Chicory; Gut microbiota; Inflammation; Inulin; Morphology; Weaning; Food Science; Medicine (miscellaneous); Nutrition and Dietetics
Abstract :
[en] Dysfunction of the host-microbial balance and an impaired intestinal barrier can trigger inflammation and increase the antigen penetration. Inulin, commonly extracted from chicory root, is a prebiotic beneficial to gut health. The objective of this study was to compare the effect of chicory flour to inulin on gut health, few weeks after weaning. Two dose-dependent experiments (E1 and E2) were performed sequentially, each consisting of 80 castrated male piglets, weaned at day 21 and subsequently divided in 3 groups with ad libitum feed: control (Ctrl), inulin (INU) and crude chicory flour (CHI). For INU and CHI groups, a daily supplementation with the equated ‘inulin content’ increasing weekly was done by oral force-feeding, while the Ctrl groups received an isotonic sucrose solution. For E1, these doses were 1.5 g/day, 2 g/day and 2.5 g/day in W1, W2 and W3, respectively. For E2, these doses were 3 g/day, 4 g/day and 5 g/day in W1, W2 and W3, respectively. For each experiment at W0, W1 and W3, eight piglets per group were euthanized to assess gut structural and functional parameters. In E1, the CHI had lower average daily calorie intake (kcal/day) only at W3, while in E2 it was consistently lower than Ctrl and INU. In W3 of E2, CHI showed improved villi-to-crypt ratio and lower diarrhea occurrence than INU and Ctrl. Both supplemented groups in E2 showed higher butyrate production and lower D-xylose permeability (W3), compared to Ctrl. Interestingly, in E2, CHI had a more dominant effect on increasing the abundance of health promoting genera like Catenisphaera, Butyricicoccus, etc. and decreasing harmful genera like Erysipelotrichaceae_UCG-002 and Turicibacter. In E2, on W3 several inflammatory target genes (CXCL10, IL18, TNFα) and inflammation signalling genes (MyD88, NFκB1) were downregulated in ileum of INU and CHI. In colon, both chicory and inulin, proved to be beneficial, as the inflammation signalling and inflammatory targets genes NFκB1, DEFβ4A, TLR2 and IFNα were significantly downregulated. Therefore, crude chicory flour might also be a promising cost-effective alternative supplement to improve gut health in weaned piglets.
Siegien, Pawel ; Université de Liège - ULiège > Département GxABT > Animal Sciences (AS)
Comer, Luke ; Nutrition and Animal Microbiota EcoSystems Lab, Division of A2H, Department of Biosystems, KU Leuven, Leuven, Belgium
Vandel, Jimmy ; US 41 – UAR 2014 – PLBS – Bilille platform, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
Chataigne, Gabrielle; UMR-T 1158, BioEcoAgro, University of Lille, University of Liege, Lille, France
Richel, Aurore ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Wavreille, José; Walloon Agricultural Research Centre, Gembloux, Belgium
Cudennec, Benoit; UMR-T 1158, BioEcoAgro, University of Lille, University of Liege, Lille, France
Lucau, Anca; UMR-T 1158, BioEcoAgro, University of Lille, University of Liege, Lille, France ; Joint Laboratory CHIC41H, University of Lille-Florimond-Desprez, Cité scientifique, Villeneuve d'Ascq, France
Everaert, Nadia; Nutrition and Animal Microbiota EcoSystems Lab, Division of A2H, Department of Biosystems, KU Leuven, Leuven, Belgium
Ravallec, Rozenn; UMR-T 1158, BioEcoAgro, University of Lille, University of Liege, Lille, France
Schroyen, Martine ; Université de Liège - ULiège > Département GxABT > Animal Sciences (AS)
Language :
English
Title :
A comparative study of the effects of crude chicory and inulin on gut health in weaning piglets
This research was funded by the Hauts-de-France region (half PhD funding), as well as within the BiHauts Eco de France CPER/FEDER 2021-2027 program, which is financed by the European Union, the French State, and the Hauts-de-France Region. The authors would also like to thank Sylvie Mabille, Pauline Lemal and Vincent Servais for technical support in the lab and during in vivo trials.
Aguedo, M., Fougnies, C., Dermience, M., Richel, A., Extraction by three processes of arabinoxylans from wheat bran and characterization of the fractions obtained. Carbohydrate Polymers 105 (2014), 317–324, 10.1016/j.carbpol.2014.01.096.
Alharthi, F., Chicoric acid enhances the antioxidative defense system and protects against inflammation and apoptosis associated with the colitis model induced by dextran sulfate sodium in rats. Environmental Science and Pollution Research 30:57 (2023), 119814–119824, 10.1007/s11356-023-30742-y.
Al-Sadi, R., Guo, S., Ye, D., Rawat, M., Ma, T.Y., TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-α axis activation of the canonical NF-κB pathway. The American Journal of Pathology 186:5 (2016), 1151–1165, 10.1016/j.ajpath.2015.12.016.
Andersen, C.L., Jensen, J.L., Ørntoft, T.F., Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64:15 (2004), 5245–5250, 10.1158/0008-5472.CAN-04-0496.
Apolinário, A.C., de Lima Damasceno, B.P.G., de Macêdo Beltrão, N.E., Pessoa, A., Converti, A., da Silva, J.A., Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers 101 (2014), 368–378, 10.1016/j.carbpol.2013.09.081.
Apper, E., Meymerit, C., Bodin, J., Respondek, F., Wagner, A., Effect of dietary supplementation with short-chain fructooligosaccharides in lactating sows and newly weaned piglets on reproductive performance of sows, immune response and growth performance of piglets from birth to slaughter. Journal of Animal Research and Nutrition, 1, 2016, 10.21767/2572-5459.100019.
Arrieta, M.C., Alterations in intestinal permeability. Gut 55:10 (2006), 1512–1520, 10.1136/gut.2005.085373.
Awad, W.A., Ghareeb, K., Paßlack, N., Zentek, J., Dietary inulin alters the intestinal absorptive and barrier function of piglet intestine after weaning. Research in Veterinary Science 95:1 (2013), 249–254, 10.1016/j.rvsc.2013.02.009.
Ayuso, M., Michiels, J., Wuyts, S., Yan, H., Degroote, J., Lebeer, S., Le Bourgot, C., Apper, E., Majdeddin, M., Van Noten, N., Vanden Hole, C., Van Cruchten, S., Van Poucke, M., Peelman, L., Van Ginneken, C., Short-chain fructo-oligosaccharides supplementation to suckling piglets: Assessment of pre- and post-weaning performance and gut health. PLOS ONE, 15(6), 2020, e0233910, 10.1371/journal.pone.0233910.
Bailey, M., Haverson, K., Inman, C., Harris, C., Jones, P., Corfield, G., Miller, B., Stokes, C., The development of the mucosal immune system pre- and post-weaning: Balancing regulatory and effector function. Proceedings of the Nutrition Society 64:4 (2005), 451–457, 10.1079/PNS2005452.
Barcenilla, A., Pryde, S.E., Martin, J.C., Duncan, S.H., Stewart, C.S., Henderson, C., Flint, H.J., Phylogenetic relationships of butyrate-producing bacteria from the human gut. Applied and Environmental Microbiology 66:4 (2000), 1654–1661, 10.1128/AEM.66.4.1654-1661.2000.
Barreau, F., Hugot, J., Intestinal barrier dysfunction triggered by invasive bacteria. Current Opinion in Microbiology 17 (2014), 91–98, 10.1016/j.mib.2013.12.003.
Barszcz, M., Taciak, M., Skomiał, J., The effects of inulin, dried Jerusalem artichoke tuber and a multispecies probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Archives of Animal Nutrition 70:4 (2016), 278–292, 10.1080/1745039X.2016.1184368.
Barszcz, M., Taciak, M., Tu{\acute{s}}nio, A., Święch, E., Bachanek, I., Kowalczyk, P., Borkowski, A., Skomiał, J., The effect of dietary level of two inulin types differing in chain length on biogenic amine concentration, oxidant-antioxidant balance and DNA repair in the colon of piglets. PLOS ONE, 13, 2018, e0202799, 10.1371/journal.pone.0202799.
Barszcz, M., Taciak, M., Tu{\acute{s}}nio, A., Święch, E., Skomiał, J., Dose-dependent effects of two inulin types differing in chain length on the small intestinal morphology, contractility and proinflammatory cytokine gene expression in piglets. Archives of Animal Nutrition 74:2 (2020), 107–120, 10.1080/1745039X.2019.1697140.
Bawish, B.M., Zahran, M.F.S., Ismael, E., Kamel, S., Ahmed, Y.H., Hamza, D., Attia, T., Fahmy, K.N.E., Impact of buffered sodium butyrate as a partial or total dietary alternative to lincomycin on performance, IGF-1 and TLR4 genes expression, serum indices, intestinal histomorphometry, Clostridia, and litter hygiene of broiler chickens. Acta Veterinaria Scandinavica, 65(1), 2023, 44, 10.1186/s13028-023-00704-y.
Berkes, J., Intestinal epithelial responses to enteric pathogens: Effects on the tight junction barrier, ion transport, and inflammation. Gut 52:3 (2003), 439–451, 10.1136/gut.52.3.439.
Bian, G., Ma, S., Zhu, Z., Su, Y., Zoetendal, E.G., Mackie, R., Liu, J., Mu, C., Huang, R., Smidt, H., Zhu, W., Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross‐fostering model. Environmental Microbiology 18:5 (2016), 1566–1577, 10.1111/1462-2920.13272.
Biddle, A., Stewart, L., Blanchard, J., Leschine, S., Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities. Diversity 5 (2013), 627–640, 10.3390/d5030627.
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Caporaso, J.G., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37:8 (2019), 852–857, 10.1038/s41587-019-0209-9.
Bomba, L., Minuti, A., Moisá, S.J., Trevisi, E., Eufemi, E., Lizier, M., Chegdani, F., Lucchini, F., Rzepus, M., Prandini, A., Rossi, F., Mazza, R., Bertoni, G., Loor, J.J., Ajmone-Marsan, P., Gut response induced by weaning in piglet features marked changes in immune and inflammatory response. Functional & Integrative Genomics 14:4 (2014), 657–671, 10.1007/s10142-014-0396-x.
Boudry, G., Péron, V., Le Huërou-Luron, I., Lallès, J.P., Sève, B., Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. The Journal of Nutrition 134:9 (2004), 2256–2262, 10.1093/jn/134.9.2256.
Xu, C.H., Chen, X., Ji, C., Ma, Q., Hao, K., Study of the application of fructooligosaccharides in piglets. Asian-Australasian Journal of Animal Sciences, 18, 2005, 10.5713/ajas.2005.1011.
Calvani, R., Miccheli, A., Capuani, G., Tomassini Miccheli, A., Puccetti, C., Delfini, M., Iaconelli, A., Nanni, G., Mingrone, G., Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. International Journal of Obesity 34:6 (2010), 1095–1098, 10.1038/ijo.2010.44.
Campbell, J.M., Crenshaw, J.D., Polo, J., The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology, 4(1), 2013, 19, 10.1186/2049-1891-4-19.
Cani, P.D., Possemiers, S., Van de Wiele, T., Guiot, Y., Everard, A., Rottier, O., Geurts, L., Naslain, D., Neyrinck, A., Lambert, D.M., Muccioli, G.G., Delzenne, N.M., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:8 (2009), 1091–1103, 10.1136/gut.2008.165886.
Carlson, J., Erickson, J., Hess, J., Gould, T., Slavin, J., Prebiotic dietary fiber and gut health: Comparing the in vitro fermentations of beta-glucan, inulin and xylooligosaccharide. Nutrients, 9, 2017, 1361, 10.3390/nu9121361.
Caron, J., Domenger, D., Dhulster, P., Ravallec, R., Cudennec, B., Protein digestion-derived peptides and the peripheral regulation of food intake. Frontiers in Endocrinology, 8, 2017, 10.3389/fendo.2017.00085.
Cavaglieri, L., Orlando, J., Etcheverry, M., Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiological Research 164:4 (2009), 391–399, 10.1016/j.micres.2007.03.006.
Chen, K., Chen, H., Faas, M.M., de Haan, B.J., Li, J., Xiao, P., Zhang, H., Diana, J., de Vos, P., Sun, J., Specific inulin‐type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Molecular Nutrition & Food Research, 61(8), 2017, 10.1002/mnfr.201601006.
Corrêa-Oliveira, R., Fachi, J.L., Vieira, A., Sato, F.T., Vinolo, M.A.R., Regulation of immune cell function by short‐chain fatty acids. Clinical & Translational Immunology, 5(4), 2016, 10.1038/cti.2016.17.
Cui, J., Lian, Y., Zhao, C., Du, H., Han, Y., Gao, W., Xiao, H., Zheng, J., Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Comprehensive Reviews in Food Science and Food Safety 18:5 (2019), 1514–1532, 10.1111/1541-4337.12489.
de Lange, C.F.M., Pluske, J., Gong, J., Nyachoti, C.M., Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science 134:1–3 (2010), 124–134, 10.1016/j.livsci.2010.06.117.
De Vuyst, L., Leroy, F., Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. International Journal of Food Microbiology 149:1 (2011), 73–80, 10.1016/j.ijfoodmicro.2011.03.003.
De Vuyst, L., Moens, F., Selak, M., Rivière, A., Leroy, F., Summer Meeting 2013: Growth and physiology of bifidobacteria. Journal of Applied Microbiology 116:3 (2014), 477–491, 10.1111/jam.12415.
Dewulf, E.M., Cani, P.D., Claus, S.P., Fuentes, S., Puylaert, P.G., Neyrinck, A.M., Bindels, L.B., de Vos, W.M., Gibson, G.R., Thissen, J.-P., Delzenne, N.M., Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62:8 (2013), 1112–1121, 10.1136/gutjnl-2012-303304.
Dinis, M., Plainvert, C., Kovarik, P., Longo, M., Fouet, A., Poyart, C., The innate immune response elicited by group A Streptococcus is highly variable among clinical isolates and correlates with the emm type. PLoS ONE, 9(7), 2014, e101464, 10.1371/journal.pone.0101464.
Dodd, D., Mackie, R.I., Cann, I.K.O., Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Molecular Microbiology 79:2 (2011), 292–304, 10.1111/j.1365-2958.2010.07473.x.
Dou, S., Gadonna-Widehem, P., Rome, V., Hamoudi, D., Rhazi, L., Lakhal, L., Larcher, T., Bahi-Jaber, N., Pinon-Quintana, A., Guyonvarch, A., Huërou-Luron, I.L.E., Abdennebi-Najar, L., Characterisation of early-life fecal microbiota in susceptible and healthy pigs to post-weaning diarrhoea. PLOS ONE, 12(1), 2017, e0169851, 10.1371/journal.pone.0169851.
Eberhard, M., Hennig, U., Kuhla, S., Brunner, R.M., Kleessen, B., Metges, C.C., Effect of inulin supplementation on selected gastric, duodenal, and caecal microbiota and short chain fatty acid pattern in growing piglets. Archives of Animal Nutrition 61:4 (2007), 235–246, 10.1080/17450390701431631.
EL Andaloussi, S., Mäger, I., Breakefield, X.O., Wood, M.J.A., Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery 12:5 (2013), 347–357, 10.1038/nrd3978.
Elshahed, M.S., Miron, A., Aprotosoaie, A.C., Farag, M.A., Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydrate Polymers, 255, 2021, 117388, 10.1016/j.carbpol.2020.117388.
Englyst, H.N., Cummings, J.H., Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 109:7 (1984), 937–942, 10.1039/AN9840900937.
Estrada, A., Drew, M., Van Kessel, A., Effect of the dietary supplementation of fructooligosaccharides and Bifidobacterium longum to early-weaned pigs on performance and fecal bacterial populations. Canadian Journal of Animal Science 81 (2001), 141–148.
European Commission. (2017). Commission Implementing Decision of 26.6.2017 Concerning, in the Framework of Article 35 of Directive 2001/82/EC of the European Parliament and of the Council, the Marketing Authorisations for Veterinary Medicinal Products Containing “Zinc Oxide” to be Ad; Official Journal of the European Union: Brussels, Belgium, 2017.
Ferioli, F., D'Antuono, L., An update procedure for an effective and simultaneous extraction of sesquiterpene lactones and phenolics from chicory. Food Chemistry 135 (2012), 243–250, 10.1016/j.foodchem.2012.04.079.
Fouhse, J., Zijlstra, R.T., Willing, B., The role of gut microbiota in the health and disease of pigs. Animal Frontiers, 6, 2016, 30, 10.2527/af.2016-0031.
Fouré, M., Dugardin, C., Foligné, B., Hance, P., Cadalen, T., Delcourt, A., Taminiau, B., Daube, G., Ravallec, R., Cudennec, B., Hilbert, J.-L., Lucau-Danila, A., Chicory roots for prebiotics and appetite regulation: A pilot study in mice. Journal of Agricultural and Food Chemistry 66:25 (2018), 6439–6449, 10.1021/acs.jafc.8b01055.
Franck, A., Leenheer, L., Inulin. Biopolymers Online, 6, 2005, 10.1002/3527600035.bpol6014.
Frolova, L., Drastich, P., Rossmann, P., Klimesova, K., Tlaskalova-Hogenova, H., Expression of toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: Upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. Journal of Histochemistry & Cytochemistry 56:3 (2008), 267–274, 10.1369/jhc.7A7303.2007.
Goel, V., Chang, C., Slama, J.V., Barton, R., Bauer, R., Gahler, R., Basu, T.K., Echinacea stimulates macrophage function in the lung and spleen of normal rats. The Journal of Nutritional Biochemistry 13:8 (2002), 487–492, 10.1016/S0955-2863(02)00190-0.
Groschwitz, K.R., Hogan, S.P., Intestinal barrier function: Molecular regulation and disease pathogenesis. Journal of Allergy and Clinical Immunology 124:1 (2009), 3–20, 10.1016/j.jaci.2009.05.038.
Halas, D., Hansen, C.F., Hampson, D.J., Mullan, B.P., Wilson, R.H., Pluske, J.R., Effect of dietary supplementation with inulin and/or benzoic acid on the incidence and severity of post-weaning diarrhoea in weaner pigs after experimental challenge with enterotoxigenic Escherichia coli. Archives of Animal Nutrition 63:4 (2009), 267–280, 10.1080/17450390903020414.
Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J., Brummer, R.-J., Review article: The role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics 27:2 (2008), 104–119, 10.1111/j.1365-2036.2007.03562.x.
Hankel, J., Chuppava, B., Wilke, V., Hartung, C.B., Muthukumarasamy, U., Strowig, T., Knudsen, K., Kamphues, J., Visscher, C., High dietary intake of rye affects porcine gut microbiota in a Salmonella typhimurium infection study. Plants, 11, 2022, 2232, 10.3390/plants11172232.
He, J., Xie, H., Chen, D., Yu, B., Huang, Z., Mao, X., Zheng, P., Luo, Y., Yu, J., Luo, J., Yan, H., Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs. European Journal of Nutrition 60:2 (2021), 715–727, 10.1007/s00394-020-02284-3.
Herosimczyk, A., Lepczyński, A., Ożgo, M., Barszcz, M., Marynowska, M., Tu{\acute{s}}nio, A., Taciak, M., Markulen, A., Skomiał, J., Proteome changes in ileal mucosa of young pigs resulting from different levels of native chicory inulin in the diet. Journal of Animal and Feed Sciences 27:3 (2018), 229–237, 10.22358/jafs/93737/2018.
Herosimczyk, A., Lepczyński, A., Ożgo, M., Tu{\acute{s}}nio, A., Taciak, M., Barszcz, M., Effect of dietary inclusion of 1% or 3% of native chicory inulin on the large intestinal mucosa proteome of growing pigs. Animal 14:8 (2020), 1647–1658, 10.1017/S1751731120000440.
Herrera, P., Kwon, Y.M., Ricke, S.C., Ecology and pathogenicity of gastrointestinal Streptococcus bovis. Anaerobe 15:1–2 (2009), 44–54, 10.1016/j.anaerobe.2008.11.003.
Hodgkinson, K., El Abbar, F., Dobranowski, P., Manoogian, J., Butcher, J., Figeys, D., Mack, D., Stintzi, A., Butyrate's role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clinical Nutrition 42:2 (2023), 61–75, 10.1016/j.clnu.2022.10.024.
Horwitz, W., & L. G. W. (2010). AOAC International. Official methods of analysis of AOAC International (18th ed., 2005, revision 3). AOAC International.
Hou, L., Wang, J., Zhang, W., Quan, R., Wang, D., Zhu, S., Jiang, H., Wei, L., Liu, J., Dynamic alterations of gut microbiota in porcine circovirus type 3-infected piglets. Frontiers in Microbiology, 11, 2020, 10.3389/fmicb.2020.01360.
Hu, C.H., Xiao, K., Luan, Z.S., Song, J., Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs1. Journal of Animal Science 91:3 (2013), 1094–1101, 10.2527/jas.2012-5796.
Hu, S.X., Benner, C.P., Fuller, T.E., Correlation of lactulose-to-mannitol ratios in plasma and urine for intestinal permeability assessment in pigs. American Journal of Veterinary Research, 1–7, 2023, 10.2460/ajvr.23.01.0002.
Jia, L., Xue, K., Liu, J., Habotta, O.A., Hu, L., Abdel Moneim, A.E., Caccamo, D., Anticolitic effect of berberine in rat experimental model: Impact of PGE2/p38 MAPK pathways. Mediators of Inflammation 2020 (2020), 1–12, 10.1155/2020/9419085.
Juhász, Á., Molnár-Nagy, V., Bata, Z., Tso, K.-H., Mayer, Z., Posta, K., Alternative to ZnO to establish balanced intestinal microbiota for weaning piglets. PLOS ONE, 17(3), 2022, e0265573, 10.1371/journal.pone.0265573.
Ju{\acute{s}}kiewicz, J., Zduńczyk, Z., Żary-Sikorska, E., Król, B., Milala, J., Jurgoński, A., Effect of the dietary polyphenolic fraction of chicory root, peel, seed and leaf extracts on caecal fermentation and blood parameters in rats fed diets containing prebiotic fructans. British Journal of Nutrition 105:5 (2011), 710–720, 10.1017/S0007114510004344.
Kaakoush, N.O., Insights into the role of Erysipelotrichaceae in the human host. Frontiers in Cellular and Infection Microbiology, 5, 2015, 10.3389/fcimb.2015.00084.
Karioti, A., Skaltsa, H., Zhang, X., Tonge, P.J., Perozzo, R., Kaiser, M., Franzblau, S.G., Tasdemir, D., Inhibiting enoyl-ACP reductase (FabI) across pathogenic microorganisms by linear sesquiterpene lactones from Anthemis auriculata. Phytomedicine: International Journal of Phytotherapy & Phytopharmacology, 15, 2008, 1125+ https://link.gale.com/apps/doc/A191955985/HRCA?u=anon~eff0976f&sid=googleScholar&xid=26bdd797.
Kassab, R.B., Elbaz, M., Oyouni, A.A.A., Mufti, A.H., Theyab, A., Al-Brakati, A., Mohamed, H.A., Hebishy, A.M.S., Elmallah, M.I.Y., Abdelfattah, M.S., Abdel Moneim, A.E., Anticolitic activity of prodigiosin loaded with selenium nanoparticles on acetic acid–induced colitis in rats. Environmental Science and Pollution Research 29:37 (2022), 55790–55802, 10.1007/s11356-022-19747-1.
Kassinen, A., Krogius-Kurikka, L., Mäkivuokko, H., Rinttilä, T., Paulin, L., Corander, J., Malinen, E., Apajalahti, J., Palva, A., The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:1 (2007), 24–33, 10.1053/j.gastro.2007.04.005.
Khuenpet, K., Fukuoka, M., Jittanit, W., Sirisansaneeyakul, S., Spray drying of inulin component extracted from Jerusalem artichoke tuber powder using conventional and ohmic-ultrasonic heating for extraction process. Journal of Food Engineering 194 (2017), 67–78, 10.1016/j.jfoodeng.2016.09.009.
Kim, S.W., Holanda, D.M., Gao, X., Park, I., Yiannikouris, A., Efficacy of a yeast cell wall extract to mitigate the effect of naturally co-occurring mycotoxins contaminating feed ingredients fed to young pigs: Impact on gut health, microbiome, and growth. Toxins, 11(11), 2019, 633, 10.3390/toxins11110633.
Kocsis, I., Hagymási, K., Kéry, Á., Szoke, É., Blázovics, A., Effects of chicory on pancreas status of rats in experimental dislipidemia. Acta Biol Szeged, 47, 2003.
Kour, K., Bani, S., Sangwan, P.L., Singh, A., Upregulation of Th1 polarization by Taraxacum officinale in normal and immune suppressed mice. Current Science, 111(4), 2016, 671, 10.18520/cs/v111/i4/671-685.
Kucharzik, T., Maaser, C., Lügering, A., Kagnoff, M., Mayer, L., Targan, S., Domschke, W., Recent understanding of IBD pathogenesis: Implications for future therapies. Inflammatory Bowel Diseases 12:11 (2006), 1068–1083, 10.1097/01.mib.0000235827.21778.d5.
Laforest-Lapointe, I., Arrieta, M.-C., Patterns of early-life gut microbial colonization during human immune development: An ecological perspective. Frontiers in Immunology, 8, 2017, 10.3389/fimmu.2017.00788.
Lallès, J.-P., Bosi, P., Smidt, H., Stokes, C.R., Nutritional management of gut health in pigs around weaning. Proceedings of the Nutrition Society 66:2 (2007), 260–268, 10.1017/S0029665107005484.
Le Bastard, Q., Chapelet, G., Javaudin, F., Lepelletier, D., Batard, E., Montassier, E., The effects of inulin on gut microbial composition: A systematic review of evidence from human studies. European Journal of Clinical Microbiology & Infectious Diseases 39:3 (2020), 403–413, 10.1007/s10096-019-03721-w.
Le Sciellour, M., Labussière, E., Zemb, O., Renaudeau, D., Effect of dietary fiber content on nutrient digestibility and fecal microbiota composition in growing-finishing pigs. PLOS ONE, 13(10), 2018, e0206159, 10.1371/journal.pone.0206159.
Leblois, J., Massart, S., Li, B., Wavreille, J., Bindelle, J., Everaert, N., Modulation of piglets’ microbiota: Differential effects by a high wheat bran maternal diet during gestation and lactation. Scientific Reports, 7(1), 2017, 7426, 10.1038/s41598-017-07228-2.
Levine, U.Y., Looft, T., Allen, H.K., Stanton, T.B., Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract. Applied and Environmental Microbiology 79:12 (2013), 3879–3881, 10.1128/AEM.00589-13.
Li, B., Schroyen, M., Leblois, J., Wavreille, J., Soyeurt, H., Bindelle, J., Everaert, N., Effects of inulin supplementation to piglets in the suckling period on growth performance, postileal microbial and immunological traits in the suckling period and three weeks after weaning. Archives of Animal Nutrition 72:6 (2018), 425–442, 10.1080/1745039X.2018.1508975.
Lingyun, W., Jianhua, W., Xiaodong, Z., Da, T., Yalin, Y., Chenggang, C., Tianhua, F., Fan, Z., Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. Journal of Food Engineering 79:3 (2007), 1087–1093, 10.1016/j.jfoodeng.2006.03.028.
Liu, H., Ivarsson, E., Dicksved, J., Lundh, T., Lindberg, J., Inclusion of chicory (Cichorium intybus L.) in pigs’ diets affects the intestinal microenvironment and the gut microbiota. Applied and Environmental Microbiology 78 (2012), 4102–4109, 10.1128/AEM.07702-11.
Liu, Q., Chen, Y., Shen, C., Xiao, Y., Wang, Y., Liu, Z., Liu, X., Chicoric acid supplementation prevents systemic inflammation‐induced memory impairment and amyloidogenesis via inhibition of NF‐κB. The FASEB Journal 31:4 (2017), 1494–1507, 10.1096/fj.201601071R.
Liu, T.-W., Cephas, K.D., Holscher, H.D., Kerr, K.R., Mangian, H.F., Tappenden, K.A., Swanson, K.S., Nondigestible fructans alter gastrointestinal barrier function, gene expression, histomorphology, and the microbiota profiles of diet-induced obese C57BL/6J Mice. The Journal of Nutrition 146:5 (2016), 949–956, 10.3945/jn.115.227504.
Loginova, K.V., Shynkaryk, M.V., Lebovka, N.I., Vorobiev, E., Acceleration of soluble matter extraction from chicory with pulsed electric fields. Journal of Food Engineering 96:3 (2010), 374–379, 10.1016/j.jfoodeng.2009.08.009.
Loh, G., Eberhard, M., Brunner, R.M., Hennig, U., Kuhla, S., Kleessen, B., Metges, C.C., Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. The Journal of Nutrition 136:5 (2006), 1198–1202, 10.1093/jn/136.5.1198.
MacDonald, V.E., Howe, L.J., Histone acetylation: Where to go and how to get there. Epigenetics 4:3 (2009), 139–143, 10.4161/epi.4.3.8484.
Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., Binge, L., Thorburn, A.N., Chevalier, N., Ang, C., Marino, E., Robert, R., Offermanns, S., Teixeira, M.M., Moore, R.J., Mackay, C.R., Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications, 6(1), 2015, 6734, 10.1038/ncomms7734.
Mair, C., Plitzner, C., Domig, K.J., Schedle, K., Windisch, W., Impact of inulin and a multispecies probiotic formulation on performance, microbial ecology and concomitant fermentation patterns in newly weaned piglets. Journal of Animal Physiology and Animal Nutrition 94:5 (2010), e164–e177, 10.1111/j.1439-0396.2010.01000.x.
Matthias, A., Banbury, L., Stevenson, L.M., Bone, K.M., Leach, D.N., Lehmann, R.P., Alkylamides from echinacea modulate induced immune responses in macrophages. Immunological Investigations 36:2 (2007), 117–130, 10.1080/08820130600745786.
Mensink, M.A., Frijlink, H.W., van der Voort Maarschalk, K., Hinrichs, W.L.J., Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate Polymers 130 (2015), 405–419, 10.1016/j.carbpol.2015.05.026.
Mikkelsen, L., Jensen, B., Effect of fructo-oligosaccharides on microbial populations and microbial activity in the gastrointestinal tract of piglets post-weaning. Animal Feed Science and Technology 117 (2004), 107–119, 10.1016/j.anifeedsci.2004.07.015.
Millard, A.L., Mertes, P.M., Ittelet, D., Villard, F., Jeannesson, P., Bernard, J., Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clinical and Experimental Immunology 130:2 (2002), 245–255, 10.1046/j.0009-9104.2002.01977.x.
Mizutani, T., Aboagye, S.Y., Ishizaka, A., Afum, T., Mensah, G.I., Asante-Poku, A., Asandem, D.A., Parbie, P.K., Abana, C.-Z.-Y., Kushitor, D., Bonney, E.Y., Adachi, M., Hori, H., Ishikawa, K., Matano, T., Taniguchi, K., Opare, D., Arhin, D., Asiedu-Bekoe, F., Kiyono, H., Gut microbiota signature of pathogen-dependent dysbiosis in viral gastroenteritis. Scientific Reports, 11(1), 2021, 13945, 10.1038/s41598-021-93345-y.
Moens, F., Verce, M., De Vuyst, L., Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. International Journal of Food Microbiology 241 (2017), 225–236, 10.1016/j.ijfoodmicro.2016.10.019.
Moeser, A.J., Pohl, C.S., Rajput, M., Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition 3:4 (2017), 313–321, 10.1016/j.aninu.2017.06.003.
Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S., Schwartz, M.W., Central nervous system control of food intake and body weight. Nature 443:7109 (2006), 289–295, 10.1038/nature05026.
Mu, Q., Kirby, J., Reilly, C.M., Luo, X.M., Leaky gut as a danger signal for autoimmune diseases. Frontiers in Immunology, 8, 2017, 10.3389/fimmu.2017.00598.
Neyrinck, A.M., Rodriguez, J., Zhang, Z., Seethaler, B., Sánchez, C.R., Roumain, M., Hiel, S., Bindels, L.B., Cani, P.D., Paquot, N., Cnop, M., Nazare, J.-A., Laville, M., Muccioli, G.G., Bischoff, S.C., Walter, J., Thissen, J.-P., Delzenne, N.M., Prebiotic dietary fibre intervention improves fecal markers related to inflammation in obese patients: Results from the Food4Gut randomized placebo-controlled trial. European Journal of Nutrition 60:6 (2021), 3159–3170, 10.1007/s00394-021-02484-5.
Nielsen, T.S., Jensen, B.B., Purup, S., Jackson, S., Saarinen, M., Lyra, A., Sørensen, J.F., Theil, P.K., Knudsen, K.E.B., A search for synbiotics: Effects of enzymatically modified arabinoxylan and Butyrivibrio fibrisolvens on short-chain fatty acids in the cecum content and plasma of rats. Food & Function 7:4 (2016), 1839–1848, 10.1039/C6FO00114A.
Niness, K.R., Inulin and oligofructose: What are they?. The Journal of Nutrition 129:7 (1999), 1402S–S1406, 10.1093/jn/129.7.1402S.
Ortega, A.D.S.V., Szabó, C., Adverse effects of heat stress on the intestinal integrity and function of pigs and the mitigation capacity of dietary antioxidants: A review. Animals, 11(4), 2021, 1135, 10.3390/ani11041135.
Pahumunto, N., Dahlen, G., Teanpaisan, R., Evaluation of potential probiotic properties of Lactobacillus and Bacillus strains derived from various sources for their potential use in swine feeding. Probiotics and Antimicrobial Proteins 15:3 (2023), 479–490, 10.1007/s12602-021-09861-w.
Pejsak, Z., Kaźmierczak, P., Butkiewicz, A.F., Wojciechowski, J., Woźniakowski, G., Alternatives to zinc oxide in pig production. Polish Journal of Veterinary Sciences, 319–330, 2023, 10.24425/pjvs.2023.145033.
Peron, G., Meroño, T., Gargari, G., Hidalgo-Liberona, N., Miñarro, A., Lozano, E.V., Castellano-Escuder, P., González-Domínguez, R., del Bo’, C., Bernardi, S., Kroon, P.A., Cherubini, A., Riso, P., Guglielmetti, S., Andrés-Lacueva, C., A polyphenol‐rich diet increases the gut microbiota metabolite indole 3‐propionic acid in older adults with preserved kidney function. Molecular Nutrition & Food Research, 66(21), 2022, 10.1002/mnfr.202100349.
Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 2001, 45e, 10.1093/nar/29.9.e45.
Pluske, J.R., Invited review: Aspects of gastrointestinal tract growth and maturation in the pre- and postweaning period of pigs. Journal of Animal Science 94:suppl_3 (2016), 399–411, 10.2527/jas.2015-9767.
Pluske, J.R., Turpin, D.L., Kim, J.-C., Gastrointestinal tract (gut) health in the young pig. Animal Nutrition 4:2 (2018), 187–196, 10.1016/j.aninu.2017.12.004.
Pohl, C.S., Medland, J.E., Moeser, A.J., Early-life stress origins of gastrointestinal disease: Animal models, intestinal pathophysiology, and translational implications. American Journal of Physiology-Gastrointestinal and Liver Physiology 309:12 (2015), G927–G941, 10.1152/ajpgi.00206.2015.
Pouille, C.L., Ouaza, S., Roels, E., Behra, J., Tourret, M., Molinié, R., Fontaine, J.-X., Mathiron, D., Gagneul, D., Taminiau, B., Daube, G., Ravallec, R., Rambaud, C., Hilbert, J.-L., Cudennec, B., Lucau-Danila, A., Chicory: Understanding the effects and effectors of this functional food. Nutrients, 14(5), 2022, 957, 10.3390/nu14050957.
Qian, Z., Wu, Z., Huang, L., Qiu, H., Wang, L., Li, L., Yao, L., Kang, K., Qu, J., Wu, Y., Luo, J., Liu, J.J., Yang, Y., Yang, W., Gou, D., Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Scientific Reports, 5(1), 2015, 17348, 10.1038/srep17348.
Qiu, Y., Yang, J., Wang, L., Yang, X., Gao, K., Zhu, C., Jiang, Z., Dietary resveratrol attenuation of intestinal inflammation and oxidative damage is linked to the alteration of gut microbiota and butyrate in piglets challenged with deoxynivalenol. Journal of Animal Science and Biotechnology, 12(1), 2021, 71, 10.1186/s40104-021-00596-w.
Quintero, M., Maldonado, M., Perez-Munoz, M., Jimenez, R., Fangman, T., Rupnow, J., Wittke, A., Russell, M., Hutkins, R., Adherence inhibition of cronobacter sakazakii to intestinal epithelial cells by prebiotic oligosaccharides. Current Microbiology 62:5 (2011), 1448–1454, 10.1007/s00284-011-9882-8.
Redondo-Cuenca, A., Herrera-Vázquez, S.E., Condezo-Hoyos, L., Gómez-Ordóñez, E., Rupérez, P., Inulin extraction from common inulin-containing plant sources. Industrial Crops and Products, 170, 2021, 113726, 10.1016/j.indcrop.2021.113726.
Rivière, A., Selak, M., Lantin, D., Leroy, F., De Vuyst, L., Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Frontiers in Microbiology, 7, 2016, 10.3389/fmicb.2016.00979.
Rodriguez, J., Neyrinck, A.M., Van Kerckhoven, M., Gianfrancesco, M.A., Renguet, E., Bertrand, L., Cani, P.D., Lanthier, N., Cnop, M., Paquot, N., Thissen, J.-P., Bindels, L.B., Delzenne, N.M., Physical activity enhances the improvement of body mass index and metabolism by inulin: A multicenter randomized placebo-controlled trial performed in obese individuals. BMC Medicine, 20(1), 2022, 110, 10.1186/s12916-022-02299-z.
Rooks, M.G., Veiga, P., Wardwell-Scott, L.H., Tickle, T., Segata, N., Michaud, M., Gallini, C.A., Beal, C., van Hylckama-Vlieg, J.E.T., Ballal, S.A., Morgan, X.C., Glickman, J.N., Gevers, D., Huttenhower, C., Garrett, W.S., Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. The ISME Journal 8:7 (2014), 1403–1417, 10.1038/ismej.2014.3.
Rubel, I.A., Pérez, E.E., Manrique, G.D., Genovese, D.B., Fibre enrichment of wheat bread with Jerusalem artichoke inulin: Effect on dough rheology and bread quality. Food Structure 3 (2015), 21–29, 10.1016/j.foostr.2014.11.001.
Ruiz-Aceituno, L., García-Sarrió, M.J., Alonso-Rodriguez, B., Ramos, L., Sanz, M.L., Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chemistry 196 (2016), 1156–1162, 10.1016/j.foodchem.2015.10.046.
Sabater-Molina, M., Larqué, E., Torrella, F., Plaza, J., Ramis, G., Zamora, S., Effects of fructooligosaccharides on cecum polyamine concentration and gut maturation in early-weaned piglets. Journal of Clinical Biochemistry and Nutrition 48:3 (2011), 230–236, 10.3164/jcbn.10-100.
Salek, R.M., Maguire, M.L., Bentley, E., Rubtsov, D.V., Hough, T., Cheeseman, M., Nunez, D., Sweatman, B.C., Haselden, J.N., Cox, R.D., Connor, S.C., Griffin, J.L., A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiological Genomics 29:2 (2007), 99–108, 10.1152/physiolgenomics.00194.2006.
San Andres, J.V., Mastromano, G.A., Li, Y., Tran, H., Bundy, J.W., Miller, P.S., Burkey, T.E., The effects of prebiotics on growth performance and in vitro immune biomarkers in weaned pigs1. Translational Animal Science 3:4 (2019), 1315–1325, 10.1093/tas/txz129.
Sarmiento-Andrade, Y., Suárez, R., Quintero, B., Garrochamba, K., Chapela, S.P., Gut microbiota and obesity: New insights. Frontiers in Nutrition, 9, 2022, 10.3389/fnut.2022.1018212.
Schumacher, E., Vigh, É., Molnár, V., Kenyeres, P., Fehér, G., Késmárky, G., Tóth, K., Garai, J., Thrombosis preventive potential of chicory coffee consumption: A clinical study. Phytotherapy Research 25:5 (2011), 744–748, 10.1002/ptr.3481.
Segain, J.-P., Butyrate inhibits inflammatory responses through NFkappa B inhibition: Implications for Crohn's disease. Gut 47:3 (2000), 397–403, 10.1136/gut.47.3.397.
Shetty, S.A., Marathe, N.P., Lanjekar, V., Ranade, D., Shouche, Y.S., Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. PLoS ONE, 8(11), 2013, e79353, 10.1371/journal.pone.0079353.
Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H.R., Shakeel, A., Ansari, A., Niazi, S., Inulin: Properties, health benefits and food applications. Carbohydrate Polymers 147 (2016), 444–454, 10.1016/j.carbpol.2016.04.020.
Silva, M., Cueva, C., Alba, C., Rodriguez, J.M., de Pascual-Teresa, S., Jones, J., Caturla, N., Victoria Moreno-Arribas, M., Bartolomé, B., Gut microbiome-modulating properties of a polyphenol-enriched dietary supplement comprised of hibiscus and lemon verbena extracts. Monitoring of phenolic metabolites. Journal of Functional Foods, 91, 2022, 105016, 10.1016/j.jff.2022.105016.
Smith, B.N., Hannas, M., Orso, C., Martins, S.M.M.K., Wang, M., Donovan, S.M., Dilger, R.N., Dietary osteopontin-enriched algal protein as nutritional support in weaned pigs infected with F18-fimbriated enterotoxigenic Escherichia coli. Journal of Animal Science, 98(10), 2020, 10.1093/jas/skaa314.
Sorgi, C.A., de Campos Chaves Lamarque, G., Verri, M.P., Nelson-Filho, P., Faccioli, L.H., Paula-Silva, F.W.G., Multifaceted effect of caffeic acid against Streptococcus mutans infection: Microbicidal and immunomodulatory agent in macrophages. Archives of Microbiology 203:6 (2021), 2979–2987, 10.1007/s00203-021-02290-x.
Su, Y., Li, X., Li, D., Sun, J., Fecal microbiota transplantation shows marked shifts in the multi-omic profiles of porcine post-weaning diarrhea. Frontiers in Microbiology, 12, 2021, 10.3389/fmicb.2021.619460.
Tarini, J., Wolever, T.M.S., The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Applied Physiology, Nutrition, and Metabolism 35:1 (2010), 9–16, 10.1139/H09-119.
Tedelind, S., Westberg, F., Kjerrulf, M., Vidal, A., Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World Journal of Gastroenterology, 13(20), 2007, 2826, 10.3748/wjg.v13.i20.2826.
Tenenhaus, A., Tenenhaus, M., Regularized generalized canonical correlation analysis. Psychometrika 76 (2011), 257–284, 10.1007/s11336-011-9206-8.
Trevisi, P., De Filippi, S., Minieri, L., Mazzoni, M., Modesto, M., Biavati, B., Bosi, P., Effect of fructo-oligosaccharides and different doses of Bifidobacterium animalis in a weaning diet on bacterial translocation and Toll-like receptor gene expression in pigs. Nutrition 24:10 (2008), 1023–1029, 10.1016/j.nut.2008.04.008.
Uchiyama, K., Naito, Y., Takagi, T., Mizushima, K., Hirai, Y., Hayashi, N., Harusato, A., Inoue, K., Fukumoto, K., Yamada, S., Handa, O., Ishikawa, T., Yagi, N., Kokura, S., Yoshikawa, T., Serpin B1 protects colonic epithelial cell via blockage of neutrophil elastase activity and its expression is enhanced in patients with ulcerative colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology 302:10 (2012), G1163–G1170, 10.1152/ajpgi.00292.2011.
Uerlings, J., Arévalo Sureda, E., Schroyen, M., Kroeske, K., Tanghe, S., Vos, M., Bruggeman, G., Wavreille, J., Bindelle, J., Purcaro, G., Everaert, N., Impact of citrus pulp or inulin on intestinal microbiota and metabolites, barrier, and immune function of weaned piglets. Frontiers in Nutrition, 8, 2021, 10.3389/fnut.2021.650211.
Uerlings, J., Bindelle, J., Schroyen, M., Richel, A., Bruggeman, G., Willems, E., Everaert, N., Fermentation capacities of fructan‐ and pectin‐rich by‐products and purified fractions via an in vitro piglet faecal model. Journal of the Science of Food and Agriculture 99:13 (2019), 5720–5733, 10.1002/jsfa.9837.
Uerlings, J., Schroyen, M., Bautil, A., Courtin, C., Richel, A., Sureda, E.A., Bruggeman, G., Tanghe, S., Willems, E., Bindelle, J., Everaert, N., In vitro prebiotic potential of agricultural by-products on intestinal fermentation, gut barrier and inflammatory status of piglets. British Journal of Nutrition 123:3 (2020), 293–307, 10.1017/S0007114519002873.
Van den Abbeele, P., Taminiau, B., Pinheiro, I., Duysburgh, C., Jacobs, H., Pijls, L., Marzorati, M., Arabinoxylo-oligosaccharides and inulin impact inter-individual variation on microbial metabolism and composition, which immunomodulates human cells. Journal of Agricultural and Food Chemistry 66:5 (2018), 1121–1130, 10.1021/acs.jafc.7b04611.
Van Soest, P.J., Robertson, J.B., Lewis, B.A., Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74:10 (1991), 3583–3597, 10.3168/jds.S0022-0302(91)78551-2.
Vogt, L., Meyer, D., Pullens, G., Faas, M., Smelt, M., Venema, K., Ramasamy, U., Schols, H.A., De Vos, P., Immunological properties of inulin-type fructans. Critical Reviews in Food Science and Nutrition 55:3 (2015), 414–436, 10.1080/10408398.2012.656772.
Waldram, A., Holmes, E., Wang, Y., Rantalainen, M., Wilson, I.D., Tuohy, K.M., McCartney, A.L., Gibson, G.R., Nicholson, J.K., Top-down systems biology modeling of host metabotype–microbiome associations in obese rodents. Journal of Proteome Research 8:5 (2009), 2361–2375, 10.1021/pr8009885.
Walton, P.E., Dunshea, F.R., Ballard, F.J., In vivo actions of IGF analogues with poor affinities for IGFBPs: Metabolic and growth effects in pigs of different ages and GH responsiveness. Progress in Growth Factor Research 6:2–4 (1995), 385–395, 10.1016/0955-2235(95)00007-0.
Wan, X., Guo, H., Liang, Y., Zhou, C., Liu, Z., Li, K., Niu, F., Zhai, X., Wang, L., The physiological functions and pharmaceutical applications of inulin: A review. Carbohydrate Polymers, 246, 2020, 116589, 10.1016/j.carbpol.2020.116589.
Wang, W., Chen, D., Yu, B., Huang, Z., Mao, X., Zheng, P., Luo, Y., Yu, J., Luo, J., Yan, H., He, J., Effects of dietary inulin supplementation on growth performance, intestinal barrier integrity and microbial populations in weaned pigs. British Journal of Nutrition 124:3 (2020), 296–305, 10.1017/S0007114520001130.
Wijtten, P.J.A., van der Meulen, J., Verstegen, M.W.A., Intestinal barrier function and absorption in pigs after weaning: A review. British Journal of Nutrition 105:7 (2011), 967–981, 10.1017/S0007114510005660.
Wong, J., Piceno, Y.M., DeSantis, T.Z., Pahl, M., Andersen, G.L., Vaziri, N.D., Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. American Journal of Nephrology 39:3 (2014), 230–237, 10.1159/000360010.
Wren, A.M., Bloom, S.R., Gut hormones and appetite control. Gastroenterology 132:6 (2007), 2116–2130, 10.1053/j.gastro.2007.03.048.
Wu, H., Van Der Pol, W.J., Dubois, L.G., Morrow, C.D., Tollefsbol, T.O., Dietary supplementation of inulin contributes to the prevention of estrogen receptor-negative mammary cancer by alteration of gut microbial communities and epigenetic regulations. International Journal of Molecular Sciences, 24(10), 2023, 9015, 10.3390/ijms24109015.
Wu, W., Zhang, L., Xia, B., Tang, S., Liu, L., Xie, J., Zhang, H., Bioregional alterations in gut microbiome contribute to the plasma metabolomic changes in pigs fed with inulin. Microorganisms, 8(1), 2020, 111, 10.3390/microorganisms8010111.
Wu, Y., Zhang, X., Han, D., Ye, H., Tao, S., Pi, Y., Zhao, J., Chen, L., Wang, J., Short administration of combined prebiotics improved microbial colonization, gut barrier, and growth performance of neonatal piglets. ACS Omega 5:32 (2020), 20506–20516, 10.1021/acsomega.0c02667.
Xiong, X., Tan, B., Song, M., Ji, P., Kim, K., Yin, Y., Liu, Y., Nutritional intervention for the intestinal development and health of weaned pigs. Frontiers in Veterinary Science, 6, 2019, 10.3389/fvets.2019.00046.
Yang, Y., Jiang, X., Cai, X., Zhang, L., Li, W., Che, L., Fang, Z., Feng, B., Lin, Y., Xu, S., Li, J., Zhao, X., Wu, D., Zhuo, Y., Deprivation of dietary fiber enhances susceptibility of piglets to lung immune stress. Frontiers in Nutrition, 9, 2022, 10.3389/fnut.2022.827509.
Zenhom, M., Hyder, A., de Vrese, M., Heller, K.J., Roeder, T., Schrezenmeir, J., Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARγ and peptidoglycan recognition protein 31-3. The Journal of Nutrition 141:5 (2011), 971–977, 10.3945/jn.110.136176.
Zheng, L., Duarte, M.E., Sevarolli Loftus, A., Kim, S.W., Intestinal health of pigs upon weaning: challenges and nutritional intervention. Frontiers in Veterinary Science, 8, 2021, 10.3389/fvets.2021.628258.
Zimmerman, M.A., Singh, N., Martin, P.M., Thangaraju, M., Ganapathy, V., Waller, J.L., Shi, H., Robertson, K.D., Munn, D.H., Liu, K., Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 302:12 (2012), G1405–G1415, 10.1152/ajpgi.00543.2011.