Article-Harnessing microbial interactions with rice- Strategies for abiotic stress alleviation in the face of environmental challenges and climate change.pdf
[en] Rice, which feeds more than half of the world's population, confronts significant challenges due to environmental and climatic changes. Abiotic stressors such as extreme temperatures, drought, heavy metals, organic pollutants, and salinity disrupt its cellular balance, impair photosynthetic efficiency, and degrade grain quality. Beneficial microorganisms from rice and soil microbiomes have emerged as crucial in enhancing rice's tolerance to these stresses. This review delves into the multifaceted impacts of these abiotic stressors on rice growth, exploring the origins of the interacting microorganisms and the intricate dynamics between rice-associated and soil microbiomes. We highlight their synergistic roles in mitigating rice's abiotic stresses and outline rice's strategies for recruiting these microorganisms under various environmental conditions, including the development of techniques to maximize their benefits. Through an in-depth analysis, we shed light on the multifarious mechanisms through which microorganisms fortify rice resilience, such as modulation of antioxidant enzymes, enhanced nutrient uptake, plant hormone adjustments, exopolysaccharide secretion, and strategic gene expression regulation, emphasizing the objective of leveraging microorganisms to boost rice's stress tolerance. The review also recognizes the growing prominence of microbial inoculants in modern rice cultivation for their eco-friendliness and sustainability. We discuss ongoing efforts to optimize these inoculants, providing insights into the rigorous processes involved in their formulation and strategic deployment. In conclusion, this review emphasizes the importance of microbial interventions in bolstering rice agriculture and ensuring its resilience in the face of rising environmental challenges.
Disciplines :
Microbiology
Author, co-author :
Zhao, Jintong ; Université de Liège - ULiège > TERRA Research Centre ; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China ; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Yu, Xiaoxia; School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, China
Zhang, Chunyi; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China ; Sanya Institute, Academy of Agricultural Sciences, Sanya, China
Hou, Ligang; Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
Wu, Ningfeng; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
Zhang, Wei; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China ; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Wang, Yuan; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Yao, Bin; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Delaplace, Pierre ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Tian, Jian; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China ; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Harnessing microbial interactions with rice: Strategies for abiotic stress alleviation in the face of environmental challenges and climate change
This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA0912301 ), China Scholarship Council (No. 202103250070 ), the Agricultural Science and Technology Innovation Program ( CAAS-ZDRW202304 ), and the China Agriculture Research System of Ministry of Finance (MOF) and Ministry of Agriculture and Rural Affairs (MARA) ( CARS-41 ).
Abdul Rahman, N.S.N., Abdul Hamid, N.W., Nadarajah, K., Effects of abiotic stress on soil microbiome. Int. J. Mol. Sci., 22(16), 2021, 10.3390/ijms22169036.
Adomako, M.O., Roiloa, S., Yu, F.H., Potential roles of soil microorganisms in regulating the effect of soil nutrient heterogeneity on plant performance. Microorganisms, 10(12), 2022, 10.3390/microorganisms10122399.
Afzal, M., Khan, Q.M., Sessitsch, A., Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117 (2014), 232–242, 10.1016/j.chemosphere.2014.06.078.
Ahmad, H.M., Fiaz, S., Hafeez, S., Zahra, S., Shah, A.N., Gul, B., Aziz, O., Mahmood Ur, R., Fakhar, A., Rafique, M., Chen, Y., Yang, S.H., Wang, X., Plant growth-promoting rhizobacteria eliminate the effect of drought stress in plants: a review. Front. Plant Sci., 13, 2022, 875774, 10.3389/fpls.2022.875774.
Ali, I., Yuan, P., Ullah, S., Iqbal, A., Zhao, Q., Liang, H., Khan, A., Imran, Zhang, H., Wu, X., Wei, S., Gu, M., Jiang, L., Biochar amendment and nitrogen fertilizer contribute to the changes in soil properties and microbial communities in a paddy field. Front. Microbiol., 13, 2022, 834751, 10.3389/fmicb.2022.834751.
Ali, S., Khan, N., Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol. Res., 249, 2021, 126771, 10.1016/j.micres.2021.126771.
Almeida, D.M., Almadanim, M.C., Lourenço, T., Abreu, I.A., Saibo, N.J., Oliveira, M.M., Screening for abiotic stress tolerance in rice: salt, cold, and drought. Methods Mol. Biol. 1398 (2016), 155–182, 10.1007/978-1-4939-3356-3_14.
Alori, E.T., Babalola, O.O., Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol., 9, 2018, 2213, 10.3389/fmicb.2018.02213.
Al-Taweil, H.I., Osman, M.B., Abdulhamid, A., Mohammad, N., Wan Yussof, W.M., Microbial inoculants for enhancing rice growth and sheath spots disease suppression. Arch. Agron. Soil Sci. 56:6 (2010), 623–632, 10.1080/03650340903164256.
Arshad, M.S., Farooq, M., Asch, F., Krishna, J.S.V., Prasad, P.V.V., Siddique, K.H.M., Thermal stress impacts reproductive development and grain yield in rice. Plant Physiol. Biochem. 115 (2017), 57–72, 10.1016/j.plaphy.2017.03.011.
Arun, K.D., Sabarinathan, K.G., Gomathy, M., Kannan, R., Balachandar, D., Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria. J. Basic Microbiol. 60:9 (2020), 768–786, 10.1002/jobm.202000011.
Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom, P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., Huerta-Cepas, J., Medema, M.H., Maltz, M.R., Mundra, S., Olsson, P.A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., Tedersoo, L., Bork, P., Structure and function of the global topsoil microbiome. Nature 560:7717 (2018), 233–237, 10.1038/s41586-018-0386-6.
Bai, B., Liu, W., Qiu, X., Zhang, J., Zhang, J., Bai, Y., The root microbiome: community assembly and its contributions to plant fitness. J. Integr. Plant Biol. 64:2 (2022), 230–243, 10.1111/jipb.13226.
Bakker, P., Pieterse, C.M.J., de Jonge, R., Berendsen, R.L., The soil-borne legacy. Cell 172:6 (2018), 1178–1180, 10.1016/j.cell.2018.02.024.
Banerjee, S., van der Heijden, M.G.A., Soil microbiomes and one health. Nat. Rev. Microbiol. 21:1 (2023), 6–20, 10.1038/s41579-022-00779-w.
Barnawal, D., Singh, R., Singh, R.P., Chapter six - role of plant growth promoting rhizobacteria in drought tolerance: regulating growth hormones and osmolytes. Singh, A.K., Kumar, A., Singh, P.K., (eds.) PGPR Amelioration in Sustainable Agriculture, 2019, Woodhead Publishing, 107–128, 10.1016/B978-0-12-815879-1.00006-9.
Carlström, C.I., Field, C.M., Bortfeld-Miller, M., Müller, B., Sunagawa, S., Vorholt, J.A., Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3:10 (2019), 1445–1454, 10.1038/s41559-019-0994-z.
Chaudhary, P., Singh, S., Chaudhary, A., Sharma, A., Kumar, G., Overview of biofertilizers in crop production and stress management for sustainable agriculture. Front. Plant Sci., 13, 2022, 930340, 10.3389/fpls.2022.930340.
Cheng, Z., Zheng, Q., Shi, J., He, Y., Yang, X., Huang, X., Wu, L., Xu, J., Metagenomic and machine learning-aided identification of biomarkers driving distinctive Cd accumulation features in the root-associated microbiome of two rice cultivars. ISME Commun., 3(1), 2023, 14, 10.1038/s43705-023-00213-z.
Chiao, W.-T., Chen, B.-C., Syu, C.-H., Juang, K.-W., Aspects of cultivar variation in physiological traits related to Cd distribution in rice plants with a short-term stress. Bot. Stud., 61(1), 2020, 27, 10.1186/s40529-020-00304-3.
Chouhan, G.K., Verma, J.P., Jaiswal, D.K., Mukherjee, A., Singh, S., de Araujo Pereira, A.P., Liu, H., Abd-Allah, E.F., Singh, B.K., Phytomicrobiome for promoting sustainable agriculture and food security: opportunities, challenges, and solutions. Microbiol. Res., 248, 2021, 126763, 10.1016/j.micres.2021.126763.
Cui, H.L., Duan, G.L., Zhang, H., Cheng, W., Zhu, Y.G., Microbiota in non-flooded and flooded rice culms. FEMS Microbiol. Ecol., 95(4), 2019, 10.1093/femsec/fiz036.
Damo, J.L.C., Ramirez, M.D.A., Agake, S.I., Pedro, M., Brown, M., Sekimoto, H., Yokoyama, T., Sugihara, S., Okazaki, S., Ohkama-Ohtsu, N., Isolation and characterization of phosphate solubilizing bacteria from paddy field soils in Japan. Microbes Environ., 37(2), 2022, 10.1264/jsme2.ME21085.
Das, P.P., Singh, K.R., Nagpure, G., Mansoori, A., Singh, R.P., Ghazi, I.A., Kumar, A., Singh, J., Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ. Res., 214(Pt 1), 2022, 113821, 10.1016/j.envres.2022.113821.
de Souza, E.M., Lamb, T.I., Lamb, T.A., dos Santos Silva, A., da Fré de Carvalho, S., Nyland, V., Lopes, M.C.B., Grohs, M., Marconatto, L., dos Anjos Borges, L.G., Giongo, A., Granada, C.E., Sperotto, R.A., Rhizospheric soil from rice paddy presents isolable bacteria able to induce cold tolerance in rice plants. J. Soil Sci. Plant Nutr. 21:3 (2021), 1993–2006, 10.1007/s42729-021-00496-y.
de Souza, R., Schoenfeld, R., Passaglia, L.M.P., Bacterial inoculants for rice: effects on nutrient uptake and growth promotion. Arch. Agron. Soil Sci. 62:4 (2016), 561–569, 10.1080/03650340.2015.1065973.
de Souza, R.S.C., Armanhi, J.S.L., Arruda, P., From microbiome to traits: designing synthetic microbial communities for improved crop resiliency. Front. Plant Sci., 11, 2020, 1179, 10.3389/fpls.2020.01179.
Devarajan, A.K., Muthukrishanan, G., Truu, J., Truu, M., Ostonen, I., Kizhaeral, S.S., Panneerselvam, P., Kuttalingam Gopalasubramanian, S., The foliar application of rice phyllosphere bacteria induces drought-stress tolerance in Oryza sativa (L.). Plants (Basel), 10(2), 2021, 10.3390/plants10020387.
Dubey, R.K., Tripathi, V., Prabha, R., Chaurasia, R., Singh, D.P., Rao, C.S., El-Keblawy, A., Abhilash, P.C., Belowground microbial communities: key players for soil and environmental sustainability. Dubey, R.K., Tripathi, V., Prabha, R., Chaurasia, R., Singh, D.P., Rao, C.S., et al. (eds.) Unravelling the Soil Microbiome: Perspectives for Environmental Sustainability, 2020, Springer International Publishing, 5–22, 10.1007/978-3-030-15516-2_2.
Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U. S. A., 112(8), 2015, 10.1073/pnas.1414592112 E911-20.
Edwards, J., Santos-Medellín, C., Nguyen, B., Kilmer, J., Liechty, Z., Veliz, E., Ni, J., Phillips, G., Sundaresan, V., Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota. Genome Biol., 20(1), 2019, 221, 10.1186/s13059-019-1825-x.
Etesami, H., Maheshwari, D.K., Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 156 (2018), 225–246, 10.1016/j.ecoenv.2018.03.013.
Farhat, Y.A., Kim, S.-H., Seyfferth, A.L., Zhang, L., Neumann, R.B., Altered arsenic availability, uptake, and allocation in rice under elevated temperature. Sci. Total Environ., 763, 2021, 143049, 10.1016/j.scitotenv.2020.143049.
Fernández-Baca, C.P., Rivers, A.R., Maul, J.E., Kim, W., Poudel, R., McClung, A.M., Roberts, D.P., Reddy, V.R., Barnaby, J.Y., Rice plant–soil microbiome interactions driven by root and shoot biomass. Diversity, 13(3), 2021, 125, 10.3390/d13030125.
Fierer, N., Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15:10 (2017), 579–590, 10.1038/nrmicro.2017.87.
Fu, W., Xu, M., Sun, K., Hu, L., Cao, W., Dai, C., Jia, Y., Biodegradation of phenanthrene by endophytic fungus Phomopsis liquidambari in vitro and in vivo. Chemosphere 203 (2018), 160–169, 10.1016/j.chemosphere.2018.03.164.
Fu, W.Q., Xu, M., Sun, K., Chen, X.L., Dai, C.C., Jia, Y., Remediation mechanism of endophytic fungus Phomopsis liquidambaris on phenanthrene in vivo. Chemosphere, 243, 2020, 125305, 10.1016/j.chemosphere.2019.125305.
Fu, W.-Q., Xu, M., Zhang, A.-Y., Sun, K., Dai, C.-C., Jia, Y., Remediation of phenanthrene phytotoxicity by the interaction of rice and endophytic fungus P. liquidambaris in practice. Ecotoxicol. Environ. Saf., 235, 2022, 113415, 10.1016/j.ecoenv.2022.113415.
Ghosh, P.K., Maiti, T.K., Pramanik, K., Ghosh, S.K., Mitra, S., De, T.K., The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere 211 (2018), 407–419, 10.1016/j.chemosphere.2018.07.148.
Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S., Patra, J.K., Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 206 (2018), 131–140, 10.1016/j.micres.2017.08.016.
Gowtham, H.G., Singh, S.B., Shilpa, N., Aiyaz, M., Nataraj, K., Udayashankar, A.C., Amruthesh, K.N., Murali, M., Poczai, P., Gafur, A., Almalki, W.H., Sayyed, R.Z., Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: a review. Antioxidants (Basel), 11(9), 2022, 10.3390/antiox11091763.
Gribaldi, G., Nurlaili, N., Dewi, N., Danial, E., Sakalena, F., Suwignyo, R.A., Modified application of nitrogen fertilizer for increasing rice variety tolerance toward submergence stress. Int. J. Agron., 2017, 2017, 9734036, 10.1155/2017/9734036.
Guo, J., Ling, N., Li, Y., Li, K., Ning, H., Shen, Q., Guo, S., Vandenkoornhuyse, P., Seed-borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes. New Phytol. 230:5 (2021), 2047–2060, 10.1111/nph.17297.
Gusain, Y.S., Singh, U.S., Sharama, A.K., Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr. J. Adv. Biotechnol. 14:9 (2015), 764–773, 10.5897/AJB2015.14405.
Haider, Z., Ahmad, I., Zia, S., Gan, Y., Recent developments in rice molecular breeding for tolerance to heavy metal toxicity. Agriculture, 13(5), 2023, 944, 10.3390/agriculture13050944.
Hameed, A., Wu, Q.-S., Abd-Allah, E.F., Hashem, A., Kumar, A., Lone, H.A., Ahmad, P., Role of AM fungi in alleviating drought stress in plants. Miransari, M., (eds.) Use of Microbes for the Alleviation of Soil Stresses: Volume 2: Alleviation of Soil Stress by PGPR and Mycorrhizal Fungi, 2014, Springer, New York, 55–75, 10.1007/978-1-4939-0721-2_4.
Hamzelou, S., Pascovici, D., Kamath, K.S., Amirkhani, A., McKay, M., Mirzaei, M., Atwell, B.J., Haynes, P.A., Proteomic responses to drought vary widely among eight diverse genotypes of rice (Oryza sativa). Int. J. Mol. Sci., 21(1), 2020, 10.3390/ijms21010363.
He, W., Megharaj, M., Wu, C.-Y., Subashchandrabose, S.R., Dai, C.-C., Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants. Crit. Rev. Biotechnol. 40:1 (2020), 31–45, 10.1080/07388551.2019.1675582.
Hoang, T.M.L., Tran, T.N., Nguyen, T.K.T., Williams, B., Wurm, P., Bellairs, S., Mundree, S., Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy, 6(4), 2016, 54, 10.3390/agronomy6040054.
Hsu, C.H., Hsu, Y.T., Biochemical responses of rice roots to cold stress. Bot. Stud., 60(1), 2019, 14, 10.1186/s40529-019-0262-1.
Hu, Q., Wang, W., Lu, Q., Huang, J., Peng, S., Cui, K., Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. BMC Plant Biol., 21(1), 2021, 428, 10.1186/s12870-021-03209-w.
Hussain, T., Hussain, N., Tahir, M., Raina, A., Ikram, S., Maqbool, S., Fraz Ali, M., Duangpan, S., Impacts of drought stress on water use efficiency and grain productivity of rice and utilization of genotypic variability to combat climate change. Agronomy, 12(10), 2022, 2518, 10.3390/agronomy12102518.
Iqbal, A., He, L., Ali, I., Ullah, S., Khan, A., Khan, A., Akhtar, K., Wei, S., Zhao, Q., Zhang, J., Jiang, L., Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLoS One, 15(10), 2020, e0238934, 10.1371/journal.pone.0238934.
Jan, R., Khan, M.A., Asaf, S., Lee, I.J., Kim, K.M., Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones. Plants (Basel), 8(10), 2019, 10.3390/plants8100363.
Jana, S.K., Islam, M.M., Mandal, S., Endophytic microbiota of rice and their collective impact on host fitness. Curr. Microbiol., 79(2), 2022, 37, 10.1007/s00284-021-02737-w.
Jia, Y., Wang, J., Qu, Z., Zou, D., Sha, H., Liu, H., Sun, J., Zheng, H., Wang, J., Yang, L., Zhao, H., Effects of low water temperature during reproductive growth on photosynthetic production and nitrogen accumulation in rice. Field Crop Res., 242, 2019, 107587, 10.1016/j.fcr.2019.107587.
Jiang, S., Yang, C., Xu, Q., Wang, L., Yang, X., Song, X., Wang, J., Zhang, X., Li, B., Li, H., Li, Z., Li, W., Genetic dissection of germinability under low temperature by building a resequencing linkage map in japonica rice. Int. J. Mol. Sci., 21(4), 2020, 10.3390/ijms21041284.
Kaga, H., Mano, H., Tanaka, F., Watanabe, A., Kaneko, S., Morisaki, H., Rice seeds as sources of endophytic bacteria. Microbes Environ. 24:2 (2009), 154–162, 10.1264/jsme2.me09113.
Kakar, K.U., Ren, X.L., Nawaz, Z., Cui, Z.Q., Li, B., Xie, G.L., Hassan, M.A., Ali, E., Sun, G.C., A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (Oryza sativa L.). Plant Biol. 18:3 (2016), 471–483, 10.1111/plb.12427.
Kamoshita, A., Babu, R.C., Boopathi, N.M., Fukai, S., Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crop Res. 109:1 (2008), 1–23, 10.1016/j.fcr.2008.06.010.
Kaushal, M., Chapter ten - portraying rhizobacterial mechanisms in drought tolerance: a way forward toward sustainable agriculture. Singh, A.K., Kumar, A., Singh, P.K., (eds.) PGPR Amelioration in Sustainable Agriculture, 2019, Woodhead Publishing, 195–216, 10.1016/B978-0-12-815879-1.00010-0.
Khan, M.A., Asaf, S., Khan, A.L., Adhikari, A., Jan, R., Ali, S., Imran, M., Kim, K.M., Lee, I.J., Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants. Plant Biol. (Stuttg.) 22:5 (2020), 850–862, 10.1111/plb.13124.
Khanna, K., Kohli, S.K., Ohri, P., Bhardwaj, R., Ahmad, P., Agroecotoxicological aspect of Cd in soil–plant system: uptake, translocation and amelioration strategies. Environ. Sci. Pollut. Res. 29:21 (2022), 30908–30934, 10.1007/s11356-021-18232-5.
Khanna, K., Kohli, S.K., Sharma, N., Kour, J., Devi, K., Bhardwaj, T., Dhiman, S., Singh, A.D., Sharma, N., Sharma, A., Ohri, P., Bhardwaj, R., Ahmad, P., Alam, P., Albalawi, T.H., Phytomicrobiome communications: novel implications for stress resistance in plants. Front. Microbiol., 13, 2022, 912701, 10.3389/fmicb.2022.912701.
Kong, H.G., Song, G.C., Ryu, C.-M., Inheritance of seed and rhizosphere microbial communities through plant–soil feedback and soil memory. Environ. Microbiol. Rep. 11:4 (2019), 479–486, 10.1111/1758-2229.12760.
Kota, S., Vispo, N.A., Quintana, M.R., Cabral, C.L.U., Centeno, C.A., Egdane, J., Maathuis, F.J.M., Kohli, A., Henry, A., Singh, R.K., Development of a phenotyping protocol for combined drought and salinity stress at seedling stage in rice. Front. Plant Sci., 14, 2023, 10.3389/fpls.2023.1173012.
Kumar, A., Singh, S., Mukherjee, A., Rastogi, R.P., Verma, J.P., Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiol. Res., 242, 2021, 126616, 10.1016/j.micres.2020.126616.
Kumar, P., Singh, S., Pranaw, K., Kumar, S., Singh, B., Poria, V., Bioinoculants as mitigators of multiple stresses: a ray of hope for agriculture in the darkness of climate change. Heliyon, 8(11), 2022, e11269, 10.1016/j.heliyon.2022.e11269.
Lang, Z., Qi, D., Dong, J., Ren, L., Zhu, Q., Huang, W., Liu, Y., Lu, D., Isolation and characterization of a quinclorac-degrading Actinobacteria Streptomyces sp. strain AH-B and its implication on microecology in contaminated soil. Chemosphere 199 (2018), 210–217, 10.1016/j.chemosphere.2018.01.133.
Li, Y., Chen, Y., Fu, Y., Shao, J., Liu, Y., Xuan, W., Xu, G., Zhang, R., Signal communication during microbial modulation of root system architecture. J. Exp. Bot., erad263, 2023, 10.1093/jxb/erad263.
Liu, Y., Xun, W., Chen, L., Xu, Z., Zhang, N., Feng, H., Zhang, Q., Zhang, R., Rhizosphere microbes enhance plant salt tolerance: toward crop production in saline soil. Comput. Struct. Biotechnol. J. 20 (2022), 6543–6551, 10.1016/j.csbj.2022.11.046.
Lobo, C.B., Juárez Tomás, M.S., Viruel, E., Ferrero, M.A., Lucca, M.E., Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol. Res. 219 (2019), 12–25, 10.1016/j.micres.2018.10.012.
Luo, H., Xing, P., Liu, J., Pan, S., Tang, X., Duan, M., Selenium improved antioxidant response and photosynthesis in fragrant rice (Oryza sativa L.) seedlings during drought stress. Physiol. Mol. Biol. Plants 27:12 (2021), 2849–2858, 10.1007/s12298-021-01117-9.
Ma, Y., Seed coating with beneficial microorganisms for precision agriculture. Biotechnol. Adv., 37(7), 2019, 107423, 10.1016/j.biotechadv.2019.107423.
Malusá, E., Sas-Paszt, L., Ciesielska, J., Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J., 2012, 2012, 491206, 10.1100/2012/491206.
Marín, O., González, B., Poupin, M.J., From microbial dynamics to functionality in the rhizosphere: a systematic review of the opportunities with synthetic microbial communities. Front. Plant Sci., 12, 2021, 650609, 10.3389/fpls.2021.650609.
Maron, P.A., Mougel, C., Ranjard, L., Soil microbial diversity: methodological strategy, spatial overview and functional interest. C. R. Biol. 334:5–6 (2011), 403–411, 10.1016/j.crvi.2010.12.003.
Mishra, P., Bhoomika, K., Dubey, R.S., Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250:1 (2013), 3–19, 10.1007/s00709-011-0365-3.
Misra, S., Dixit, V.K., Khan, M.H., Kumar Mishra, S., Dviwedi, G., Yadav, S., Lehri, A., Singh Chauhan, P., Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiol. Res. 205 (2017), 25–34, 10.1016/j.micres.2017.08.007.
Mitra, S., Pramanik, K., Ghosh, P.K., Soren, T., Sarkar, A., Dey, R.S., Pandey, S., Maiti, T.K., Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiol. Res. 210 (2018), 12–25, 10.1016/j.micres.2018.03.003.
Mitra, S., Pramanik, K., Sarkar, A., Ghosh, P.K., Soren, T., Maiti, T.K., Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicol. Environ. Saf. 156 (2018), 183–196, 10.1016/j.ecoenv.2018.03.001.
Mukherjee, D., Pramanik, K., Mandal, S., Mandal, N.C., Augmented growth of Cd-stressed rice seedlings with the application of phytostimulating, root-colonizing, Cd-tolerant, leaf-endophytic fungi Colletotrichum spp. isolated from Eupatorium triplinerve. J. Hazard. Mater., 438, 2022, 129508, 10.1016/j.jhazmat.2022.129508.
Mukherjee, P., Mitra, A., Roy, M., Halomonas Rhizobacteria of Avicennia marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Front. Microbiol., 10, 2019, 1207, 10.3389/fmicb.2019.01207.
Nascente, A.S., de Filippi, M.C.C., Lanna, A.C., de Sousa, T.P., de Souza, A.C.A., da Silva Lobo, V.L., da Silva, G.B., Effects of beneficial microorganisms on lowland rice development. Environ. Sci. Pollut. Res. 24:32 (2017), 25233–25242, 10.1007/s11356-017-0212-y.
Naseem, H., Ahsan, M., Shahid, M.A., Khan, N., Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J. Basic Microbiol. 58:12 (2018), 1009–1022, 10.1002/jobm.201800309.
Nasrollahi, M., Pourbabaei, A.A., Etesami, H., Talebi, K., Diazinon degradation by bacterial endophytes in rice plant (Oryzia sativa L.): a possible reason for reducing the efficiency of diazinon in the control of the rice stem-borer. Chemosphere, 246, 2020, 125759, 10.1016/j.chemosphere.2019.125759.
Negrão, S., Courtois, B., Ahmadi, N., Abreu, I., Saibo, N., Oliveira, M.M., Recent updates on salinity stress in rice: from physiological to molecular responses. Crit. Rev. Plant Sci. 30:4 (2011), 329–377, 10.1080/07352689.2011.587725.
Omomowo, O.I., Babalola, O.O., Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms, 7(11), 2019, 10.3390/microorganisms7110481.
Orozco-Mosqueda, M.D.C., Glick, B.R., Santoyo, G., ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol. Res., 235, 2020, 126439, 10.1016/j.micres.2020.126439.
Palanog, A.D., Swamy, B.P.M., Shamsudin, N.A.A., Dixit, S., Hernandez, J.E., Boromeo, T.H., Cruz, P.C.S., Kumar, A., Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice. Field Crop Res. 161 (2014), 46–54, 10.1016/j.fcr.2014.01.004.
Pandey, P., Irulappan, V., Bagavathiannan, M.V., Senthil-Kumar, M., Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci., 8, 2017, 537, 10.3389/fpls.2017.00537.
Pang, Z., Zhao, Y., Xu, P., Yu, D., Microbial diversity of upland rice roots and their influence on rice growth and drought tolerance. Microorganisms, 8(9), 2020, 1329, 10.3390/microorganisms8091329.
Patel, J., Mishra, A., Genome editing: advances and prospects. Khurana, S.M.P., Gaur, R.K., (eds.) Plant biotechnology: progress in genomic era, 2019, Springer Singapore, 147–174, 10.1007/978-981-13-8499-8_7.
Phour, M., Sindhu, S.S., Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Planta, 256(5), 2022, 85, 10.1007/s00425-022-03997-x.
Pradhan, S., Tyagi, R., Sharma, S., Combating biotic stresses in plants by synthetic microbial communities: principles, applications and challenges. J. Appl. Microbiol. 133:5 (2022), 2742–2759, 10.1111/jam.15799.
Pramanik, K., Mitra, S., Sarkar, A., Maiti, T.K., Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J. Hazard. Mater. 351 (2018), 317–329, 10.1016/j.jhazmat.2018.03.009.
Qin, W., Liu, C., Jiang, W., Xue, Y., Wang, G., Liu, S., A coumarin analogue NFA from endophytic Aspergillus fumigatus improves drought resistance in rice as an antioxidant. BMC Microbiol., 19(1), 2019, 50, 10.1186/s12866-019-1419-5.
Qiu, Z., Egidi, E., Liu, H., Kaur, S., Singh, B.K., New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv., 37(6), 2019, 107371, 10.1016/j.biotechadv.2019.03.010.
Raza, A., Salehi, H., Rahman, M.A., Zahid, Z., Madadkar Haghjou, M., Najafi-Kakavand, S., Charagh, S., Osman, H.S., Albaqami, M., Zhuang, Y., Siddique, K.H.M., Zhuang, W., Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front. Plant Sci., 13, 2022, 10.3389/fpls.2022.961872.
Razzaq, A., Ali, A., Safdar, L.B., Zafar, M.M., Rui, Y., Shakeel, A., Shaukat, A., Ashraf, M., Gong, W., Yuan, Y., Salt stress induces physiochemical alterations in rice grain composition and quality. J. Food Sci. 85:1 (2020), 14–20, 10.1111/1750-3841.14983.
Rizaludin, M.S., Stopnisek, N., Raaijmakers, J.M., Garbeva, P., The chemistry of stress: understanding the ‘cry for help’ of plant roots. Metabolites, 11(6), 2021, 10.3390/metabo11060357.
Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Zia-ur-Rehman, M., Hannan, F., Qayyum, M.F., Hafeez, F., Ok, Y.S., Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ. Sci. Pollut. Res. 23:18 (2016), 17859–17879, 10.1007/s11356-016-6436-4.
Roman-Reyna, V., Pinili, D., Borja, F.N., Quibod, I.L., Groen, S.C., Alexandrov, N., Mauleon, R., Oliva, R., Characterization of the leaf microbiome from whole-genome sequencing data of the 3000 rice genomes project. Rice, 13(1), 2020, 72, 10.1186/s12284-020-00432-1.
Saad, M.M., Eida, A.A., Hirt, H., Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J. Exp. Bot. 71:13 (2020), 3878–3901, 10.1093/jxb/eraa111.
Sampangi-Ramaiah, M.H., Jagadheesh, Dey, P., Jambagi, S., Vasantha Kumari, M.M., Oelmüller, R., Nataraja, K.N., Venkataramana Ravishankar, K., Ravikanth, G., Uma Shaanker, R., An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host. Sci. Rep., 10(1), 2020, 3237, 10.1038/s41598-020-59998-x.
Sánchez-Bermúdez, M., del Pozo, J.C., Pernas, M., Effects of combined abiotic stresses related to climate change on root growth in crops. Front. Plant Sci., 13, 2022, 10.3389/fpls.2022.918537.
Santos, M.S., Nogueira, M.A., Hungria, M., Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 9(1), 2019, 205, 10.1186/s13568-019-0932-0.
Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., Sundaresan, V., Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio, 8(4), 2017, 10.1128/mBio.00764-17.
Sarapat, S., Longtonglang, A., Umnajkitikorn, K., Girdthai, T., Boonkerd, N., Tittabutr, P., Teaumroong, N., Application of rice endophytic Bradyrhizobium strain SUTN9-2 containing modified ACC deaminase to rice cultivation under water deficit conditions. J. Plant Interact. 15:1 (2020), 322–334, 10.1080/17429145.2020.1824028.
Sarkar, A., Ghosh, P.K., Pramanik, K., Mitra, S., Soren, T., Pandey, S., Mondal, M.H., Maiti, T.K., A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res. Microbiol. 169:1 (2018), 20–32, 10.1016/j.resmic.2017.08.005.
Sarkar, A., Pramanik, K., Mitra, S., Soren, T., Maiti, T.K., Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. J. Plant Physiol. 231 (2018), 434–442, 10.1016/j.jplph.2018.10.010.
Semchenko, M., Barry, K.E., de Vries, F.T., Mommer, L., Moora, M., Maciá-Vicente, J.G., Deciphering the role of specialist and generalist plant-microbial interactions as drivers of plant-soil feedback. New Phytol. 234:6 (2022), 1929–1944, 10.1111/nph.18118.
Sessitsch, A., Mitter, B., 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microb. Biotechnol. 8:1 (2015), 32–33, 10.1111/1751-7915.12180.
Shahid, M., Shah, A.A., Basit, F., Noman, M., Zubair, M., Ahmed, T., Naqqash, T., Manzoor, I., Maqsood, A., Achromobacter sp. FB-14 harboring ACC deaminase activity augmented rice growth by upregulating the expression of stress-responsive CIPK genes under salinity stress. Braz. J. Microbiol. 51:2 (2020), 719–728, 10.1007/s42770-019-00199-8.
Shahzad, R., Bilal, S., Imran, M., Khan, A.L., Alosaimi, A.A., Al-Shwyeh, H.A., Almahasheer, H., Rehman, S., Lee, I.J., Amelioration of heavy metal stress by endophytic Bacillus amyloliquefaciens RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation. Biochem. J. 476:21 (2019), 3385–3400, 10.1042/bcj20190606.
Shrestha, S., Mahat, J., Shrestha, J., K, C.M., Paudel, K., Influence of high-temperature stress on rice growth and development. A review. Heliyon, 8(12), 2022, e12651, 10.1016/j.heliyon.2022.e12651.
Shultana, R., Kee Zuan, A.T., Yusop, M.R., Saud, H.M., Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLoS One, 15(9), 2020, e0238537, 10.1371/journal.pone.0238537.
Shultana, R., Tan Kee Zuan, A., Yusop, M.R., Mohd Saud, H., Ayanda, A.F., Effect of salt-tolerant bacterial inoculations on rice seedlings differing in salt-tolerance under saline soil conditions. Agronomy, 10(7), 2020, 1030, 10.3390/agronomy10071030.
Singh, A., Kumar, M., Chakdar, H., Pandiyan, K., Kumar, S.C., Zeyad, M.T., Singh, B.N., Ravikiran, K.T., Mahto, A., Srivastava, A.K., Saxena, A.K., Influence of host genotype in establishing root associated microbiome of indica rice cultivars for plant growth promotion. Front. Microbiol., 13, 2022, 1033158, 10.3389/fmicb.2022.1033158.
Singh, D.P., Singh, V., Gupta, V.K., Shukla, R., Prabha, R., Sarma, B.K., Patel, J.S., Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci. Rep., 10(1), 2020, 4818, 10.1038/s41598-020-61140-w.
Singha, L.P., Sinha, N., Pandey, P., Rhizoremediation prospects of polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. Ecotoxicol. Environ. Saf. 164 (2018), 579–588, 10.1016/j.ecoenv.2018.08.069.
Sun, L., Lei, P., Wang, Q., Ma, J., Zhan, Y., Jiang, K., Xu, Z., Xu, H., The endophyte Pantoea alhagi NX-11 alleviates salt stress damage to rice seedlings by secreting exopolysaccharides. Front. Microbiol., 10, 2019, 3112, 10.3389/fmicb.2019.03112.
Sun, L., Yang, Y., Wang, R., Li, S., Qiu, Y., Lei, P., Gao, J., Xu, H., Zhang, F., Lv, Y., Effects of exopolysaccharide derived from Pantoea alhagi NX-11 on drought resistance of rice and its efficient fermentation preparation. Int. J. Biol. Macromol. 162 (2020), 946–955, 10.1016/j.ijbiomac.2020.06.199.
Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Iqbal Khan, M.S., Shahid, N., Aaliya, K., Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 121 (2017), 102–117, 10.1016/j.apsoil.2017.09.030.
Tian, T., Zhou, H., Gu, J., Jia, R., Li, H., Wang, Q., Zeng, M., Liao, B., Cadmium accumulation and bioavailability in paddy soil under different water regimes for different growth stages of rice (Oryza sativa L.). Plant Soil 440:1 (2019), 327–339, 10.1007/s11104-019-04094-x.
Timmusk, S., Behers, L., Muthoni, J., Muraya, A., Aronsson, A.-C., Perspectives and challenges of microbial application for crop improvement. Front. Plant Sci., 8, 2017, 10.3389/fpls.2017.00049.
Tiwari, S., Prasad, V., Chauhan, P.S., Lata, C., Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front. Plant Sci., 8, 2017, 1510, 10.3389/fpls.2017.01510.
Toju, H., Peay, K.G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito, K., Fukuda, S., Ushio, M., Nakaoka, S., Onoda, Y., Yoshida, K., Schlaeppi, K., Bai, Y., Sugiura, R., Ichihashi, Y., Minamisawa, K., Kiers, E.T., Core microbiomes for sustainable agroecosystems. Nat. Plants 4:5 (2018), 247–257, 10.1038/s41477-018-0139-4.
Treesubsuntorn, C., Dhurakit, P., Khaksar, G., Thiravetyan, P., Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environ. Sci. Pollut. Res. Int. 25:26 (2018), 25690–25701, 10.1007/s11356-017-9058-6.
Trivedi, P., Schenk, P.M., Wallenstein, M.D., Singh, B.K., Tiny microbes, big yields: enhancing food crop production with biological solutions. Microb. Biotechnol. 10:5 (2017), 999–1003, 10.1111/1751-7915.12804.
Tsolakidou, M.D., Stringlis, I.A., Fanega-Sleziak, N., Papageorgiou, S., Tsalakou, A., Pantelides, I.S., Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs. FEMS Microbiol. Ecol., 95(10), 2019, 10.1093/femsec/fiz138.
Tu, D., Jiang, Y., Salah, A., Cai, M., Peng, W., Zhang, L., Li, C., Cao, C., Response of source-sink characteristics and rice quality to high natural field temperature during reproductive stage in irrigated Rice system. Front. Plant Sci., 13, 2022, 911181, 10.3389/fpls.2022.911181.
Ullah, A., Nisar, M., Ali, H., Hazrat, A., Hayat, K., Keerio, A.A., Ihsan, M., Laiq, M., Ullah, S., Fahad, S., Khan, A., Khan, A.H., Akbar, A., Yang, X., Drought tolerance improvement in plants: an endophytic bacterial approach. Appl. Microbiol. Biotechnol. 103:18 (2019), 7385–7397, 10.1007/s00253-019-10045-4.
Uphoff, N., Thies, J.E., Rhizosphere dynamics at the soil-root interface. Uphoff, N., Thies, J.E., (eds.) Biological Approaches to Regenerative Soil Systems, 2023, CRC Press, 108–119, 10.1201/9781003093718-13.
Vurukonda, S.S., Vardharajula, S., Shrivastava, M., Sk, Z.A., Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184 (2016), 13–24, 10.1016/j.micres.2015.12.003.
Wahab, A., Muhammad, M., Munir, A., Abdi, G., Zaman, W., Ayaz, A., Khizar, C., Reddy, S.P.P., Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants, 12(17), 2023, 3102, 10.3390/plants12173102.
Wang, G., Zhang, L., Zhang, S., Li, B., Li, J., Wang, X., Zhang, J., Guan, C., Ji, J., The combined use of a plant growth promoting Bacillus sp. strain and GABA promotes the growth of rice under salt stress by regulating antioxidant enzyme system, enhancing photosynthesis and improving soil enzyme activities. Microbiol. Res., 266, 2023, 127225, 10.1016/j.micres.2022.127225.
Wang, J., Lu, S., Bian, H., Xu, M., Zhu, W., Wang, H., He, C., Sheng, L., Effects of individual and combined polystyrene nanoplastics and phenanthrene on the enzymology, physiology, and transcriptome parameters of rice (Oryza sativa L.). Chemosphere, 304, 2022, 135341, 10.1016/j.chemosphere.2022.135341.
Wang, J., Lu, S., Guo, L., Wang, P., He, C., Liu, D., Bian, H., Sheng, L., Effects of polystyrene nanoplastics with different functional groups on rice (Oryza sativa L.) seedlings: combined transcriptome, enzymology, and physiology. Sci. Total Environ., 834, 2022, 155092, 10.1016/j.scitotenv.2022.155092.
Wang, L., Qin, T., Liu, T., Guo, L., Li, C., Zhai, Z., Inclusion of microbial inoculants with straw mulch enhances grain yields from rice fields in central China. Food Energy Security, 9(4), 2020, e230, 10.1002/fes3.230.
Wang, W., Zhai, Y., Cao, L., Tan, H., Zhang, R., Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol. Res. 188-189 (2016), 1–8, 10.1016/j.micres.2016.04.009.
Waqas, M., Khan, A.L., Shahzad, R., Ullah, I., Khan, A.R., Lee, I.J., Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. J Zhejiang Univ Sci B 16:12 (2015), 1011–1018, 10.1631/jzus.B1500081.
Wei, H.Y., Li, Y., Yan, J., Peng, S.Y., Wei, S.J., Yin, Y., Li, K.T., Cheng, X., Root cell wall remodeling: A way for exopolysaccharides to mitigate cadmium toxicity in rice seedling. J. Hazard. Mater., 443(Pt A), 2023, 130186, 10.1016/j.jhazmat.2022.130186.
Wu, X., Liu, Y., Yin, S., Xiao, K., Xiong, Q., Bian, S., Liang, S., Hou, H., Hu, J., Yang, J., Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environ. Pollut., 266, 2020, 115159, 10.1016/j.envpol.2020.115159.
Xie, Y., Li, X., Huang, X., Han, S., Amombo, E., Wassie, M., Chen, L., Fu, J., Characterization of the Cd-resistant fungus Aspergillus aculeatus and its potential for increasing the antioxidant activity and photosynthetic efficiency of rice. Ecotoxicol. Environ. Saf. 171 (2019), 373–381, 10.1016/j.ecoenv.2018.11.123.
Xu, Y., Guan, X., Han, Z., Zhou, L., Zhang, Y., Asad, M.A.U., Wang, Z., Jin, R., Pan, G., Cheng, F., Combined effect of nitrogen fertilizer application and high temperature on grain quality properties of cooked rice. Front. Plant Sci., 13, 2022, 874033, 10.3389/fpls.2022.874033.
Xun, W., Shao, J., Shen, Q., Zhang, R., Rhizosphere microbiome: functional compensatory assembly for plant fitness. Comput. Struct. Biotechnol. J. 19 (2021), 5487–5493, 10.1016/j.csbj.2021.09.035.
Yang, X., Wang, B., Chen, L., Li, P., Cao, C., The Different Influences of Drought Stress at the Flowering Stage on Rice Physiological Traits, Grain Yield, and Quality. 2019.
Yu, X., Zhao, J., Liu, X., Sun, L., Tian, J., Wu, N., Cadmium pollution impact on the bacterial community structure of arable soil and the isolation of the cadmium resistant bacteria. Front. Microbiol., 12, 2021, 10.1038/s41598-019-40161-0.