.1016/j.jcin.2010.08.025
Musto C, De Felice F, Rigattieri S, Chin D, Marra A, Nazzaro MS, et al. Instantaneous wave-free ratio and fractional flow reserve for the assessment of nonculprit lesions during the index procedure in patients with ST-segment elevation myocardial infarction: the WAVE study. Am Heart J 2017;193:63–69. https://doi.org/10.1016/j.ahj.2017.07.017
Erbay A, Penzel L, Abdelwahed YS, Klotsche J, Schatz A-S, Steiner J, et al. Feasibility and diagnostic reliability of quantitative flow ratio in the assessment of non-culprit lesions in acute coronary syndrome. Int J Cardiovasc Imaging 2021;37:1815–1823. https://doi.org/10.1007/s10554-021-02195-2
Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 2010;55:2816–2821. https://doi.org/10.1016/j.jacc.2009.11.096
Van Belle E, Baptista SB, Raposo L, Henderson J, Rioufol G, Santos L, et al. Impact of routine fractional flow reserve on management decision and 1-year clinical outcome of patients with acute coronary syndromes: PRIME-FFR (Insights From the POST-IT [Portuguese Study on the Evaluation of FFR-Guided Treatment of Coronary Disease] and R3F [French FFR Registry] Integrated Multicenter Registries – Implementation of FFR [Fractional Flow Reserve] in Routine Practice). Circ Cardiovasc Interv 2017;10:e004296. https://doi.org/10.1161/circinterventions.116. 004296
Sels JW, Tonino PA, Siebert U, Fearon WF, Van’t Veer M, De Bruyne B, et al. Fractional flow reserve in unstable angina and non-ST-segment elevation myocardial infarction experience from the FAME (Fractional flow reserve versus Angiography for Multivessel Evaluation) study. JACC Cardiovasc Interv 2011;4:1183–1189. https://doi.org/10.1016/j.jcin.2011.08.008
Puymirat E, Cayla G, Simon T, Steg PG, Montalescot G, Durand-Zaleski I, et al. Multivessel PCI guided by FFR or angiography for myocardial infarction. N Engl J Med 2021;385:297–308. https://doi.org/10.1056/NEJMoa2104650
Wald DS, Hadyanto S, Bestwick JP. Should fractional flow reserve follow angiographic visual inspection to guide preventive percutaneous coronary intervention in ST-elevation myocardial infarction? Eur Heart J Qual Care Clin Outcomes 2020;6: 186–192. https://doi.org/10.1093/ehjqcco/qcaa012
Gallone G, Angelini F, Fortuni F, Gnecchi M, De Filippo O, Baldetti L, et al. Angiography- vs. physiology-guided complete revascularization in patients with ST-elevation myocardial infarction and multivessel disease: who is the better gatekeeper in this setting? A meta-analysis of randomized controlled trials. Eur Heart J Qual Care Clin Outcomes 2020;6:199–200. https://doi.org/10.1093/ehjqcco/qcaa007
Kobayashi Y, Lønborg J, Jong A, Nishi T, De Bruyne B, Høfsten DE, et al. Prognostic value of the residual SYNTAX score after functionally complete revascularization in ACS. J Am Coll Cardiol 2018;72:1321–1329. https://doi.org/10.1016/j.jacc.2018.06.069
Lee JM, Kim HK, Park KH, Choo EH, Kim CJ, Lee SH, et al. Fractional flow reserve versus angiography-guided strategy in acute myocardial infarction with multivessel disease: a randomized trial. Eur Heart J 2023;44:473–484. https://doi.org/10.1093/ eurheartj/ehac763
Harskamp RE, Bonatti JO, Zhao DX, Puskas JD, de Winter RJ, Alexander JH, et al. Standardizing definitions for hybrid coronary revascularization. J Thorac Cardiovasc Surg 2014;147:556–560. https://doi.org/10.1016/j.jtcvs.2013.10.019
Doenst T, Haverich A, Serruys P, Bonow RO, Kappetein P, Falk V, et al. PCI and CABG for treating stable coronary artery disease: JACC review topic of the week. J Am Coll Cardiol 2019;73:964–976. https://doi.org/10.1016/j.jacc.2018.11.053
Gershlick AH, Khan JN, Kelly DJ, Greenwood JP, Sasikaran T, Curzen N, et al. Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: the CvLPRIT trial. J Am Coll Cardiol 2015;65:963–972. https://doi.org/10.1016/j.jacc.2014.12.038
Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, et al. Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS-NSTEMI randomized trial. Eur Heart J 2015;36:100–111. https://doi.org/10.1093/eurheartj/ehu338
Pasupathy S, Air T, Dreyer RP, Tavella R, Beltrame JF. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation 2015;131:861–870. https://doi.org/10.1161/circulationaha.114.011201
Agewall S, Beltrame JF, Reynolds HR, Niessner A, Rosano G, Caforio ALP, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J 2017;38:143–153. https://doi.org/10.1093/eurheartj/ehw149
Tamis-Holland JE, Jneid H, Reynolds HR, Agewall S, Brilakis ES, Brown TM, et al. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease: a scientific statement from the American Heart Association. Circulation 2019;139:e891–e908. https://doi.org/10.1161/cir.0000000000000670
Matta A, Nader V, Canitrot R, Delmas C, Bouisset F, Lhermusier T, et al. Myocardial bridging is significantly associated to myocardial infarction with non-obstructive coronary arteries. Eur Heart J Acute Cardiovasc Care 2022;11:501–507. https://doi.org/10.1093/ehjacc/zuac047
Pargaonkar VS, Kimura T, Kameda R, Tanaka S, Yamada R, Schwartz JG, et al. Invasive assessment of myocardial bridging in patients with angina and no obstructive coronary artery disease. EuroIntervention 2021;16:1070–1078. https://doi.org/10.4244/eij-d-20-00779
Ford TJ, Ong P, Sechtem U, Beltrame J, Camici PG, Crea F, et al. Assessment of vascular dysfunction in patients without obstructive coronary artery disease: why, how, and when. JACC Cardiovasc Interv 2020;13:1847–1864. https://doi.org/10.1016/j.jcin.2020.05.052
Occhipinti G, Bucciarelli-Ducci C, Capodanno D. Diagnostic pathways in myocardial infarction with non-obstructive coronary artery disease (MINOCA). Eur Heart J Acute Cardiovasc Care 2021;10:813–822. https://doi.org/10.1093/ehjacc/zuab049
Eitel I, Behrendt F, Schindler K, Kivelitz D, Gutberlet M, Schuler G, et al. Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur Heart J 2008;29:2651–2659. https://doi.org/10.1093/eurheartj/ ehn433
Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 2011;306:277–286. https://doi.org/10.1001/jama.2011.992
Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 2018;72:3158–3176. https://doi.org/10.1016/j.jacc.2018.09.072
Lurz P, Luecke C, Eitel I, Föhrenbach F, Frank C, Grothoff M, et al. Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: the MyoRacer-trial. J Am Coll Cardiol 2016;67:1800–1811. https://doi.org/10.1016/j.jacc.2016.02.013
Reynolds HR, Maehara A, Kwong RY, Sedlak T, Saw J, Smilowitz NR, et al. Coronary optical coherence tomography and cardiac magnetic resonance imaging to determine underlying causes of myocardial infarction with nonobstructive coronary arteries in women. Circulation 2021;143:624–640. https://doi.org/10.1161/circulationaha.120. 052008
Pathik B, Raman B, Mohd Amin NH, Mahadavan D, Rajendran S, McGavigan AD, et al. Troponin-positive chest pain with unobstructed coronary arteries: incremental diagnostic value of cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2016;17:1146–1152. https://doi.org/10.1093/ehjci/jev289
Lyon AR, Bossone E, Schneider B, Sechtem U, Citro R, Underwood SR, et al. Current state of knowledge on Takotsubo syndrome: a Position Statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2016;18:8–27. https://doi.org/10.1002/ejhf.424
Ghadri JR, Wittstein IS, Prasad A, Sharkey S, Dote K, Akashi YJ, et al. International expert consensus document on Takotsubo syndrome (Part II): diagnostic workup, outcome, and management. Eur Heart J 2018;39:2047–2062. https://doi.org/10.1093/ eurheartj/ehy077
Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: the Task Force for the diagnosis and management of pericardial diseases of the European Society of Cardiology (ESC) endorsed by: the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2015;36:2921–2964. https://doi.org/10.1093/eurheartj/ ehv318
Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2013;34:2636–2648,2648a-2648d. https://doi.org/10.1093/eurheartj/eht210
Ford TJ, Stanley B, Good R, Rocchiccioli P, McEntegart M, Watkins S, et al. Stratified medical therapy using invasive coronary function testing in angina: the CorMicA trial. J Am Coll Cardiol 2018;72:2841–2855. https://doi.org/10.1016/j.jacc.2018.09.006
Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas AHEM, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J 2020;41:3504–3520. https://doi.org/10.1093/eurheartj/ehaa503
Cerrato E, Giacobbe F, Quadri G, Macaya F, Bianco M, Mori R, et al. Antiplatelet therapy in patients with conservatively managed spontaneous coronary artery dissection from the multicentre DISCO registry. Eur Heart J 2021;42:3161–3171. https://doi.org/10.1093/eurheartj/ehab372
McCarthy CP, Raber I, Chapman AR, Sandoval Y, Apple FS, Mills NL, et al. Myocardial injury in the era of high-sensitivity cardiac troponin assays: a practical approach for clinicians. JAMA Cardiol 2019;4:1034–1042. https://doi.org/10.1001/jamacardio.2019.2724
Bahit MC, Lopes RD, Clare RM, Newby LK, Pieper KS, Van de Werf F, et al. Heart failure complicating non-ST-segment elevation acute coronary syndrome: timing, predictors, and clinical outcomes. JACC Heart Fail 2013;1:223–229. https://doi.org/10.1016/j.jchf.2013.02.007
Chioncel O, Mebazaa A, Harjola VP, Coats AJ, Piepoli MF, Crespo-Leiro MG, et al. Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 2017;19:1242–1254. https://doi.org/10.1002/ejhf.890
Steg PG, Dabbous OH, Feldman LJ, Cohen-Solal A, Aumont MC, López-Sendón J, et al. Determinants and prognostic impact of heart failure complicating acute coronary syndromes: observations from the Global Registry of Acute Coronary Events (GRACE). Circulation 2004;109:494–499. https://doi.org/10.1161/01.Cir.0000109691.16944.Da
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021;42:3599–3726. https://doi.org/10.1093/eurheartj/ehab368
Chioncel O, Parissis J, Mebazaa A, Thiele H, Desch S, Bauersachs J, et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock—a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2020;22:1315–1341. https://doi.org/10.1002/ejhf.1922
Mullens W, Damman K, Harjola VP, Mebazaa A, Brunner-La Rocca HP, Martens P, et al. The use of diuretics in heart failure with congestion—a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2019;21:137–155. https://doi.org/10.1002/ejhf.1369
Lancellotti P, Price S, Edvardsen T, Cosyns B, Neskovic AN, Dulgheru R, et al. The use of echocardiography in acute cardiovascular care: recommendations of the European Association of Cardiovascular Imaging and the Acute Cardiovascular Care Association. Eur Heart J Cardiovasc Imaging 2015;16:119–146. https://doi.org/10.1093/ehjci/jeu210
Thiele H, Jobs A, Ouweneel DM, Henriques JPS, Seyfarth M, Desch S, et al. Percutaneous short-term active mechanical support devices in cardiogenic shock: a systematic review and collaborative meta-analysis of randomized trials. Eur Heart J 2017;38:3523–3531. https://doi.org/10.1093/eurheartj/ehx363
Amin AP, Spertus JA, Curtis JP, Desai N, Masoudi FA, Bach RG, et al. The evolving landscape of impella use in the United States among patients undergoing percutaneous coronary intervention with mechanical circulatory support. Circulation 2020;141: 273–284. https://doi.org/10.1161/circulationaha.119.044007
Dhruva SS, Ross JS, Mortazavi BJ, Hurley NC, Krumholz HM, Curtis JP, et al. Association of use of an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump with in-hospital mortality and major bleeding among patients with acute myocardial infarction complicated by cardiogenic shock. JAMA 2020;323:734–745. https://doi.org/10.1001/jama.2020.0254
Elbadawi A, Elgendy IY, Mahmoud K, Barakat AF, Mentias A, Mohamed AH, et al. Temporal trends and outcomes of mechanical complications in patients with acute myocardial infarction. JACC Cardiovasc Interv 2019;12:1825–1836. https://doi.org/10.1016/j.jcin.2019.04.039
Schrage B, Becher PM, Goßling A, Savarese G, Dabboura S, Yan I, et al. Temporal trends in incidence, causes, use of mechanical circulatory support and mortality in cardiogenic shock. ESC Heart Fail 2021;8:1295–1303. https://doi.org/10.1002/ehf2.13202
Watkins AC, Maassel NL, Ghoreishi M, Dawood MY, Pham SM, Kon ZN, et al. Preoperative venoarterial extracorporeal membrane oxygenation slashes risk score in advanced structural heart disease. Ann Thorac Surg 2018;106:1709–1715. https://doi.org/10.1016/j.athoracsur.2018.07.038
Ronco D, Matteucci M, Ravaux JM, Marra S, Torchio F, Corazzari C, et al. Mechanical circulatory support as a bridge to definitive treatment in post-infarction ventricular septal rupture. JACC Cardiovasc Interv 2021;14:1053–1066. https://doi.org/10.1016/j.jcin.2021.02.046
Matteucci M, Fina D, Jiritano F, Meani P, Raffa GM, Kowalewski M, et al. The use of extracorporeal membrane oxygenation in the setting of postinfarction mechanical complications: outcome analysis of the Extracorporeal Life Support Organization Registry. Interact Cardiovasc Thorac Surg 2020;31:369–374. https://doi.org/10.1093/icvts/ivaa108
Assenza GE, McElhinney DB, Valente AM, Pearson DD, Volpe M, Martucci G, et al. Transcatheter closure of post-myocardial infarction ventricular septal rupture. Circ Cardiovasc Interv 2013;6:59–67. https://doi.org/10.1161/circinterventions.112.972711
Kilic A, Sultan I, Chu D, Wang Y, Gleason TG. Mitral valve surgery for papillary muscle rupture: outcomes in 1342 patients from the society of thoracic surgeons database. Ann Thorac Surg 2020;110:1975–1981. https://doi.org/10.1016/j.athoracsur.2020.03. 097
Valle JA, Miyasaka RL, Carroll JD. Acute mitral regurgitation secondary to papillary muscle tear: is transcatheter edge-to-edge mitral valve repair a new paradigm? Circ Cardiovasc Interv 2017;10:e005050. https://doi.org/10.1161/circinterventions.117. 005050
Terashima M, Fujiwara S, Yaginuma GY, Takizawa K, Kaneko U, Meguro T. Outcome of percutaneous intrapericardial fibrin-glue injection therapy for left ventricular free wall rupture secondary to acute myocardial infarction. Am J Cardiol 2008;101: 419–421. https://doi.org/10.1016/j.amjcard.2007.09.086
Damluji AA, van Diepen S, Katz JN, Menon V, Tamis-Holland JE, Bakitas M, et al. Mechanical complications of acute myocardial infarction: a scientific statement from the American Heart Association. Circulation 2021;144:e16–e35. https://doi.org/10.1161/cir.0000000000000985
Gong FF, Vaitenas I, Malaisrie SC, Maganti K. Mechanical complications of acute myocardial infarction: a review. JAMA Cardiol 2021;6:341–349. https://doi.org/10.1001/jamacardio.2020.3690
Robinson AA, Jain A, Gentry M, McNamara RL. Left ventricular thrombi after STEMI in the primary PCI era: a systematic review and meta-analysis. Int J Cardiol 2016;221: 554–559. https://doi.org/10.1016/j.ijcard.2016.07.069
Levine GN, McEvoy JW, Fang JC, Ibeh C, McCarthy CP, Misra A, et al. Management of patients at risk for and with left ventricular thrombus: a scientific statement from the American Heart Association. Circulation 2022;146:e205–e223. https://doi.org/10.1161/cir.0000000000001092
Bulluck H, Chan MHH, Paradies V, Yellon RL, Ho HH, Chan MY, et al. Incidence and predictors of left ventricular thrombus by cardiovascular magnetic resonance in acute ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention: a meta-analysis. J Cardiovasc Magn Reson 2018;20:72. https://doi.org/10.1186/s12968-018-0494-3
Velangi PS, Choo C, Chen KA, Kazmirczak F, Nijjar PS, Farzaneh-Far A, et al. Long-term embolic outcomes after detection of left ventricular thrombus by late gadolinium enhancement cardiovascular magnetic resonance imaging: a matched cohort study. Circ Cardiovasc Imaging 2019;12:e009723. https://doi.org/10.1161/circimaging.119.009723
Funke Küpper AJ, Verheugt FW, Peels CH, Galema TW, Roos JP. Left ventricular thrombus incidence and behavior studied by serial two-dimensional echocardiography in acute anterior myocardial infarction: left ventricular wall motion, systemic embolism and oral anticoagulation. J Am Coll Cardiol 1989;13:1514–1520. https://doi.org/10.1016/ 0735-1097(89)90341-0
Zhang Z, Si D, Zhang Q, Jin L, Zheng H, Qu M, et al. Prophylactic rivaroxaban therapy for left ventricular thrombus after anterior ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2022;15:861–872. https://doi.org/10.1016/j.jcin.2022.01. 285
Dalia T, Lahan S, Ranka S, Goyal A, Zoubek S, Gupta K, et al. Warfarin versus direct oral anticoagulants for treating left ventricular thrombus: a systematic review and meta-analysis. Thromb J 2021;19:7. https://doi.org/10.1186/s12959-021-00259-w
Verma BR, Montane B, Chetrit M, Khayata M, Furqan MM, Ayoub C, et al. Pericarditis and post-cardiac injury syndrome as a sequelae of acute myocardial infarction. Curr Cardiol Rep 2020;22:127. https://doi.org/10.1007/s11886-020-01371-5
Schmitt J, Duray G, Gersh BJ, Hohnloser SH. Atrial fibrillation in acute myocardial infarction: a systematic review of the incidence, clinical features and prognostic implications. Eur Heart J 2009;30:1038–1045. https://doi.org/10.1093/eurheartj/ehn579
Batra G, Svennblad B, Held C, Jernberg T, Johanson P, Wallentin L, et al. All types of atrial fibrillation in the setting of myocardial infarction are associated with impaired outcome. Heart 2016;102:926–933. https://doi.org/10.1136/heartjnl-2015-308678
Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC). Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 2021;42:373–498. https:// doi.org/10.1093/eurheartj/ehaa612
Jabre P, Jouven X, Adnet F, Thabut G, Bielinski SJ, Weston SA, et al. Atrial fibrillation and death after myocardial infarction: a community study. Circulation 2011;123: 2094–2100. https://doi.org/10.1161/circulationaha.110.990192
Siu CW, Jim MH, Ho HH, Miu R, Lee SWL, Lau CP, et al. Transient atrial fibrillation complicating acute inferior myocardial infarction: implications for future risk of ischemic stroke. Chest 2007;132:44–49. https://doi.org/10.1378/chest.06-2733
Piccini JP, Schulte PJ, Pieper KS, Mehta RH, White HD, Van de Werf F, et al. Antiarrhythmic drug therapy for sustained ventricular arrhythmias complicating acute myocardial infarction. Crit Care Med 2011;39:78–83. https://doi.org/10.1097/CCM. 0b013e3181fd6ad7
Piccini JP, Hranitzky PM, Kilaru R, Rouleau JL, White HD, Aylward PE, et al. Relation of mortality to failure to prescribe beta blockers acutely in patients with sustained ventricular tachycardia and ventricular fibrillation following acute myocardial infarction (from the VALsartan In Acute myocardial iNfarcTion trial [VALIANT] Registry). Am J Cardiol 2008;102:1427–1432. https://doi.org/10.1016/j.amjcard.2008.07.033
Wolfe CL, Nibley C, Bhandari A, Chatterjee K, Scheinman M. Polymorphous ventricular tachycardia associated with acute myocardial infarction. Circulation 1991;84: 1543–1551. https://doi.org/10.1161/01.cir.84.4.1543
Liang JJ, Fender EA, Cha YM, Lennon RJ, Prasad A, Barsness GW, et al. Long-term outcomes in survivors of early ventricular arrhythmias after acute ST-elevation and non-ST-elevation myocardial infarction treated with percutaneous coronary intervention. Am J Cardiol 2016;117:709–713. https://doi.org/10.1016/j.amjcard.2015.12.002
Mehta RH, Yu J, Piccini JP, Tcheng JE, Farkouh ME, Reiffel J, et al. Prognostic significance of postprocedural sustained ventricular tachycardia or fibrillation in patients undergoing primary percutaneous coronary intervention (from the HORIZONS-AMI Trial). Am J Cardiol 2012;109:805–812. https://doi.org/10.1016/j.amjcard.2011.10.043
Masuda M, Nakatani D, Hikoso S, Suna S, Usami M, Matsumoto S, et al. Clinical impact of ventricular tachycardia and/or fibrillation during the acute phase of acute myocardial infarction on in-hospital and 5-year mortality rates in the percutaneous coronary intervention era. Circ J 2016;80:1539–1547. https://doi.org/10.1253/circj.CJ-16-0183
Podolecki T, Lenarczyk R, Kowalczyk J, Jedrzejczyk-Patej E, Chodor P, Mazurek M, et al. Prognostic significance of complex ventricular arrhythmias complicating ST-segment elevation myocardial infarction. Am J Cardiol 2018;121:805–809. https://doi.org/10.1016/j.amjcard.2017.12.036
Komatsu Y, Hocini M, Nogami A, Maury P, Peichl P, Iwasaki YK, et al. Catheter ablation of refractory ventricular fibrillation storm after myocardial infarction. Circulation 2019; 139:2315–2325. https://doi.org/10.1161/circulationaha.118.037997
Terkelsen CJ, Sørensen JT, Kaltoft AK, Nielsen SS, Thuesen L, Bøtker HE, et al. Prevalence and significance of accelerated idioventricular rhythm in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. Am J Cardiol 2009;104:1641–1646. https://doi.org/10.1016/j.amjcard.2009.07. 037
Mehran R, Pocock SJ, Nikolsky E, Clayton T, Dangas GD, Kirtane AJ, et al. A risk score to predict bleeding in patients with acute coronary syndromes. J Am Coll Cardiol 2010; 55:2556–2566. https://doi.org/10.1016/j.jacc.2009.09.076
Mehran R, Pocock SJ, Stone GW, Clayton TC, Dangas GD, Feit F, et al. Associations of major bleeding and myocardial infarction with the incidence and timing of mortality in patients presenting with non-ST-elevation acute coronary syndromes: a risk model from the ACUITY trial. Eur Heart J 2009;30:1457–1466. https://doi.org/10.1093/eurheartj/ehp110
Rao SV. The conundrum of reducing ischemic and bleeding events after PCI. J Am Coll Cardiol 2015;65:1421–1423. https://doi.org/10.1016/j.jacc.2015.02.012
Kwok CS, Sherwood MW, Watson SM, Nasir SB, Sperrin M, Nolan J, et al. Blood transfusion after percutaneous coronary intervention and risk of subsequent adverse outcomes: a systematic review and meta-analysis. JACC Cardiovasc Interv 2015;8:436–446. https://doi.org/10.1016/j.jcin.2014.09.026
Mehran R, Baber U, Steg PG, Ariti C, Weisz G, Witzenbichler B, et al. Cessation of dual antiplatelet treatment and cardiac events after percutaneous coronary intervention (PARIS): 2 year results from a prospective observational study. Lancet 2013;382: 1714–1722. https://doi.org/10.1016/s0140-6736(13)61720-1
Reidenberg MM. Drug discontinuation effects are part of the pharmacology of a drug. J Pharmacol Exp Ther 2011;339:324–328. https://doi.org/10.1124/jpet.111.183285
Abdelnabi M, Saleh Y, Fareed A, Nossikof A, Wang L, Morsi M, et al. Comparative study of oral anticoagulation in left ventricular thrombi (no-LVT trial). J Am Coll Cardiol 2021; 77:1590–1592. https://doi.org/10.1016/j.jacc.2021.01.049
Weinsaft JW, Kim J, Medicherla CB, Ma CL, Codella NCF, Kukar N, et al. Echocardiographic algorithm for post-myocardial infarction LV thrombus: a gatekeeper for thrombus evaluation by delayed enhancement CMR. JACC Cardiovasc Imaging 2016;9:505–515. https://doi.org/10.1016/j.jcmg.2015.06.017
Segal JB, McNamara RL, Miller MR, Kim N, Goodman SN, Powe NR, et al. The evidence regarding the drugs used for ventricular rate control. J Fam Pract 2000;49:47–59
Hou ZY, Chang MS, Chen CY, Tu MS, Lin SL, Chiang HT, et al. Acute treatment of recent-onset atrial fibrillation and flutter with a tailored dosing regimen of intravenous amiodarone: a randomized, digoxin-controlled study. Eur Heart J 1995;16:521–528. https://doi.org/10.1093/oxfordjournals.eurheartj.a060945
Deedwania PC, Singh BN, Ellenbogen K, Fisher S, Fletcher R, Singh SN. Spontaneous conversion and maintenance of sinus rhythm by amiodarone in patients with heart failure and atrial fibrillation: observations from the veterans affairs Congestive Heart failure Survival Trial of Antiarrhythmic Therapy (CHF-STAT). Circulation 1998;98: 2574–2579. https://doi.org/10.1161/01.cir.98.23.2574
Hofmann R, Steinwender C, Kammler J, Kypta A, Wimmer G, Leisch F, et al. Intravenous amiodarone bolus for treatment of atrial fibrillation in patients with advanced congestive heart failure or cardiogenic shock. Wien Klin Wochenschr 2004; 116:744–749. https://doi.org/10.1007/s00508-004-0264-0
Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002;346:877–883. https://doi.org/10.1056/NEJMoa013474
Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005; 352:225–237. https://doi.org/10.1056/NEJMoa043399
Nademanee K, Taylor R, Bailey WE, Rieders DE, Kosar EM. Treating electrical storm: sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation 2000;102:742–747. https://doi.org/10.1161/01.cir.102.7.742
Miwa Y, Ikeda T, Mera H, Miyakoshi M, Hoshida K, Yanagisawa R, et al. Effects of landiolol, an ultra-short-acting beta1-selective blocker, on electrical storm refractory to class III antiarrhythmic drugs. Circ J 2010;74:856–863. https://doi.org/10.1253/circj.cj-09-0772
Kudenchuk PJ, Cobb LA, Copass MK, Cummins RO, Doherty AM, Fahrenbruch CE, et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N Engl J Med 1999;341:871–878. https://doi.org/10.1056/ nejm199909163411203
Levine JH, Massumi A, Scheinman MM, Winkle RA, Platia EV, Chilson DA, et al. Intravenous amiodarone for recurrent sustained hypotensive ventricular tachyarrhythmias. J Am Coll Cardiol 1996;27:67–75. https://doi.org/10.1016/0735-1097(95) 00427-0
Gorenek B, Blomström Lundqvist C, Brugada Terradellas J, Camm AJ, Hindricks G, Huber K, et al. Cardiac arrhythmias in acute coronary syndromes: position paper from the joint EHRA, ACCA, and EAPCI task force. Europace 2014;16:1655–1673. https://doi.org/10.1093/europace/euu208
Kalarus Z, Svendsen JH, Capodanno D, Dan GA, De Maria E, Gorenek B, et al. Cardiac arrhythmias in the emergency settings of acute coronary syndrome and revascularization: an European Heart Rhythm Association (EHRA) consensus document, endorsed by the European Association of Percutaneous Cardiovascular Interventions (EAPCI), and European Acute Cardiovascular Care Association (ACCA). Europace 2019;21: 1603–1604. https://doi.org/10.1093/europace/euz163
Feigl D, Ashkenazy J, Kishon Y. Early and late atrioventricular block in acute inferior myocardial infarction. J Am Coll Cardiol 1984;4:35–38. https://doi.org/10.1016/s0735-1097(84)80315-0
Brady WJ, Swart G, DeBehnke DJ, Ma OJ, Aufderheide TP. The efficacy of atropine in the treatment of hemodynamically unstable bradycardia and atrioventricular block: prehospital and emergency department considerations. Resuscitation 1999;41: 47–55. https://doi.org/10.1016/s0300-9572(99)00032-5
Kusumoto FM, Calkins H, Boehmer J, Buxton AE, Chung MK, Gold MR, et al. HRS/ ACC/AHA expert consensus statement on the use of implantable cardioverter-defibrillator therapy in patients who are not included or not well represented in clinical trials. Circulation 2014;130:94–125. https://doi.org/10.1161/cir.0000000000000056
Glikson M, Nielsen JC, Kronborg MB, Michowitz Y, Auricchio A, Barbash IM, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J 2021;42:3427–3520. https://doi.org/10.1093/eurheartj/ehab364
Jim MH, Chan AO, Tse HF, Barold SS, Lau CP. Clinical and angiographic findings of complete atrioventricular block in acute inferior myocardial infarction. Ann Acad Med Singap 2010;39:185–190. https://doi.org/10.47102/annals-acadmedsg. V39N3p185
Gang UJ, Hvelplund A, Pedersen S, Iversen A, Jons C, Abildstrom SZ, et al. High-degree atrioventricular block complicating ST-segment elevation myocardial infarction in the era of primary percutaneous coronary intervention. Europace 2012;14:1639–1645. https://doi.org/10.1093/europace/eus161
Vicente-Ibarra N, Marín F, Pernías-Escrig V, Sandín-Rollán M, Núñez-Martínez L, Lozano T, et al. Impact of anemia as risk factor for major bleeding and mortality in patients with acute coronary syndrome. Eur J Intern Med 2019;61:48–53. https://doi.org/10.1016/j.ejim.2018.12.004
Younge JO, Nauta ST, Akkerhuis KM, Deckers JW, van Domburg RT. Effect of anemia on short- and long-term outcome in patients hospitalized for acute coronary syndromes. Am J Cardiol 2012;109:506–510. https://doi.org/10.1016/j.amjcard.2011.09. 046
Bassand JP, Afzal R, Eikelboom J, Wallentin L, Peters R, Budaj A, et al. Relationship between baseline haemoglobin and major bleeding complications in acute coronary syndromes. Eur Heart J 2010;31:50–58. https://doi.org/10.1093/eurheartj/ehp401
Carson JL, Guyatt G, Heddle NM, Grossman BJ, Cohn CS, Fung MK, et al. Clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage. JAMA 2016;316:2025–2035. https://doi.org/10.1001/jama.2016.9185
Chatterjee S, Wetterslev J, Sharma A, Lichstein E, Mukherjee D. Association of blood transfusion with increased mortality in myocardial infarction: a meta-analysis and diversity-adjusted study sequential analysis. JAMA Intern Med 2013;173:132–139. https://doi.org/10.1001/2013.jamainternmed.1001
Carson JL, Stanworth SJ, Dennis JA, Trivella M, Roubinian N, Fergusson DA, et al. Transfusion thresholds for guiding red blood cell transfusion. Cochrane Database Syst Rev 2021;12:CD002042. https://doi.org/10.1002/14651858.CD002042.pub5
Cooper HA, Rao SV, Greenberg MD, Rumsey MP, McKenzie M, Alcorn KW, et al. Conservative versus liberal red cell transfusion in acute myocardial infarction (the CRIT Randomized Pilot Study). Am J Cardiol 2011;108:1108–1111. https://doi.org/10.1016/j.amjcard.2011.06.014
Alexander KP, Chen AY, Wang TY, Rao SV, Newby LK, LaPointe NMA, et al. Transfusion practice and outcomes in non-ST-segment elevation acute coronary syndromes. Am Heart J 2008;155:1047–1053. https://doi.org/10.1016/j.ahj.2008.01.009
Ducrocq G, Gonzalez-Juanatey JR, Puymirat E, Lemesle G, Cachanado M, Durand-Zaleski I, et al. Effect of a restrictive vs liberal blood transfusion strategy on major cardiovascular events among patients with acute myocardial infarction and anemia: the REALITY randomized clinical trial. JAMA 2021;325:552–560. https://doi.org/10.1001/jama.2021.0135
Gonzalez-Juanatey JR, Lemesle G, Puymirat E, Ducrocq G, Cachanado M, Arnaiz JA, et al. One-year major cardiovascular events after restrictive versus liberal blood transfusion strategy in patients with acute myocardial infarction and anemia: the REALITY randomized trial. Circulation 2022;145:486–488. https://doi.org/10.1161/circulationaha.121.057909
Gore JM, Spencer FA, Gurfinkel EP, López-Sendón J, Steg PG, Granger CB, et al. Thrombocytopenia in patients with an acute coronary syndrome (from the Global Registry of Acute Coronary Events [GRACE]). Am J Cardiol 2009;103:175–180. https://doi.org/10.1016/j.amjcard.2008.08.055
Vora AN, Chenier M, Schulte PJ, Goodman S, Peterson ED, Pieper K, et al. Long-term outcomes associated with hospital acquired thrombocytopenia among patients with non-ST-segment elevation acute coronary syndrome. Am Heart J 2014;168:189–-196.e1. https://doi.org/10.1016/j.ahj.2014.04.010
Szummer K, Lundman P, Jacobson SH, Schön S, Lindbäck J, Stenestrand U, et al. Relation between renal function, presentation, use of therapies and in-hospital complications in acute coronary syndrome: data from the SWEDEHEART register. J Intern Med 2010;268:40–49. https://doi.org/10.1111/j.1365-2796.2009.02204.x
Berger AK, Duval S, Krumholz HM. Aspirin, beta-blocker, and angiotensin-converting enzyme inhibitor therapy in patients with end-stage renal disease and an acute myocardial infarction. J Am Coll Cardiol 2003;42:201–208. https://doi.org/10.1016/s0735-1097(03)00572-2
Panchal HB, Zheng S, Devani K, White CJ, Leinaar EF, Mukherjee D, et al. Impact of chronic kidney disease on revascularization and outcomes in patients with ST-elevation myocardial infarction. Am J Cardiol 2021;150:15–23. https://doi.org/10.1016/j.amjcard.2021.03.057
Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375:2073–2081. https://doi.org/10.1016/s0140-6736(10)60674-5
Santopinto JJ, Fox KA, Goldberg RJ, Budaj A, Piñero G, Avezum A, et al. Creatinine clearance and adverse hospital outcomes in patients with acute coronary syndromes: findings from the global registry of acute coronary events (GRACE). Heart 2003;89: 1003–1008. https://doi.org/10.1136/heart.89.9.1003
Szummer K, Lundman P, Jacobson SH, Schön S, Lindbäck J, Stenestrand U, et al. Influence of renal function on the effects of early revascularization in non-ST-elevation myocardial infarction: data from the Swedish Web-System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART). Circulation 2009;120: 851–858. https://doi.org/10.1161/circulationaha.108.838169
Huang HD, Alam M, Hamzeh I, Virani S, Deswal A, Aguilar D, et al. Patients with severe chronic kidney disease benefit from early revascularization after acute coronary syndrome. Int J Cardiol 2013;168:3741–3746. https://doi.org/10.1016/j.ijcard.2013.06.013
Kume K, Yasuoka Y, Adachi H, Noda Y, Hattori S, Araki R, et al. Impact of contrast-induced acute kidney injury on outcomes in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Cardiovasc Revasc Med 2013;14:253–257. https://doi.org/10.1016/j.carrev.2013.07.009
Bangalore S, Briguori C. Preventive strategies for contrast-induced acute kidney injury: and the winner is…. Circ Cardiovasc Interv 2017;10:e005262. https://doi.org/10.1161/circinterventions.117.005262
Davenport MS, Perazella MA, Yee J, Dillman JR, Fine D, McDonald RJ, et al. Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Kidney Med 2020;2:85–93. https://doi.org/10.1016/j.xkme.2020.01.001
Schweiger MJ, Chambers CE, Davidson CJ, Zhang S, Blankenship J, Bhalla NP, et al. Prevention of contrast induced nephropathy: recommendations for the high risk patient undergoing cardiovascular procedures. Catheter Cardiovasc Interv 2007;69: 135–140. https://doi.org/10.1002/ccd.20964
Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021; 42:3227–3337. https://doi.org/10.1093/eurheartj/ehab484
Ängerud KH, Brulin C, Näslund U, Eliasson M. Longer pre-hospital delay in first myocardial infarction among patients with diabetes: an analysis of 4266 patients in the northern Sweden MONICA Study. BMC Cardiovasc Disord 2013;13:6. https://doi.org/10.1186/1471-2261-13-6
Fu R, Li S-D, Song C-X, Yang J-A, Xu H-Y, Gao X-J, et al. Clinical significance of diabetes on symptom and patient delay among patients with acute myocardial infarction–an analysis from China Acute Myocardial Infarction (CAMI) registry. J Geriatr Cardiol 2019;16:395–400. https://doi.org/10.11909/j.issn.1671-5411.2019.05.002
Rossello X, Ferreira JP, McMurray JJ, Aguilar D, Pfeffer MA, Pitt B, et al. Editor’s choice–impact of insulin-treated diabetes on cardiovascular outcomes following high-risk myocardial infarction. Eur Heart J Acute Cardiovasc Care 2019;8:231–241. https://doi.org/10.1177/2048872618803701
Wallert J, Mitchell A, Held C, Hagström E, Leosdottir M, Olsson EMG. Cardiac rehabilitation goal attainment after myocardial infarction with versus without diabetes: a nationwide registry study. Int J Cardiol 2019;292:19–24. https://doi.org/10.1016/j.ijcard.2019.04.049
Ritsinger V, Jensen J, Ohm D, Omerovic E, Koul S, Fröbert O, et al. Elevated admission glucose is common and associated with high short-term complication burden after acute myocardial infarction: insights from the VALIDATE-SWEDEHEART study. Diab Vasc Dis Res 2019;16:582–584. https://doi.org/10.1177/1479164119871540
Weston C, Walker L, Birkhead J. Early impact of insulin treatment on mortality for hyperglycaemic patients without known diabetes who present with an acute coronary syndrome. Heart 2007;93:1542–1546. https://doi.org/10.1136/hrt.2006.108696
Ritsinger V, Malmberg K, Mårtensson A, Rydén L, Wedel H, Norhammar A. Intensified insulin-based glycaemic control after myocardial infarction: mortality during 20 year follow-up of the randomised Diabetes Mellitus Insulin Glucose Infusion in Acute Myocardial Infarction (DIGAMI 1) trial. Lancet Diabetes Endocrinol 2014;2:627–633. https://doi.org/10.1016/s2213-8587(14)70088-9
Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009;360:1283–1297. https://doi.org/10.1056/NEJMoa0810625
Rossello X, Yellon DM. A new era in the management of type 2 diabetes: is cardioprotection at long last a reality? Int J Cardiol 2017;228:198–200. https://doi.org/10.1016/j.ijcard.2016.11.246
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373: 2117–2128. https://doi.org/10.1056/NEJMoa1504720
Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016;375: 311–322. https://doi.org/10.1056/NEJMoa1603827
Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020;41:255–323. https://doi.org/10.1093/eurheartj/ehz486
Sinclair H, Batty JA, Qiu W, Kunadian V. Engaging older patients in cardiovascular research: observational analysis of the ICON-1 study. Open Heart 2016;3:e000436. https://doi.org/10.1136/openhrt-2016-000436
Rosengren A, Wallentin L, Simoons M, Gitt AK, Behar S, Battler A, et al. Age, clinical presentation, and outcome of acute coronary syndromes in the Euroheart acute coronary syndrome survey. Eur Heart J 2006;27:789–795. https://doi.org/10.1093/eurheartj/ehi774
Lopes RD, White JA, Tricoci P, White HD, Armstrong PW, Braunwald E, et al. Age, treatment, and outcomes in high-risk non-ST-segment elevation acute coronary syndrome patients: insights from the EARLY ACS trial. Int J Cardiol 2013;167:2580–2587. https://doi.org/10.1016/j.ijcard.2012.06.053
Reiter M, Twerenbold R, Reichlin T, Haaf P, Peter F, Meissner J, et al. Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. Eur Heart J 2011;32:1379–1389. https://doi.org/10.1093/eurheartj/ehr033
Mills GB, Ratcovich H, Adams-Hall J, Beska B, Kirkup E, Raharjo DE, et al. Is the contemporary care of the older persons with acute coronary syndrome evidence-based? European Heart Journal Open 2021;2:oeab044. https://doi.org/10.1093/ehjopen/ oeab044
Tegn N, Abdelnoor M, Aaberge L, Endresen K, Smith P, Aakhus S, et al. Invasive versus conservative strategy in patients aged 80 years or older with non-ST-elevation myocardial infarction or unstable angina pectoris (After Eighty study): an open-label randomised controlled trial. Lancet 2016;387:1057–1065. https://doi.org/10.1016/s0140-6736(15)01166-6
Bueno H, Betriu A, Heras M, Alonso JJ, Cequier A, Garcia EJ, et al. Primary angioplasty vs. fibrinolysis in very old patients with acute myocardial infarction: TRIANA (TRatamiento del Infarto Agudo de miocardio eN Ancianos) randomized trial and pooled analysis with previous studies. Eur Heart J 2011;32:51–60. https://doi.org/10. 1093/eurheartj/ehq375
Kunadian V, Qiu W, Ludman P, Redwood S, Curzen N, Stables R, et al. Outcomes in patients with cardiogenic shock following percutaneous coronary intervention in the contemporary era: an analysis from the BCIS database (British Cardiovascular Intervention Society). JACC Cardiovasc Interv 2014;7:1374–1385. https://doi.org/10.1016/j.jcin.2014.06.017
Kunadian V, Bawamia B, Maznyczka A, Zaman A, Qiu W. Outcomes following primary percutaneous coronary intervention in the setting of cardiac arrest: a registry database study. Eur Heart J Acute Cardiovasc Care 2015;4:6–15. https://doi.org/10.1177/ 2048872614534079
Richter D, Guasti L, Walker D, Lambrinou E, Lionis C, Abreu A, et al. Frailty in cardiology: definition, assessment and clinical implications for general cardiology. A consensus document of the Council for Cardiology Practice (CCP), Association for Acute Cardio Vascular Care (ACVC), Association of Cardiovascular Nursing and Allied Professions (ACNAP), European Association of Preventive Cardiology (EAPC), European Heart Rhythm Association (EHRA), Council on Valvular Heart Diseases (VHD), Council on Hypertension (CHT), Council of Cardio-Oncology (CCO), Working Group (WG) Aorta and Peripheral Vascular Diseases, WG e-Cardiology, WG Thrombosis, of the European Society of Cardiology, European Primary Care Cardiology Society (EPCCS). Eur J Prev Cardiol 2022;29:216–227. https://doi.org/10.1093/eurjpc/zwaa167
Walker DM, Gale CP, Lip G, Martin-Sanchez FJ, McIntyre HF, Mueller C, et al. Editor’s choice–frailty and the management of patients with acute cardiovascular disease: a position paper from the Acute Cardiovascular Care Association. Eur Heart J Acute Cardiovasc Care 2018;7:176–193. https://doi.org/10.1177/2048872618758931
Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet 2013;381:752–762. https://doi.org/10.1016/s0140-6736(12)62167-9
Chung KJNC, Wilkinson C, Veerasamy M, Kunadian V. Frailty scores and their utility in older patients with cardiovascular disease. Interv Cardiol 2021;16:e05. https://doi.org/10.15420/icr.2020.18
Gu SZ, Qiu W, Batty JA, Sinclair H, Veerasamy M, Brugaletta S, et al. Coronary artery lesion phenotype in frail older patients with non-ST-elevation acute coronary syndrome undergoing invasive care. EuroIntervention 2019;15:e261–e268. https://doi.org/10.4244/eij-d-18-00848
Batty J, Qiu W, Gu S, Sinclair H, Veerasamy M, Beska B, et al. One-year clinical outcomes in older patients with non-ST elevation acute coronary syndrome undergoing coronary angiography: an analysis of the ICON1 study. Int J Cardiol 2019;274:45–51. https://doi.org/10.1016/j.ijcard.2018.09.086
Beska B, Coakley D, MacGowan G, Adams-Hall J, Wilkinson C, Kunadian V, et al. Frailty and quality of life after invasive management for non-ST elevation acute coronary syndrome. Heart 2022;108:203–211. https://doi.org/10.1136/heartjnl-2021-319064
Beska B, Mills GB, Ratcovich H, Wilkinson C, Damluji AA, Kunadian V, et al. Impact of multimorbidity on long-term outcomes in older adults with non-ST elevation acute coronary syndrome in the North East of England: a multi-centre cohort study of patients undergoing invasive care. BMJ Open 2022;12:e061830. https://doi.org/10.1136/ bmjopen-2022-061830
Gu SZ, Beska B, Chan D, Neely D, Batty JA, Adams-Hall J, et al. Cognitive decline in older patients with non-ST elevation acute coronary syndrome. J Am Heart Assoc 2019;8:e011218. https://doi.org/10.1161/jaha.118.011218
Ismail S, Wong C, Rajan P, Vidovich MI. ST-elevation acute myocardial infarction in pregnancy: 2016 update. Clin Cardiol 2017;40:399–406. https://doi.org/10.1002/clc. 22655
Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomström-Lundqvist C, Cífková R, De Bonis M, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J 2018;39:3165–3241. https://doi.org/10.1093/eurheartj/ehy340
Roth A, Elkayam U. Acute myocardial infarction associated with pregnancy. J Am Coll Cardiol 2008;52:171–180. https://doi.org/10.1016/j.jacc.2008.03.049
Elkayam U, Jalnapurkar S, Barakkat MN, Khatri N, Kealey AJ, Mehra A, et al. Pregnancy-associated acute myocardial infarction: a review of contemporary experience in 150 cases between 2006 and 2011. Circulation 2014;129:1695–1702. https://doi.org/10.1161/circulationaha.113.002054
Elkayam U, Goland S, Pieper PG, Silverside CK. High-risk cardiac disease in pregnancy: Part I. J Am Coll Cardiol 2016;68:396–410. https://doi.org/10.1016/j.jacc.2016.05.048
Bharadwaj A, Potts J, Mohamed MO, Parwani P, Swamy P, Lopez-Mattei JC, et al. Acute myocardial infarction treatments and outcomes in 6.5 million patients with a current or historical diagnosis of cancer in the USA. Eur Heart J 2020;41:2183–2193. https://doi.org/10.1093/eurheartj/ehz851
Velders MA, Boden H, Hofma SH, Osanto S, van der Hoeven BL, Heestermans AACM, et al. Outcome after ST elevation myocardial infarction in patients with cancer treated with primary percutaneous coronary intervention. Am J Cardiol 2013;112:1867–1872. https://doi.org/10.1016/j.amjcard.2013.08.019
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): developed by the Task Force on cardio-oncology of the European Society of Cardiology (ESC). Eur Heart J 2022;43:4229–4361. https://doi.org/10.1093/ eurheartj/ehac244
Potts JE, Iliescu CA, Lopez Mattei JC, Martinez SC, Holmvang L, Ludman P, et al. Percutaneous coronary intervention in cancer patients: a report of the prevalence and outcomes in the United States. Eur Heart J 2019;40:1790–1800. https://doi.org/10.1093/eurheartj/ehy769
Pothineni NV, Shah NN, Rochlani Y, Saad M, Kovelamudi S, Marmagkiolis K, et al. Temporal trends and outcomes of acute myocardial infarction in patients with cancer. Ann Transl Med 2017;5:482. https://doi.org/10.21037/atm.2017.11.29
Gevaert SA, Halvorsen S, Sinnaeve PR, Sambola A, Gulati G, Lancellotti P, et al. Evaluation and management of cancer patients presenting with acute cardiovascular disease: a Consensus Document of the Acute CardioVascular Care (ACVC) association and the ESC Council of Cardio-Oncology-Part 1: acute coronary syndromes and acute pericardial diseases. Eur Heart J Acute Cardiovasc Care 2021;10:947–959. https://doi.org/10.1093/ehjacc/zuab056
Lancellotti P, Suter TM, López-Fernández T, Galderisi M, Lyon AR, Van der Meer P, et al. Cardio-Oncology Services: rationale, organization, and implementation. Eur Heart J 2019;40:1756–1763. https://doi.org/10.1093/eurheartj/ehy453
Mohamed MO, Van Spall HGC, Kontopantelis E, Alkhouli M, Barac A, Elgendy IY, et al. Effect of primary percutaneous coronary intervention on in-hospital outcomes among active cancer patients presenting with ST-elevation myocardial infarction: a propensity score matching analysis. Eur Heart J Acute Cardiovasc Care 2021;10:829–839. https://doi.org/10.1093/ehjacc/zuaa032
Guddati AK, Joy PS, Kumar G. Analysis of outcomes of percutaneous coronary intervention in metastatic cancer patients with acute coronary syndrome over a 10-year period. J Cancer Res Clin Oncol 2016;142:471–479. https://doi.org/10.1007/s00432-015-2056-5
Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 2003;348:491–499. https://doi.org/10.1056/NEJMoa021833
Jo SH, Youn TJ, Koo BK, Park JS, Kang HJ, Cho YS, et al. Renal toxicity evaluation and comparison between visipaque (Iodixanol) and hexabrix (Ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol 2006;48:924–930. https://doi.org/10.1016/j.jacc.2006.06.047
Solomon RJ, Natarajan MK, Doucet S, Sharma SK, Staniloae CS, Katholi RE, et al. Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation 2007;115:3189–3196. https://doi.org/10.1161/circulationaha.106.671644
Brar SS, Shen AY, Jorgensen MB, Kotlewski A, Aharonian VJ, Desai N, et al. Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial. JAMA 2008;300:1038–1046. https://doi.org/10.1001/jama.300.9.1038
Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AYJ, Jorgensen M, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet 2014;383: 1814–1823. https://doi.org/10.1016/s0140-6736(14)60689-9
Giacoppo D, Gargiulo G, Buccheri S, Aruta P, Byrne RA, Cassese S, et al. Preventive strategies for contrast-induced acute kidney injury in patients undergoing percutaneous coronary procedures: evidence from a hierarchical Bayesian network meta-analysis of 124 trials and 28240 patients. Circ Cardiovasc Interv 2017;10: e004383. https://doi.org/10.1161/circinterventions.116.004383
Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet 2017;389:1312–1322. https://doi.org/10.1016/s0140-6736(17)30057-0
Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019;393:31–39. https://doi.org/10.1016/s0140-6736(18)32590-x
Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 2019;7:776–785. https://doi.org/10.1016/ s2213-8587(19)30249-9
Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019;380:2295–2306. https://doi.org/10.1056/NEJMoa1811744
Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020;383: 1436–1446. https://doi.org/10.1056/NEJMoa2024816
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019;381:1995–2008. https://doi.org/10.1056/NEJMoa1911303
Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020;383: 1413–1424. https://doi.org/10.1056/NEJMoa2022190
Packer M, Butler J, Zannad F, Filippatos G, Ferreira JP, Pocock SJ, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and a preserved ejection fraction: the EMPEROR-preserved trial. Circulation 2021;144:1284–1294. https://doi.org/10.1161/circulationaha.121.056824
Ferrannini G, De Bacquer D, De Backer G, Kotseva K, Mellbin L, Wood D, et al. Screening for glucose perturbations and risk factor management in dysglycemic patients with coronary artery disease–a persistent challenge in need of substantial improvement: a report from ESC EORP EUROASPIRE V. Diabetes Care 2020;43: 726–733. https://doi.org/10.2337/dc19-2165
Shahim B, De Bacquer D, De Backer G, Gyberg V, Kotseva K, Mellbin L, et al. The prognostic value of fasting plasma glucose, two-hour postload glucose, and HbA(1c) in patients with coronary artery disease: a report from EUROASPIRE IV: a survey from the European Society of Cardiology. Diabetes Care 2017;40:1233–1240. https://doi.org/10.2337/dc17-0245
Ritsinger V, Tanoglidi E, Malmberg K, Näsman P, Rydén L, Tenerz Å, et al. Sustained prognostic implications of newly detected glucose abnormalities in patients with acute myocardial infarction: long-term follow-up of the Glucose Tolerance in Patients with Acute Myocardial Infarction cohort. Diab Vasc Dis Res 2015;12:23–32. https://doi.org/10.1177/1479164114551746
Svensson AM, McGuire DK, Abrahamsson P, Dellborg M. Association between hyper- and hypoglycaemia and 2 year all-cause mortality risk in diabetic patients with acute coronary events. Eur Heart J 2005;26:1255–1261. https://doi.org/10.1093/eurheartj/ ehi230
Pinto DS, Skolnick AH, Kirtane AJ, Murphy SA, Barron HV, Giugliano RP, et al. U-shaped relationship of blood glucose with adverse outcomes among patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 2005;46:178–180. https://doi.org/10.1016/j.jacc.2005.03.052
Cholesterol Treatment Trialists’ Collaboration. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet 2019;393:407–415. https://doi.org/10.1016/s0140-6736(18) 31942-1
Bach RG, Cannon CP, Giugliano RP, White JA, Lokhnygina Y, Bohula EA, et al. Effect of simvastatin-ezetimibe compared with simvastatin monotherapy after acute coronary syndrome among patients 75 years or older: a secondary analysis of a randomized clinical trial. JAMA Cardiol 2019;4:846–854. https://doi.org/10.1001/jamacardio.2019.2306
Roe MT, Armstrong PW, Fox KA, White HD, Prabhakaran D, Goodman SG, et al. Prasugrel versus clopidogrel for acute coronary syndromes without revascularization. N Engl J Med 2012;367:1297–1309. https://doi.org/10.1056/NEJMoa1205512
Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: Part 2. J Am Coll Cardiol 2017;70:2552–2565. https://doi.org/10.1016/j.jacc.2017.09.1095
Herrmann J. Vascular toxic effects of cancer therapies. Nat Rev Cardiol 2020;17: 503–522. https://doi.org/10.1038/s41569-020-0347-2
Long M, Ye Z, Zheng J, Chen W, Li L. Dual anti-platelet therapy following percutaneous coronary intervention in a population of patients with thrombocytopenia at baseline: a meta-analysis. BMC Pharmacol Toxicol 2020;21:31. https://doi.org/10.1186/ s40360-020-00409-2
Ambrosetti M, Abreu A, Corrà U, Davos CH, Hansen D, Frederix I, et al. Secondary prevention through comprehensive cardiovascular rehabilitation: from knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur J Prev Cardiol 2020;28:460–495. https://doi.org/10.1177/2047487320913379
Abreu A, Frederix I, Dendale P, Janssen A, Doherty P, Piepoli MF, et al. Standardization and quality improvement of secondary prevention through cardiovascular rehabilitation programmes in Europe: the avenue towards EAPC accreditation programme: a position statement of the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology (EAPC). Eur J Prev Cardiol 2020;28: 496–509. https://doi.org/10.1177/2047487320924912
Rossello X, Pocock SJ, Julian DG. Long-term use of cardiovascular drugs: challenges for research and for patient care. J Am Coll Cardiol 2015;66:1273–1285. https://doi.org/10.1016/j.jacc.2015.07.018
Frederix I, Dendale P, Schmid JP. Who needs secondary prevention? Eur J Prev Cardiol 2017;24:8–13. https://doi.org/10.1177/2047487317706112
Rea F, Ronco R, Pedretti RFE, Merlino L, Corrao G. Better adherence with out-of-hospital healthcare improved long-term prognosis of acute coronary syndromes: evidence from an Italian real-world investigation. Int J Cardiol 2020;318: 14–20. https://doi.org/10.1016/j.ijcard.2020.06.017
Salzwedel A, Jensen K, Rauch B, Doherty P, Metzendorf MI, Hackbusch M, et al. Effectiveness of comprehensive cardiac rehabilitation in coronary artery disease patients treated according to contemporary evidence based medicine: update of the Cardiac Rehabilitation Outcome Study (CROS-II). Eur J Prev Cardiol 2020;27: 1756–1774. https://doi.org/10.1177/2047487320905719
Santiago de Araújo Pio C, Marzolini S, Pakosh M, Grace SL. Effect of cardiac rehabilitation dose on mortality and morbidity: a systematic review and meta-regression analysis. Mayo Clin Proc 2017;92:1644–1659. https://doi.org/10.1016/j.mayocp.2017.07. 019
van Halewijn G, Deckers J, Tay HY, van Domburg R, Kotseva K, Wood D. Lessons from contemporary trials of cardiovascular prevention and rehabilitation: a systematic review and meta-analysis. Int J Cardiol 2017;232:294–303. https://doi.org/10.1016/j.ijcard.2016.12.125
Dibben G, Faulkner J, Oldridge N, Rees K, Thompson DR, Zwisler AD, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev 2021;11:Cd001800. https://doi.org/10.1002/14651858.CD001800.pub4
Anderson L, Thompson DR, Oldridge N, Zwisler AD, Rees K, Martin N, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev 2016;2016:CD001800. https://doi.org/10.1002/14651858.CD001800.pub3
Benzer W, Rauch B, Schmid JP, Zwisler AD, Dendale P, Davos CH, et al. Exercise-based cardiac rehabilitation in twelve European countries: results of the European cardiac rehabilitation registry. Int J Cardiol 2017;228:58–67. https://doi.org/10.1016/j.ijcard.2016.11.059
Clark RA, Conway A, Poulsen V, Keech W, Tirimacco R, Tideman P. Alternative models of cardiac rehabilitation: a systematic review. Eur J Prev Cardiol 2015;22:35–74. https://doi.org/10.1177/2047487313501093
Kotseva K, De Backer G, De Bacquer D, Rydén L, Hoes A, Grobbee D, et al. Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur J Prev Cardiol 2019;26:824–835. https://doi.org/10.1177/ 2047487318825350
Frederix I, Vanhees L, Dendale P, Goetschalckx K. A review of telerehabilitation for cardiac patients. J Telemed Telecare 2015;21:45–53. https://doi.org/10.1177/ 1357633x14562732
Conraads VM, Deaton C, Piotrowicz E, Santaularia N, Tierney S, Piepoli MF, et al. Adherence of heart failure patients to exercise: barriers and possible solutions: a position statement of the Study Group on Exercise Training in Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2012;14: 451–458. https://doi.org/10.1093/eurjhf/hfs048
De Bacquer D, Astin F, Kotseva K, Pogosova N, De Smedt D, De Backer G, et al. Poor adherence to lifestyle recommendations in patients with coronary heart disease: results from the EUROASPIRE surveys. Eur J Prev Cardiol 2021;29:383–395. https://doi.org/10.1093/eurjpc/zwab115
Dalal HM, Taylor RS. Telehealth technologies could improve suboptimal rates of participation in cardiac rehabilitation. Heart 2016;102:1155–1156. https://doi.org/10.1136/heartjnl-2016-309429
Lavie CJ, Arena R, Franklin BA. Cardiac rehabilitation and healthy life-style interventions: rectifying program deficiencies to improve patient outcomes. J Am Coll Cardiol 2016;67:13–15. https://doi.org/10.1016/j.jacc.2015.09.103
Fors A, Taft C, Ulin K, Ekman I. Person-centred care improves self-efficacy to control symptoms after acute coronary syndrome: a randomized controlled trial. Eur J Cardiovasc Nurs 2016;15:186–194. https://doi.org/10.1177/1474515115623437
Frederix I, Caiani EG, Dendale P, Anker S, Bax J, Böhm A, et al. ESC e-Cardiology Working Group Position Paper: overcoming challenges in digital health implementation in cardiovascular medicine. Eur J Prev Cardiol 2019;26:1166–1177. https://doi.org/10.1177/2047487319832394
Rosselló X, Stanbury M, Beeri R, Kirchhof P, Casadei B, Kotecha D. Digital learning and the future cardiologist. Eur Heart J 2019;40:499–501. https://doi.org/10.1093/eurheartj/ehy884
Frederix I, Solmi F, Piepoli MF, Dendale P. Cardiac telerehabilitation: a novel cost-efficient care delivery strategy that can induce long-term health benefits. Eur J Prev Cardiol 2017;24:1708–1717. https://doi.org/10.1177/2047487317732274
Avila A, Claes J, Buys R, Azzawi M, Vanhees L, Cornelissen V. Home-based exercise with telemonitoring guidance in patients with coronary artery disease: does it improve long-term physical fitness? Eur J Prev Cardiol 2020;27:367–377. https://doi.org/10.1177/ 2047487319892201
Claes J, Cornelissen V, McDermott C, Moyna N, Pattyn N, Cornelis N, et al. Feasibility, acceptability, and clinical effectiveness of a technology-enabled cardiac rehabilitation platform (physical activity toward health-I): randomized controlled trial. J Med Internet Res 2020;22:e14221. https://doi.org/10.2196/14221
Kraal JJ, Peek N, Van den Akker-Van Marle ME, Kemps HM. Effects of home-based training with telemonitoring guidance in low to moderate risk patients entering cardiac rehabilitation: short-term results of the FIT@Home study. Eur J Prev Cardiol 2014;21: 26–31. https://doi.org/10.1177/2047487314552606
Maddison R, Rawstorn JC, Stewart RAH, Benatar J, Whittaker R, Rolleston A, et al. Effects and costs of real-time cardiac telerehabilitation: randomised controlled non-inferiority trial. Heart 2019;105:122–129. https://doi.org/10.1136/heartjnl-2018-313189
Scherrenberg M, Wilhelm M, Hansen D, Völler H, Cornelissen V, Frederix I, et al. The future is now: a call for action for cardiac telerehabilitation in the COVID-19 pandemic from the secondary prevention and rehabilitation section of the European Association of Preventive Cardiology. Eur J Prev Cardiol 2020;28:524–540. https://doi.org/10.1177/ 2047487320939671
Huang K, Liu W, He D, Huang B, Xiao D, Peng Y, et al. Telehealth interventions versus center-based cardiac rehabilitation of coronary artery disease: a systematic review and meta-analysis. Eur J Prev Cardiol 2015;22:959–971. https://doi.org/10.1177/ 2047487314561168
Wolf A, Vella R, Fors A. The impact of person-centred care on patients’ care experiences in relation to educational level after acute coronary syndrome: secondary outcome analysis of a randomised controlled trial. Eur J Cardiovasc Nurs 2019;18:299–308. https://doi.org/10.1177/1474515118821242
Brown MT, Bussell J, Dutta S, Davis K, Strong S, Mathew S. Medication adherence: truth and consequences. Am J Med Sci 2016;351:387–399. https://doi.org/10.1016/j.amjms.2016.01.010
Arlt AD, Nestoriuc Y, Rief W. Why current drug adherence programs fail: addressing psychological risk factors of nonadherence. Curr Opin Psychiatry 2017;30:326–333. https://doi.org/10.1097/yco.0000000000000345
Easthall C, Taylor N, Bhattacharya D. Barriers to medication adherence in patients prescribed medicines for the prevention of cardiovascular disease: a conceptual framework. Int J Pharm Pract 2019;27:223–231. https://doi.org/10.1111/ijpp.12491
Seabury SA, Dougherty JS, Sullivan J. Medication adherence as a measure of the quality of care provided by physicians. Am J Manag Care 2019;25:78–83.
Pedretti RFE, Hansen D, Ambrosetti M, Back M, Berger T, Ferreira MC, et al. How to optimize the adherence to a guideline-directed medical therapy in the secondary prevention of cardiovascular diseases: a clinical consensus statement from the European Association of Preventive Cardiology (EAPC). Eur J Prev Cardiol 2022;30:149–166. https://doi.org/10.1093/eurjpc/zwac204
Castellano JM, Sanz G, Peñalvo JL, Bansilal S, Fernández-Ortiz A, Alvarez L, et al. A polypill strategy to improve adherence: results from the FOCUS project. J Am Coll Cardiol 2014;64:2071–2082. https://doi.org/10.1016/j.jacc.2014.08.021
Selak V, Webster R, Stepien S, Bullen C, Patel A, Thom S, et al. Reaching cardiovascular prevention guideline targets with a polypill-based approach: a meta-analysis of randomised clinical trials. Heart 2019;105:42–48. https://doi.org/10.1136/heartjnl-2018-313108
Castellano JM, Fuster V, Jennings C, Prescott E, Bueno H. Role of the polypill for secondary prevention in ischaemic heart disease. Eur J Prev Cardiol 2017;24:44–51. https://doi.org/10.1177/2047487317707324
Castellano JM, Pocock SJ, Bhatt DL, Quesada AJ, Owen R, Fernandez-Ortiz A, et al. Polypill strategy in secondary cardiovascular prevention. N Engl J Med 2022;387: 967–977. https://doi.org/10.1056/NEJMoa2208275
Palmer MJ, Barnard S, Perel P, Free C. Mobile phone-based interventions for improving adherence to medication prescribed for the primary prevention of cardiovascular disease in adults. Cochrane Database Syst Rev 2018;6:CD012675. https://doi.org/10.1002/14651858.CD012675.pub2
Guerriero C, Cairns J, Roberts I, Rodgers A, Whittaker R, Free C. The cost-effectiveness of smoking cessation support delivered by mobile phone text messaging: Txt2stop. Eur J Health Econ 2013;14:789–797. https://doi.org/10.1007/s10198-012-0424-5
Gandapur Y, Kianoush S, Kelli HM, Misra S, Urrea B, Blaha MJ, et al. The role of mHealth for improving medication adherence in patients with cardiovascular disease: a systematic review. Eur Heart J Qual Care Clin Outcomes 2016;2:237–244. https://doi.org/10.1093/ehjqcco/qcw018
Fortuna RJ, Nagel AK, Rocco TA, Legette-Sobers S, Quigley DD. Patient experience with care and its association with adherence to hypertension medications. Am J Hypertens 2018;31:340–345. https://doi.org/10.1093/ajh/hpx200
Keenan J. Improving adherence to medication for secondary cardiovascular disease prevention. Eur J Prev Cardiol 2017;24:29–35. https://doi.org/10.1177/ 2047487317708145
Geidl W, Schlesinger S, Mino E, Miranda L, Pfeifer K. Dose-response relationship between physical activity and mortality in adults with noncommunicable diseases: a systematic review and meta-analysis of prospective observational studies. Int J Behav Nutr Phys Act 2020;17:109. https://doi.org/10.1186/s12966-020-01007-5
Ekblom O, Ek A, Cider Å, Hambraeus K, Börjesson M. Increased physical activity post-myocardial infarction is related to reduced mortality: results from the SWEDEHEART registry. J Am Heart Assoc 2018;7:e010108. https://doi.org/10.1161/jaha.118.010108
Delgado-Lista J, Alcala-Diaz JF, Torres-Peña JD, Quintana-Navarro GM, Fuentes F, Garcia-Rios A, et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet 2022;399:1876–1885. https://doi.org/10.1016/s0140-6736(22)00122-2
de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 1999;99:779–785. https://doi.org/10.1161/01.cir.99.6.779
Critchley JA, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. JAMA 2003;290:86–97. https://doi.org/10.1001/jama.290.1.86
Chow CK, Jolly S, Rao-Melacini P, Fox KAA, Anand SS, Yusuf S. Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes. Circulation 2010;121:750–758. https://doi.org/10.1161/circulationaha.109.891523
United States Public Health Service Office of the Surgeon General. Smoking Cessation: A Report of the Surgeon General. In: US Department of Health and Human Services; 2020.
Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, et al. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: an Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention, 2011 ACCF/ AHA Guideline for Coronary Artery Bypass Graft Surgery, 2012 ACC/AHA/ACP/ AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease, 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes, and 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation 2016;134: e123–e155. https://doi.org/10.1161/cir.0000000000000404
Cahill K, Stevens S, Perera R, Lancaster T. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst Rev 2013; 2013:CD009329. https://doi.org/10.1002/14651858.CD009329.pub2
Eisenberg MJ, Windle SB, Roy N, Old W, Grondin FR, Bata I, et al. Varenicline for smoking cessation in hospitalized patients with acute coronary syndrome. Circulation 2016;133:21–30. https://doi.org/10.1161/circulationaha.115.019634
Sterling LH, Windle SB, Filion KB, Touma L, Eisenberg MJ. Varenicline and adverse cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 2016;5:e002849. https://doi.org/10.1161/jaha.115.002849
Windle SB, Dehghani P, Roy N, Old W, Grondin FR, Bata I, et al. Smoking abstinence 1 year after acute coronary syndrome: follow-up from a randomized controlled trial of varenicline in patients admitted to hospital. CMAJ 2018;190:E347–E354. https://doi.org/10.1503/cmaj.170377
Kavousi M, Pisinger C, Barthelemy JC, De Smedt D, Koskinas K, Marques-Vidal P, et al. Electronic cigarettes and health with special focus on cardiovascular effects: position paper of the European Association of Preventive Cardiology (EAPC). Eur J Prev Cardiol 2020;28:1552–1566. https://doi.org/10.1177/2047487320941993
Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 2018;378:e34. https://doi.org/10.1056/NEJMoa1800389
Wood AM, Kaptoge S, Butterworth AS, Willeit P, Warnakula S, Bolton T, et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 2018;391: 1513–1523. https://doi.org/10.1016/s0140-6736(18)30134-x
Holmes MV, Dale CE, Zuccolo L, Silverwood RJ, Guo Y, Ye Z, et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ 2014;349:g4164. https://doi.org/10.1136/bmj.g4164
Millwood IY, Walters RG, Mei XW, Guo Y, Yang L, Bian Z, et al. Conventional and genetic evidence on alcohol and vascular disease aetiology: a prospective study of 500 000 men and women in China. Lancet 2019;393:1831–1842. https://doi.org/10.1016/ s0140-6736(18)31772-0
Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ 2019;366:l4570. https://doi.org/10.1136/bmj.l4570
Patterson R, McNamara E, Tainio M, de Sá TH, Smith AD, Sharp SJ, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol 2018;33:811–829. https://doi.org/10.1007/s10654-018-0380-1
WHO Guidelines Review Committee. WHO Guidelines on Physical Activity and Sedentary Behaviour. World Health Organization, 2020.
Hansen D, Abreu A, Ambrosetti M, Cornelissen V, Gevaert A, Kemps H, et al. Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: why and how: a position statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur J Prev Cardiol 2022;29:230–245. https://doi.org/10.1093/eurjpc/zwab007
De Schutter A, Kachur S, Lavie CJ, Menezes A, Shum KK, Bangalore S, et al. Cardiac rehabilitation fitness changes and subsequent survival. Eur Heart J Qual Care Clin Outcomes 2018;4:173–179. https://doi.org/10.1093/ehjqcco/qcy018
Baumeister H, Hutter N, Bengel J. Psychological and pharmacological interventions for depression in patients with coronary artery disease. Cochrane Database Syst Rev 2011; 2011:Cd008012. https://doi.org/10.1002/14651858.CD008012.pub3
Richards SH, Anderson L, Jenkinson CE, Whalley B, Rees K, Davies P, et al. Psychological interventions for coronary heart disease: cochrane systematic review and meta-analysis. Eur J Prev Cardiol 2018;25:247–259. https://doi.org/10.1177/ 2047487317739978
Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/ EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020;41:111–188. https://doi.org/10.1093/eurheartj/ ehz455
Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017;38: 2459–2472. https://doi.org/10.1093/eurheartj/ehx144
Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017;376:1713–1722. https://doi.org/10.1056/NEJMoa1615664
Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 2018;379: 2097–2107. https://doi.org/10.1056/NEJMoa1801174
Navarese EP, Kowalewski M, Andreotti F, van Wely M, Camaro C, Kolodziejczak M, et al. Meta-analysis of time-related benefits of statin therapy in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Am J Cardiol 2014; 113:1753–1764. https://doi.org/10.1016/j.amjcard.2014.02.034
Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 2015;372:2387–2397. https://doi.org/10.1056/NEJMoa1410489
Koskinas KC, Windecker S, Pedrazzini G, Mueller C, Cook S, Matter CM, et al. Evolocumab for early reduction of LDL cholesterol levels in patients with acute coronary syndromes (EVOPACS). J Am Coll Cardiol 2019;74:2452–2462. https://doi.org/10.1016/j.jacc.2019.08.010
Trankle CR, Wohlford G, Buckley LF, Kadariya D, Ravindra K, Markley R, et al. Alirocumab in acute myocardial infarction: results from the Virginia Commonwealth University Alirocumab Response Trial (VCU-AlirocRT). J Cardiovasc Pharmacol 2019; 74:266–269. https://doi.org/10.1097/fjc.0000000000000706
Iannuzzo G, Gentile M, Bresciani A, Mallardo V, Di Lorenzo A, Merone P, et al. Inhibitors of protein convertase subtilisin/kexin 9 (PCSK9) and acute coronary syndrome (ACS): the state-of-the-art. J Clin Med 2021;10:1510. https://doi.org/10.3390/ jcm10071510
Räber L, Ueki Y, Otsuka T, Losdat S, Häner JD, Lonborg J, et al. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction: the PACMAN-AMI randomized clinical trial. JAMA 2022; 327:1771–1781. https://doi.org/10.1001/jama.2022.5218
Nicholls SJ, Kataoka Y, Nissen SE, Prati F, Windecker S, Puri R, et al. Effect of evolocumab on coronary plaque phenotype and burden in statin-treated patients following myocardial infarction. JACC Cardiovasc Imaging 2022;15:1308–1321. https://doi.org/10.1016/j.jcmg.2022.03.002
Schubert J, Lindahl B, Melhus H, Renlund H, Leosdottir M, Yari A, et al. Low-density lipoprotein cholesterol reduction and statin intensity in myocardial infarction patients and major adverse outcomes: a Swedish nationwide cohort study. Eur Heart J 2021;42: 243–252. https://doi.org/10.1093/eurheartj/ehaa1011
Gencer B, Mach F, Murphy SA, De Ferrari GM, Huber K, Lewis BS, et al. Efficacy of evolocumab on cardiovascular outcomes in patients with recent myocardial infarction: a prespecified secondary analysis from the FOURIER trial. JAMA Cardiol 2020;5: 952–957. https://doi.org/10.1001/jamacardio.2020.0882
O’Donoghue ML, Giugliano RP, Wiviott SD, Atar D, Keech A, Kuder JF, et al. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation 2022;146:1109–1119. https://doi.org/10.1161/circulationaha.122. 061620
Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 2019;380:11–22. https://doi.org/10.1056/NEJMoa1812792
Freemantle N, Cleland J, Young P, Mason J, Harrison J. β blockade after myocardial infarction: systematic review and meta regression analysis. BMJ 1999;318:1730–1737. https://doi.org/10.1136/bmj.318.7200.1730
Martínez-Milla J, Raposeiras-Roubín S, Pascual-Figal DA, Ibáñez B. Role of beta-blockers in cardiovascular disease in 2019. Rev Esp Cardiol (Engl Ed) 2019;72: 844–852. https://doi.org/10.1016/j.rec.2019.04.014
Dahl Aarvik M, Sandven I, Dondo TB, Gale CP, Ruddox V, Munkhaugen J, et al. Effect of oral β-blocker treatment on mortality in contemporary post-myocardial infarction patients: a systematic review and meta-analysis. Eur Heart J Cardiovasc Pharmacother 2019; 5:12–20. https://doi.org/10.1093/ehjcvp/pvy034
Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet 2001;357: 1385–1390. https://doi.org/10.1016/s0140-6736(00)04560-8
Kim J, Kang D, Park H, Kang M, Park TK, Lee JM, et al. Long-term β-blocker therapy and clinical outcomes after acute myocardial infarction in patients without heart failure: nationwide cohort study. Eur Heart J 2020;41:3521–3529. https://doi.org/10.1093/ eurheartj/ehaa376
Raposeiras-Roubín S, Abu-Assi E, Redondo-Diéguez A, González-Ferreiro R, López-López A, Bouzas-Cruz N, et al. Prognostic benefit of beta-blockers after acute coronary syndrome with preserved systolic function. Still relevant today? Rev Esp Cardiol (Engl Ed) 2015;68:585–591. https://doi.org/10.1016/j.rec.2014.07.028
Dondo TB, Hall M, West RM, Jernberg T, Lindahl B, Bueno H, et al. β-blockers and mortality after acute myocardial infarction in patients without heart failure or ventricular dysfunction. J Am Coll Cardiol 2017;69:2710–2720. https://doi.org/10.1016/j.jacc.2017.03.578
Watanabe H, Ozasa N, Morimoto T, Shiomi H, Bingyuan B, Suwa S, et al. Long-term use of carvedilol in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. PLoS One 2018;13:e0199347. https://doi.org/10.1371/journal.pone.0199347
Rossello X, Raposeiras-Roubin S, Latini R, Dominguez-Rodriguez A, Barrabés JA, Sánchez PL, et al. Rationale and design of the pragmatic clinical trial tREatment with Beta-blockers after myOcardial infarction withOut reduced ejection fracTion (REBOOT). Eur Heart J Cardiovasc Pharmacother 2021;8:291–301. https://doi.org/10.1093/ehjcvp/pvab060
Munkhaugen J, Ruddox V, Halvorsen S, Dammen T, Fagerland MW, Hernæs KH, et al. BEtablocker Treatment After acute Myocardial Infarction in revascularized patients without reduced left ventricular ejection fraction (BETAMI): rationale and design of a prospective, randomized, open, blinded end point study. Am Heart J 2019;208: 37–46. https://doi.org/10.1016/j.ahj.2018.10.005
Kristensen AMD, Bovin A, Zwisler AD, Cerquira C, Torp-Pedersen C, Bøtker HE, et al. Design and rationale of the Danish trial of beta-blocker treatment after myocardial infarction without reduced ejection fraction: study protocol for a randomized controlled trial. Trials 2020;21:415. https://doi.org/10.1186/s13063-020-4214-6
Puymirat E, Riant E, Aissaoui N, Soria A, Ducrocq G, Coste P, et al. β blockers and mortality after myocardial infarction in patients without heart failure: multicentre prospective cohort study. BMJ 2016;354:i4801. https://doi.org/10.1136/bmj.i4801
Zeitouni M, Kerneis M, Lattuca B, Guedeney P, Cayla G, Collet JP, et al. Do patients need lifelong β-blockers after an uncomplicated myocardial infarction? Am J Cardiovasc Drugs 2019;19:431–438. https://doi.org/10.1007/s40256-019-00338-4
ISIS-4 Collaborative Group. ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet 1995;345:669–685. https://doi.org/10.1016/S0140-6736(95)90865-X
Held PH, Yusuf S, Furberg CD. Calcium channel blockers in acute myocardial infarction and unstable angina: an overview. BMJ 1989;299:1187–1192. https://doi.org/10.1136/bmj.299.6709.1187
Køber L, Torp-Pedersen C, Carlsen JE, Bagger H, Eliasen P, Lyngborg K, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 1995;333: 1670–1676. https://doi.org/10.1056/nejm199512213332503
Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ, Cuddy TE, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction–results of the survival and ventricular enlargement trial. N Engl J Med 1992;327:669–677. https://doi.org/10.1056/nejm199209033271001
The AIRE Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993;342: 821–828. https://doi.org/10.1016/0140-6736(93)92693-N
Fox KM. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 2003;362:782–788. https://doi.org/10.1016/s0140-6736(03)14286-9
The Heart Outcomes Prevention Evaluation Study Investigators; Yusuf S, Sleight P, Pogue Bosch J, Davies R, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000;342: 145–153. https://doi.org/10.1056/nejm200001203420301
ACE Inhibitor Myocardial Infarction Collaborative Group. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation 1998;97: 2202–2212. https://doi.org/10.1161/01.cir.97.22.2202
Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau JL, Køber L, Maggioni AP, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 2003;349:1893–1906. https://doi.org/10.1056/NEJMoa032292
Swedberg K, Eneroth P, Kjekshus J, Snapinn S. Effects of enalapril and neuroendocrine activation on prognosis in severe congestive heart failure (follow-up of the CONSENSUS trial). Am J Cardiol 1990;66:D40–D45. https://doi.org/10.1016/0002-9149(90)90475-g
Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 1995;273: 1450–1456. https://doi.org/10.1001/jama.1995.03520420066040
Packer M, Poole-Wilson PA, Armstrong PW, Cleland JGF, Horowitz JD, Massie BM, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. Circulation 1999; 100:2312–2318. https://doi.org/10.1161/01.cir.100.23.2312
Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991;325:293–302. https://doi.org/10.1056/nejm199108013250501
McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371:993–1004. https://doi.org/10.1056/NEJMoa1409077
Pfeffer MA, Claggett B, Lewis EF, Granger CB, Køber L, Maggioni AP, et al. Angiotensin receptor-neprilysin inhibition in acute myocardial infarction. N Engl J Med 2021;385: 1845–1855. https://doi.org/10.1056/NEJMoa2104508
Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003;348:1309–1321. https://doi.org/10.1056/ NEJMoa030207
Montalescot G, Pitt B, Lopez de Sa E, Hamm CW, Flather M, Verheugt F, et al. Early eplerenone treatment in patients with acute ST-elevation myocardial infarction without heart failure: the Randomized Double-Blind Reminder Study. Eur Heart J 2014;35: 2295–2302. https://doi.org/10.1093/eurheartj/ehu164
Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 2020;17:761–772. https://doi.org/10.1038/s41569-020-0406-8
Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644–657. https://doi.org/10.1056/NEJMoa1611925
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019;380:347–357. https://doi.org/10.1056/NEJMoa1812389
Nikolaus M, Massimo F, Katharina S, Dirk M-W, Ramzi AA, Manuel JA, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 2023; https://doi.org/10.1093/eurheartj/ehad192
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021;385:1451–1461. https://doi.org/10.1056/NEJMoa2107038
Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med 2022;387:1089–1098. https://doi.org/10.1056/NEJMoa2206286
von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, Wallner M, et al. Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J 2022;43: 4421–4432. https://doi.org/10.1093/eurheartj/ehac494
Harrington J, Udell JA, Jones WS, Anker SD, Bhatt DL, Petrie MC, et al. Empagliflozin in patients post myocardial infarction rationale and design of the EMPACT-MI trial. Am Heart J 2022;253:86–98. https://doi.org/10.1016/j.ahj.2022.05.010
Lai KC, Lam SK, Chu KM, Wong BCY, Hui WM, Hu WHC, et al. Lansoprazole for the prevention of recurrences of ulcer complications from long-term low-dose aspirin use. N Engl J Med 2002;346:2033–2038. https://doi.org/10.1056/NEJMoa012877
Casado Arroyo R, Polo-Tomas M, Roncalés MP, Scheiman J, Lanas A. Lower GI bleeding is more common than upper among patients on dual antiplatelet therapy: long-term follow-up of a cohort of patients commonly using PPI co-therapy. Heart 2012; 98:718–723. https://doi.org/10.1136/heartjnl-2012-301632
Small DS, Farid NA, Payne CD, Weerakkody GJ, Li YG, Brandt JT, et al. Effects of the proton pump inhibitor lansoprazole on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. J Clin Pharmacol 2008;48:475–484. https://doi.org/10.1177/0091270008315310
Sibbing D, Morath T, Stegherr J, Braun S, Vogt W, Hadamitzky M, et al. Impact of proton pump inhibitors on the antiplatelet effects of clopidogrel. Thromb Haemost 2009; 101:714–719. https://doi.org/10.1160/TH08-12-0808
Gilard M, Arnaud B, Cornily JC, Le Gal G, Lacut K, Le Calvez G, et al. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J Am Coll Cardiol 2008;51:256–260. https://doi.org/10.1016/j.jacc.2007.06.064
O’Donoghue ML, Braunwald E, Antman EM, Murphy SA, Bates ER, Rozenman Y, et al. Pharmacodynamic effect and clinical efficacy of clopidogrel and prasugrel with or without a proton-pump inhibitor: an analysis of two randomised trials. Lancet 2009;374: 989–997. https://doi.org/10.1016/s0140-6736(09)61525-7
Goodman SG, Clare R, Pieper KS, Nicolau JC, Storey RF, Cantor WJ, et al. Association of proton pump inhibitor use on cardiovascular outcomes with clopidogrel and ticagrelor: insights from the platelet inhibition and patient outcomes trial. Circulation 2012;125:978–986. https://doi.org/10.1161/circulationaha.111.032912
Yedlapati SH, Khan SU, Talluri S, Lone AN, Khan MZ, Khan MS, et al. Effects of influenza vaccine on mortality and cardiovascular outcomes in patients with cardiovascular disease: a systematic review and meta-analysis. J Am Heart Assoc 2021;10:e019636. https://doi.org/10.1161/jaha.120.019636
Liprandi ÁS, Liprandi MIS, Zaidel EJ, Aisenberg GM, Baranchuk A, Barbosa ECD, et al. Influenza vaccination for the prevention of cardiovascular disease in the Americas: consensus document of the Inter-American Society of Cardiology and the World Heart Federation. Glob Heart 2021;16:55. https://doi.org/10.5334/gh.1069
Gurfinkel EP, Leon de la Fuente R, Mendiz O, Mautner B. Flu vaccination in acute coronary syndromes and planned percutaneous coronary interventions (FLUVACS) study. Eur Heart J 2004;25:25–31. https://doi.org/10.1016/j.ehj.2003.10.018
Phrommintikul A, Kuanprasert S, Wongcharoen W, Kanjanavanit R, Chaiwarith R, Sukonthasarn A, et al. Influenza vaccination reduces cardiovascular events in patients with acute coronary syndrome. Eur Heart J 2011;32:1730–1735. https://doi.org/10.1093/eurheartj/ehr004
Fröbert O, Götberg M, Erlinge D, Akhtar Z, Christiansen EH, MacIntyre CR, et al. Influenza vaccination after myocardial infarction: a randomized, double-blind, placebo-controlled, multicenter trial. Circulation 2021;144:1476–1484. https://doi.org/10.1161/circulationaha.121.057042
Chen Y, Zhang H, Chen Y, Li M, Luo W, Liu Y, et al. Colchicine may become a new cornerstone therapy for coronary artery disease: a meta-analysis of randomized controlled trials. Clin Rheumatol 2022;41:1873–1887. https://doi.org/10.1007/s10067-022-06050-0
Razavi E, Ramezani A, Kazemi A, Attar A. Effect of treatment with colchicine after acute coronary syndrome on major cardiovascular events: a systematic review and meta-analysis of clinical trials. Cardiovasc Ther 2022;2022:8317011. https://doi.org/10.1155/2022/8317011
Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 2019;381: 2497–2505. https://doi.org/10.1056/NEJMoa1912388
Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al. Colchicine in patients with chronic coronary disease. N Engl J Med 2020;383:1838–1847. https://doi.org/10.1056/NEJMoa2021372
Opstal TSJ, Fiolet ATL, van Broekhoven A, Mosterd A, Eikelboom JW, Nidorf SM, et al. Colchicine in patients with chronic coronary disease in relation to prior acute coronary syndrome. J Am Coll Cardiol 2021;78:859–866. https://doi.org/10.1016/j.jacc.2021.06.037
Ji H, Fang L, Yuan L, Zhang Q. Effects of exercise-based cardiac rehabilitation in patients with acute coronary syndrome: a meta-analysis. Med Sci Monit 2019;25: 5015–5027. https://doi.org/10.12659/msm.917362
Candelaria D, Randall S, Ladak L, Gallagher R. Health-related quality of life and exercise-based cardiac rehabilitation in contemporary acute coronary syndrome patients: a systematic review and meta-analysis. Qual Life Res 2020;29:579–592. https://doi.org/10.1007/s11136-019-02338-y
Anthonisen NR, Skeans MA, Wise RA, Manfreda J, Kanner RE, Connett JE, et al. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med 2005;142:233–239. https://doi.org/10.7326/0003-4819-142-4-200502150-00005
Becerra-Tomás N, Blanco Mejía S, Viguiliouk E, Khan T, Kendall CWC, Kahleova H, et al. Mediterranean diet, cardiovascular disease and mortality in diabetes: a systematic review and meta-analysis of prospective cohort studies and randomized clinical trials. Crit Rev Food Sci Nutr 2020;60:1207–1227. https://doi.org/10.1080/10408398.2019. 1565281
Liu Y, Lee DC, Li Y, Zhu W, Zhang R, Sui X, et al. Associations of resistance exercise with cardiovascular disease morbidity and mortality. Med Sci Sports Exerc 2019;51: 499–508. https://doi.org/10.1249/mss.0000000000001822
Saeidifard F, Medina-Inojosa JR, West CP, Olson TP, Somers VK, Bonikowske AR, et al. The association of resistance training with mortality: a systematic review and meta-analysis. Eur J Prev Cardiol 2019;26:1647–1665. https://doi.org/10.1177/ 2047487319850718
Hartmann-Boyce J, Chepkin SC, Ye W, Bullen C, Lancaster T. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst Rev 2018;5: CD000146. https://doi.org/10.1002/14651858.CD000146.pub5
Howes S, Hartmann-Boyce J, Livingstone-Banks J, Hong B, Lindson N. Antidepressants for smoking cessation. Cochrane Database Syst Rev 2020;4:CD000031. https://doi.org/10.1002/14651858.CD000031.pub5
Cahill K, Lindson-Hawley N, Thomas KH, Fanshawe TR, Lancaster T. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev 2016;2016: CD006103. https://doi.org/10.1002/14651858.CD006103.pub7
Lindson N, Chepkin SC, Ye W, Fanshawe TR, Bullen C, Hartmann-Boyce J. Different doses, durations and modes of delivery of nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2019;4:CD013308. https://doi.org/10.1002/14651858.Cd013308
Woolf KJ, Zabad MN, Post JM, McNitt S, Williams GC, Bisognano JD. Effect of nicotine replacement therapy on cardiovascular outcomes after acute coronary syndromes. Am J Cardiol 2012;110:968–970. https://doi.org/10.1016/j.amjcard.2012.05.028
Suissa K, Larivière J, Eisenberg MJ, Eberg M, Gore GC, Grad R, et al. Efficacy and safety of smoking cessation interventions in patients with cardiovascular disease: a network meta-analysis of randomized controlled trials. Circ Cardiovasc Qual Outcomes 2017;10: e002458. https://doi.org/10.1161/circoutcomes.115.002458
de Lemos JA, Blazing MA, Wiviott SD, Lewis EF, Fox KAA, White HD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA 2004;292:1307–1316. https://doi.org/10.1001/jama.292.11.1307
Ray KK, Cannon CP, McCabe CH, Cairns R, Tonkin AM, Sacks FM, et al. Early and late benefits of high-dose atorvastatin in patients with acute coronary syndromes: results from the PROVE IT-TIMI 22 trial. J Am Coll Cardiol 2005;46:1405–1410. https://doi.org/10.1016/j.jacc.2005.03.077
Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 2001;285:1711–1718. https://doi.org/10.1001/jama.285.13.1711
Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010;376:1670–1681. https://doi.org/10.1016/s0140-6736(10)61350-5
Fulcher J, O’Connell R, Voysey M, Emberson J, Blackwell L, Mihaylova B. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 2015;385: 1397–1405. https://doi.org/10.1016/s0140-6736(14)61368-4
CIBIS-II Investigators. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353:9–13. https://doi.org/10.1016/S0140-6736(98)11181-9
Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001;344:1651–1658. https://doi.org/10.1056/nejm200105313442201
MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353:2001–2007. https://doi.org/10.1016/S0140-6736(99) 04440-2
Chen ZM, Pan HC, Chen YP, Peto R, Collins R, Jiang LX, et al. Early intravenous then oral metoprolol in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 2005;366:1622–1632. https://doi.org/10.1016/s0140-6736(05)67661-1
Bangalore S, Makani H, Radford M, Thakur K, Toklu B, Katz SD, et al. Clinical outcomes with β-blockers for myocardial infarction: a meta-analysis of randomized trials. Am J Med 2014;127:939–953. https://doi.org/10.1016/j.amjmed.2014.05.032
Huang BT, Huang FY, Zuo ZL, Liao YB, Heng Y, Wang PJ, et al. Meta-analysis of relation between oral β-blocker therapy and outcomes in patients with acute myocardial infarction who underwent percutaneous coronary intervention. Am J Cardiol 2015; 115:1529–1538. https://doi.org/10.1016/j.amjcard.2015.02.057
Goldberger JJ, Bonow RO, Cuffe M, Liu L, Rosenberg Y, Shah PK, et al. Effect of beta-blocker dose on survival after acute myocardial infarction. J Am Coll Cardiol 2015;66: 1431–1441. https://doi.org/10.1016/j.jacc.2015.07.047
Andersson C, Shilane D, Go AS, Chang TI, Kazi D, Solomon MD, et al. β-blocker therapy and cardiac events among patients with newly diagnosed coronary heart disease. J Am Coll Cardiol 2014;64:247–252. https://doi.org/10.1016/j.jacc.2014.04.042
Bangalore S, Steg G, Deedwania P, Crowley K, Eagle KA, Goto S, et al. β-blocker use and clinical outcomes in stable outpatients with and without coronary artery disease. JAMA 2012;308:1340–1349. https://doi.org/10.1001/jama.2012.12559
Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 2000;355:253–259. https://doi.org/10.1016/S0140-6736(99)12323-7
Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999;341:709–717. https://doi.org/10.1056/nejm199909023411001
Hirpa M, Woreta T, Addis H, Kebede S. What matters to patients? A timely question for value-based care. PLoS One 2020;15:e0227845. https://doi.org/10.1371/journal.pone.0227845
Ebrahimi Z, Patel H, Wijk H, Ekman I, Olaya-Contreras P. A systematic review on implementation of person-centered care interventions for older people in out-of-hospital settings. Geriatr Nurs 2021;42:213–224. https://doi.org/10.1016/j.gerinurse.2020.08.004
Gluyas H. Patient-centred care: improving healthcare outcomes. Nurs Stand 2015;30: 50–57, quiz 59. https://doi.org/10.7748/ns.30.4.50.e10186
Kok MM, von Birgelen C. Involving the patient’s perspective and preferences concerning coronary angiography and percutaneous coronary intervention. EuroIntervention 2020;15:1228–1231. https://doi.org/10.4244/eijv15i14a221
Astin F, Stephenson J, Probyn J, Holt J, Marshall K, Conway D. Cardiologists’ and patients’ views about the informed consent process and their understanding of the anticipated treatment benefits of coronary angioplasty: a survey study. Eur J Cardiovasc Nurs 2020;19:260–268. https://doi.org/10.1177/1474515119879050
Flynn D, Knoedler MA, Hess EP, Murad MH, Erwin PJ, Montori VM, et al. Engaging patients in health care decisions in the emergency department through shared decision-making: a systematic review. Acad Emerg Med 2012;19:959–967. https://doi.org/10.1111/j.1553-2712.2012.01414.x
Grant EV, Summapund J, Matlock DD, Vaughan Dickson V, Iqbal S, Patel S, et al. Patient and cardiologist perspectives on shared decision making in the treatment of older adults hospitalized for acute myocardial infarction. Med Decis Making 2020;40: 279–288. https://doi.org/10.1177/0272989x20912293
Prochnow JA, Meiers SJ, Scheckel MM. Improving patient and caregiver new medication education using an innovative teach-back toolkit. J Nurs Care Qual 2019;34: 101–106. https://doi.org/10.1097/ncq.0000000000000342
Klingbeil C, Gibson C. The Teach Back Project: a system-wide evidence based practice implementation. J Pediatr Nurs 2018;42:81–85. https://doi.org/10.1016/j.pedn.2018.06. 002
Ha Dinh TT, Bonner A, Clark R, Ramsbotham J, Hines S. The effectiveness of the teach-back method on adherence and self-management in health education for people with chronic disease: a systematic review. JBI Database System Rev Implement Rep 2016;14: 210–247. https://doi.org/10.11124/jbisrir-2016-2296
Dickert NW, Scicluna VM, Adeoye O, Angiolillo DJ, Blankenship JC, Devireddy CM, et al. Emergency consent: patients’ and surrogates’ perspectives on consent for clinical trials in acute stroke and myocardial infarction. J Am Heart Assoc 2019;8:e010905. https://doi.org/10.1161/jaha.118.010905
Dickert NW, Miller FG. Involving patients in enrolment decisions for acute myocardial infarction trials. BMJ 2015;351:h3791. https://doi.org/10.1136/bmj.h3791
Olsson A, Ring C, Josefsson J, Eriksson A, Rylance R, Fröbert O, et al. Patient experience of the informed consent process during acute myocardial infarction: a sub-study of the VALIDATE-SWEDEHEART trial. Trials 2020;21:246. https://doi.org/10.1186/ s13063-020-4147-0
El-Haddad C, Hegazi I, Hu W. Understanding patient expectations of health care: a qualitative study. J Patient Exp 2020;7:1724–1731. https://doi.org/10.1177/ 2374373520921692
Scott JT, Thompson DR. Assessing the information needs of post-myocardial infarction patients: a systematic review. Patient Educ Couns 2003;50:167–177. https://doi.org/10.1016/s0738-3991(02)00126-x
Saczynski JS, McManus DD, Waring ME, Lessard D, Anatchkova MD, Gurwitz JH, et al. Change in cognitive function in the month after hospitalization for acute coronary syndromes: findings from TRACE-CORE (Transition, Risks, and Actions in Coronary Events-Center for Outcomes Research and Education). Circ Cardiovasc Qual Outcomes 2017;10:e001669. https://doi.org/10.1161/circoutcomes.115.001669
Goldman JD, Harte FM. Transition of care to prevent recurrence after acute coronary syndrome: the critical role of the primary care provider and pharmacist. Postgrad Med 2020;132:426–432. https://doi.org/10.1080/00325481.2020.1740512
Huriani E. Myocardial infarction patients’ learning needs: perceptions of patients, family members and nurses. Int J Nurs Sci 2019;6:294–299. https://doi.org/10.1016/j.ijnss.2019.05.001
Messerli AW, Deutsch C. Implementation of institutional discharge protocols and transition of care following acute coronary syndrome. Cardiovasc Revasc Med 2020; 21:1180–1188. https://doi.org/10.1016/j.carrev.2020.02.013
Schiele F, Lemesle G, Angoulvant D, Krempf M, Kownator S, Cheggour S, et al. Proposal for a standardized discharge letter after hospital stay for acute myocardial infarction. Eur Heart J Acute Cardiovasc Care 2020;9:788–801. https://doi.org/10.1177/2048872619844444
Murphy B, Le Grande M, Alvarenga M, Worcester M, Jackson A. Anxiety and depression after a cardiac event: prevalence and predictors. Front Psychol 2019;10:3010. https://doi.org/10.3389/fpsyg.2019.03010
Ceccarini M, Manzoni GM, Castelnuovo G. Assessing depression in cardiac patients: what measures should be considered? Depress Res Treat 2014;2014:148256. https://doi.org/10.1155/2014/148256
Moser DK. “The rust of life”: impact of anxiety on cardiac patients. Am J Crit Care 2007; 16:361–369. https://doi.org/10.4037/ajcc2007.16.4.361
Turgeon RD, Koshman SL, Dong Y, Graham MM. P2Y12 inhibitor adherence trajectories in patients with acute coronary syndrome undergoing percutaneous coronary intervention: prognostic implications. Eur Heart J 2022;43:2303–2313. https://doi.org/10.1093/eurheartj/ehac116
Poitras ME, Maltais ME, Bestard-Denommé L, Stewart M, Fortin M. What are the effective elements in patient-centered and multimorbidity care? A scoping review. BMC Health Serv Res 2018;18:446. https://doi.org/10.1186/s12913-018-3213-8
Hochhalter AK, Song J, Rush J, Sklar L, Stevens A. Making the Most of Your Healthcare intervention for older adults with multiple chronic illnesses. Patient Educ Couns 2010; 81:207–213. https://doi.org/10.1016/j.pec.2010.01.018
Hess EP, Knoedler MA, Shah ND, Kline JA, Breslin M, Branda ME, et al. The chest pain choice decision aid: a randomized trial. Circ Cardiovasc Qual Outcomes 2012;5:251–259. https://doi.org/10.1161/circoutcomes.111.964791
Hess EP, Hollander JE, Schaffer JT, Kline JA, Torres CA, Diercks DB, et al. Shared decision making in patients with low risk chest pain: prospective randomized pragmatic trial. BMJ 2016;355:i6165. https://doi.org/10.1136/bmj.i6165
van Oosterhout REM, de Boer AR, Maas A, Rutten FH, Bots ML, Peters SAE. Sex differences in symptom presentation in acute coronary syndromes: a systematic review and meta-analysis. J Am Heart Assoc 2020;9:e014733. https://doi.org/10.1161/jaha.119. 014733
Hedegaard U, Kjeldsen LJ, Pottegård A, Henriksen JE, Lambrechtsen J, Hangaard J, et al. Improving medication adherence in patients with hypertension: a randomized trial. Am J Med 2015;128:1351–1361. https://doi.org/10.1016/j.amjmed.2015.08.011
Bauer LK, Caro MA, Beach SR, Mastromauro CA, Lenihan E, Januzzi JL, et al. Effects of depression and anxiety improvement on adherence to medication and health behaviors in recently hospitalized cardiac patients. Am J Cardiol 2012;109:1266–1271. https://doi.org/10.1016/j.amjcard.2011.12.017
Van der Kooy K, van Hout H, Marwijk H, Marten H, Stehouwer C, Beekman A. Depression and the risk for cardiovascular diseases: systematic review and meta analysis. Int J Geriatr Psychiatry 2007;22:613–626. https://doi.org/10.1002/gps.1723
Redfors B, Angerås O, Råmunddal T, Petursson P, Haraldsson I, Dworeck C, et al. Trends in gender differences in cardiac care and outcome after acute myocardial infarction in Western Sweden: a report from the Swedish Web System for Enhancement of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART). J Am Heart Assoc 2015;4:e001995. https://doi.org/10.1161/jaha.115.001995
Anand SS, Xie CC, Mehta S, Franzosi MG, Joyner C, Chrolavicius S, et al. Differences in the management and prognosis of women and men who suffer from acute coronary syndromes. J Am Coll Cardiol 2005;46:1845–1851. https://doi.org/10.1016/j.jacc.2005.05.091
Blomkalns AL, Chen AY, Hochman JS, Peterson ED, Trynosky K, Diercks DB, et al. Gender disparities in the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: large-scale observations from the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the American College of Cardiology/American Heart Association Guidelines) National Quality Improvement Initiative. J Am Coll Cardiol 2005;45: 832–837. https://doi.org/10.1016/j.jacc.2004.11.055
Bugiardini R, Yan AT, Yan RT, Fitchett D, Langer A, Manfrini O, et al. Factors influencing underutilization of evidence-based therapies in women. Eur Heart J 2011;32: 1337–1344. https://doi.org/10.1093/eurheartj/ehr027
Samayoa L, Grace SL, Gravely S, Scott LB, Marzolini S, Colella TJF. Sex differences in cardiac rehabilitation enrollment: a meta-analysis. Can J Cardiol 2014;30:793–800. https://doi.org/10.1016/j.cjca.2013.11.007
Rossello X, Mas-Lladó C, Pocock S, Vicent L, van de Werf F, Chin CT, et al. Sex differences in mortality after an acute coronary syndrome increase with lower country wealth and higher income inequality. Rev Esp Cardiol (Engl Ed) 2022;75:392–400. https://doi.org/10.1016/j.rec.2021.05.006
Sardar MR, Badri M, Prince CT, Seltzer J, Kowey PR. Underrepresentation of women, elderly patients, and racial minorities in the randomized trials used for cardiovascular guidelines. JAMA Internal Medicine 2014;174:1868–1870. https://doi.org/10.1001/jamainternmed.2014.4758
Cho L, Vest AR, O’Donoghue ML, Ogunniyi MO, Sarma AA, Denby KJ, et al. Increasing participation of women in cardiovascular trials. J Am College Cardiol 2021;78:737–751. https://doi.org/10.1016/j.jacc.2021.06.022
Gong IY, Tan NS, Ali SH, Lebovic G, Mamdani M, Goodman SG, et al. Temporal trends of women enrollment in major cardiovascular randomized clinical trials. Can J Cardiol 2019;35:653–660. https://doi.org/10.1016/j.cjca.2019.01.010
Rossello X, Ferreira JP, Caimari F, Lamiral Z, Sharma A, Mehta C, et al. Influence of sex, age and race on coronary and heart failure events in patients with diabetes and postacute coronary syndrome. Clin Res Cardiol 2021;110:1612–1624. https://doi.org/10.1007/s00392-021-01859-2
Mas-Llado C, González-Del-Hoyo M, Siquier-Padilla J, Blaya-Peña L, Coughlan JJ, García de la Villa B, et al. Representativeness in randomised clinical trials supporting acute coronary syndrome guidelines. Eur Heart J Qual Care Clin Outcomes 2023. https://doi.org/10.1093/ehjqcco/qcad007
Aktaa S, Batra G, Wallentin L, Baigent C, Erlinge D, James S, et al. European Society of Cardiology methodology for the development of quality indicators for the quantification of cardiovascular care and outcomes. Eur Heart J Qual Care Clin Outcomes 2022;8: 4–13. https://doi.org/10.1093/ehjqcco/qcaa069
Minchin M, Roland M, Richardson J, Rowark S, Guthrie B. Quality of care in the United Kingdom after removal of financial incentives. N Engl J Med 2018;379:948–957. https://doi.org/10.1056/NEJMsa1801495
Song Z, Ji Y, Safran DG, Chernew ME. Health care spending, utilization, and quality 8 years into global payment. N Engl J Med 2019;381:252–263. https://doi.org/10.1056/ NEJMsa1813621
Arbelo E, Aktaa S, Bollmann A, D’Avila A, Drossart I, Dwight J, et al. Quality indicators for the care and outcomes of adults with atrial fibrillation. Europace 2021;23:494–495. https://doi.org/10.1093/europace/euaa253
Schiele F, Aktaa S, Rossello X, Ahrens I, Claeys MJ, Collet JP, et al. 2020 Update of the quality indicators for acute myocardial infarction: a position paper of the Association for Acute Cardiovascular Care: the study group for quality indicators from the ACVC and the NSTE-ACS guideline group. Eur Heart J Acute Cardiovasc Care 2021;10: 224–233. https://doi.org/10.1093/ehjacc/zuaa037
Aktaa S, Abdin A, Arbelo E, Burri H, Vernooy K, Blomström-Lundqvist C, et al. European Society of Cardiology Quality Indicators for the care and outcomes of cardiac pacing: developed by the Working Group for Cardiac Pacing Quality Indicators in collaboration with the European Heart Rhythm Association of the European Society of Cardiology. Europace 2022;24:165–172. https://doi.org/10.1093/europace/euab193
Aktaa S, Gencer B, Arbelo E, Davos CH, Désormais I, Hollander M, et al. European Society of Cardiology Quality Indicators for Cardiovascular Disease Prevention: developed by the Working Group for Cardiovascular Disease Prevention Quality Indicators in collaboration with the European Association for Preventive Cardiology of the European Society of Cardiology. Eur J Prev Cardiol 2022;29:1060–1071. https://doi.org/10.1093/eurjpc/zwab160
Schiele F, Gale CP, Simon T, Fox KAA, Bueno H, Lettino M, et al. The 2020 ESC-ACVC quality indicators for the management of acute myocardial infarction applied to the FAST-MI registries. Eur Heart J Acute Cardiovasc Care 2021;10:207–215. https://doi.org/10.1093/ehjacc/zuab010
Rossello X, Medina J, Pocock S, Van de Werf F, Chin CT, Danchin N, et al. Assessment of quality indicators for acute myocardial infarction management in 28 countries and use of composite quality indicators for benchmarking. Eur Heart J Acute Cardiovasc Care 2020;9:911–922. https://doi.org/10.1177/2048872620911853
Rossello X, Massó-van Roessel A, Perelló-Bordoy A, Mas-Lladó C, Ramis-Barceló MF, Vives-Borrás M, et al. Assessment of the ESC quality indicators in patients with acute myocardial infarction: a systematic review. Eur Heart J Acute Cardiovasc Care 2021;10: 878–889. https://doi.org/10.1093/ehjacc/zuab042
Batra G, Aktaa S, Wallentin L, Maggioni AP, Wilkinson C, Casadei B, et al. Methodology for the development of international clinical data standards for common cardiovascular conditions: European Unified Registries for Heart Care Evaluation and Randomised Trials (EuroHeart). Eur Heart J Qual Care Clin Outcomes 2021;9:161–168. https://doi.org/10.1093/ehjqcco/qcab052
Rossello X, Massó-van Roessel A, Chioncel O, Tavazzi L, Ferrari R, Vahanian A, et al. EURObservational Research Programme: a bibliometric assessment of its scientific output. Eur Heart J Qual Care Clin Outcomes 2022;8:804–811. https://doi.org/10.1093/ehjqcco/qcac041
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.