[en] AbstractOn polar ice sheets, water vapor interacts with surface snow, and through the exchange of water molecules, imprints an isotopic climate signal into the ice sheet. This exchange is not well understood due to sparse observations in the atmosphere. There are currently no published vertical profiles of water isotopes above ice sheets that span the planetary boundary layer and portions of the free troposphere. Here, we present a novel data set of water‐vapor isotopes (O, D, ) and meteorological variables taken by fixed‐wing uncrewed aircraft on the northeast Greenland Ice Sheet (GIS). During June–July (2022), we collected 104 profiles of water‐vapor isotopes and meteorological variables up to 1,500 m above ground level. Concurrently, surface snow samples were collected at 12‐hr intervals, allowing connection to surface‐snow processes. We pair observations with modeling output from a regional climate model as well as an atmospheric transport and water‐isotope distillation model. Climate model output of mean temperature and specific humidity agrees well with observations, with a mean difference of +0.095°C and −0.043 g/kg (−2.91%), respectively. We find evidence that along an air parcel pathway, the distillation model is not removing enough water prior to onsite arrival. Below the mean temperature inversion (200 m), water‐isotope observations indicate a kinetic fractionating process, likely the result of mixing sublimated vapor from the ice sheet surface along with an unknown fraction of katabatic wind vapor. Modeled does not agree well with observations, a result that requires substantial future analysis of kinetic fractionation processes along the entire moisture pathway.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Rozmiarek, Kevin S. ; Institute of Arctic and Alpine Research University of Colorado Boulder Boulder CO USA ; Department of Geological Sciences University of Colorado Boulder Boulder CO USA
Dietrich, Laura J. ; Geophysical Institute University of Bergen Bergen Norway ; Bjerknes Centre for Climate Research Bergen Norway
Vaughn, Bruce H. ; Institute of Arctic and Alpine Research University of Colorado Boulder Boulder CO USA
Town, Michael S. ; Earth and Space Research Seattle WA USA
Markle, Bradley R. ; Institute of Arctic and Alpine Research University of Colorado Boulder Boulder CO USA ; Department of Geological Sciences University of Colorado Boulder Boulder CO USA
Morris, Valerie; Institute of Arctic and Alpine Research University of Colorado Boulder Boulder CO USA
Steen‐Larsen, Hans Christian ; Geophysical Institute University of Bergen Bergen Norway ; Bjerknes Centre for Climate Research Bergen Norway
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Brashear, Chloe A.; Institute of Arctic and Alpine Research University of Colorado Boulder Boulder CO USA
Bennett, Hayley; Institute of Arctic and Alpine Research University of Colorado Boulder Boulder CO USA
Jones, Tyler R.; Institute of Arctic and Alpine Research University of Colorado Boulder Boulder CO USA
Language :
English
Title :
Atmosphere to Surface Profiles of Water‐Vapor Isotopes and Meteorological Conditions Over the Northeast Greenland Ice Sheet
Akers, P. D., Kopec, B. G., Mattingly, K. S., Klein, E. S., Causey, D., & Welker, J. M. (2020). Baffin bay sea ice extent and synoptic moisture transport drive water vapor isotope (δ 18 o, δ 2 h, and deuterium excess) variability in coastal northwest Greenland. Atmospheric Chemistry and Physics, 20(22), 13929–13955. https://doi.org/10.5194/acp-20-13929-2020
Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., et al. (2020). Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 1472(1), 49–75. https://doi.org/10.1111/nyas.14337
Bailey, A., Singh, H. K., & Nusbaumer, J. (2019). Evaluating a moist isentropic framework for poleward moisture transport: Implications for water isotopes over Antarctica. Geophysical Research Letters, 46(13), 7819–7827. https://doi.org/10.1029/2019gl082965
Boisvert, L. N., Lee, J. N., Lenaerts, J. T., Noël, B., Van Den Broeke, M. R., & Nolin, A. W. (2017). Using remotely sensed data from airs to estimate the vapor flux on the Greenland ice sheet: Comparisons with observations and a regional climate model. Journal of Geophysical Research: Atmospheres, 122(1), 202–229. https://doi.org/10.1002/2016jd025674
Bony, S., Risi, C., & Vimeux, F. (2008). Influence of convective processes on the isotopic composition (δ18o and δd) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and tropical ocean–global atmosphere–coupled ocean-atmosphere response experiment (toga-coare) simulations. Journal of Geophysical Research, 113(D19). https://doi.org/10.1029/2008jd009942
Bowen, G. J., Cai, Z., Fiorella, R. P., & Putman, A. L. (2019). Isotopes in the water cycle: Regional-to global-scale patterns and applications. Annual Review of Earth and Planetary Sciences, 47(1), 453–479. https://doi.org/10.1146/annurev-earth-053018-060220
Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702–1703. https://doi.org/10.1126/science.133.3465.1702
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
Dee, S., Bailey, A., Conroy, J. L., Atwood, A., Stevenson, S., Nusbaumer, J., & Noone, D. (2023). Water isotopes, climate variability, and the hydrological cycle: Recent advances and new frontiers. Environmental Research: Climate, 2(2), 022002. https://doi.org/10.1088/2752-5295/accbe1
Dee, S. G., Nusbaumer, J., Bailey, A., Russell, J. M., Lee, J.-E., Konecky, B., et al. (2018). Tracking the strength of the walker circulation with stable isotopes in water vapor. Journal of Geophysical Research: Atmospheres, 123(14), 7254–7270. https://doi.org/10.1029/2017jd027915
Dietrich, L. J., Steen-Larsen, H. C., Wahl, S., Faber, A.-K., & Fettweis, X. (2024). On the importance of the humidity flux for the surface mass balance in the accumulation zone of the Greenland ice sheet. The Cryosphere, 18(1), 289–305. https://doi.org/10.5194/tc-18-289-2024
Dietrich, L. J., Steen-Larsen, H. C., Wahl, S., Jones, T. R., Town, M. S., & Werner, M. (2023). Snow-atmosphere humidity exchange at the ice sheet surface alters annual mean climate signals in ice core records. Geophysical Research Letters, 50(20), e2023GL104249. https://doi.org/10.1029/2023gl104249
Draxler, R. R., & Hess, G. (1998). An overview of the hysplit_4 modelling system for trajectories. Australian Meteorological Magazine, 47(4), 295–308.
Fausto, R. S., Van As, D., Mankoff, K. D., Vandecrux, B., Citterio, M., Ahlstrøm, A. P., et al. (2021). Programme for monitoring of the Greenland ice sheet (promice) automatic weather station data. Earth System Science Data, 13(8), 3819–3845. https://doi.org/10.5194/essd-13-3819-2021
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., et al. (2017). Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate mar model. The Cryosphere, 11(2), 1015–1033. https://doi.org/10.5194/tc-11-1015-2017
Fettweis, X., Franco, B., Tedesco, M., Van Angelen, J., Lenaerts, J. T., Van Den Broeke, M. R., & Gallée, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model mar. The Cryosphere, 7(2), 469–489. https://doi.org/10.5194/tc-7-469-2013
Fettweis, X., Gallée, H., Lefebre, F., & Van Ypersele, J.-P. (2005). Greenland surface mass balance simulated by a regional climate model and comparison with satellite-derived data in 1990–1991. Climate Dynamics, 24(6), 623–640. https://doi.org/10.1007/s00382-005-0010-y
Field, R. (2010). Large-scale and microphysical controls on water isotopes in the atmosphere. University of Toronto.
Galewsky, J., & Hurley, J. V. (2010). An advection-condensation model for subtropical water vapor isotopic ratios. Journal of Geophysical Research, 115(D16). https://doi.org/10.1029/2009jd013651
Galewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C., & Schneider, M. (2016). Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics, 54(4), 809–865. https://doi.org/10.1002/2015rg000512
Gallée, H., & Schayes, G. (1994). Development of a three-dimensional meso-γ primitive equation model: Katabatic winds simulation in the area of terra nova bay, Antarctica. Monthly Weather Review, 122(4), 671–685. https://doi.org/10.1175/1520-0493(1994)122<0671:doatdm>2.0.co;2
Grazioli, J., Madeleine, J.-B., Gallée, H., Forbes, R. M., Genthon, C., Krinner, G., & Berne, A. (2017). Katabatic winds diminish precipitation contribution to the antarctic ice mass balance. Proceedings of the National Academy of Sciences, 114(41), 10858–10863. https://doi.org/10.1073/pnas.1707633114
Henze, D., Noone, D., & Toohey, D. (2022). Aircraft measurements of water vapor heavy isotope ratios in the marine boundary layer and lower troposphere during oracles. Earth System Science Data, 14(4), 1811–1829. https://doi.org/10.5194/essd-14-1811-2022
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Hu, J., Bailey, A., Nusbaumer, J., Dee, S., Sasser, C., & Worden, J. (2022). Tracking shallow convective mixing and its influence on low-level clouds with stable water isotopes in vapor. Journal of Geophysical Research: Atmospheres, 127(5), e2021JD035355. https://doi.org/10.1029/2021jd035355
Hudson, S. R., & Brandt, R. E. (2005). A look at the surface-based temperature inversion on the Antarctic plateau. Journal of Climate, 18(11), 1673–1696. https://doi.org/10.1175/jcli3360.1
Hughes, A. G., Wahl, S., Jones, T. R., Zuhr, A., Hörhold, M., White, J. W., & Steen-Larsen, H. C. (2021). The role of sublimation as a driver of climate signals in the water isotope content of surface snow: Laboratory and field experimental results. The Cryosphere, 15(10), 4949–4974. https://doi.org/10.5194/tc-15-4949-2021
Jones, T., Cuffey, K., White, J., Steig, E., Buizert, C., Markle, B., et al. (2017). Water isotope diffusion in the wais divide ice core during the holocene and last glacial. Journal of Geophysical Research: Earth Surface, 122(1), 290–309. https://doi.org/10.1002/2016jf003938
Jouzel, J., Delaygue, G., Landais, A., Masson-Delmotte, V., Risi, C., & Vimeux, F. (2013). Water isotopes as tools to document oceanic sources of precipitation. Water Resources Research, 49(11), 7469–7486. https://doi.org/10.1002/2013wr013508
Jouzel, J., & Merlivat, L. (1984). Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. Journal of Geophysical Research, 89(D7), 11749–11757. https://doi.org/10.1029/jd089id07p11749
Klein, E. S., Cherry, J., Young, J., Noone, D., Leffler, A., & Welker, J. (2015). Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice. Scientific Reports, 5(1), 10295. https://doi.org/10.1038/srep10295
Komuro, Y., Nakazawa, F., Hirabayashi, M., Goto-Azuma, K., Nagatsuka, N., Shigeyama, W., et al. (2021). Temporal and spatial variabilities in surface mass balance at the egrip site, Greenland from 2009 to 2017. Polar Science, 27, 100568. https://doi.org/10.1016/j.polar.2020.100568
Kopec, B. G., Feng, X., Osterberg, E. C., & Posmentier, E. S. (2022). Climatological significance of δd-δ18o line slopes from precipitation, snow pits, and ice cores at summit, Greenland. Journal of Geophysical Research: Atmospheres, 127(21), e2022JD037037. https://doi.org/10.1029/2022jd037037
Lacour, A., Chepfer, H., Shupe, M. D., Miller, N. B., Noel, V., Kay, J., et al. (2017). Greenland clouds observed in calipso-goccp: Comparison with ground-based summit observations. Journal of Climate, 30(15), 6065–6083. https://doi.org/10.1175/jcli-d-16-0552.1
Leroy-Dos Santos, C., Masson-Delmotte, V., Casado, M., Fourré, E., Steen-Larsen, H., Maturilli, M., et al. (2020). A 4.5 year-long record of svalbard water vapor isotopic composition documents winter air mass origin. Journal of Geophysical Research: Atmospheres, 125(23), e2020JD032681. https://doi.org/10.1029/2020jd032681
Markle, B. R., & Steig, E. J. (2022). Improving temperature reconstructions from ice-core water-isotope records. Climate of the Past, 18(6), 1321–1368. https://doi.org/10.5194/cp-18-1321-2022
Merlivat, L., & Jouzel, J. (1979). Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research, 84(C8), 5029–5033. https://doi.org/10.1029/jc084ic08p05029
Moore, G. W. K., Renfrew, I. A., & Cassano, J. J. (2013). Greenland plateau jets. Tellus A: Dynamic Meteorology and Oceanography, 65(1), 17468. https://doi.org/10.3402/tellusa.v65i0.17468
Nakazawa, F., Nagatsuka, N., Hirabayashi, M., Goto-Azuma, K., Steffensen, J. P., & Dahl-Jensen, D. (2021). Variation in recent annual snow deposition and seasonality of snow chemistry at the east Greenland ice core project (egrip) camp, Greenland. Polar Science, 27, 100597. https://doi.org/10.1016/j.polar.2020.100597
Newman, B., Tanweer, A., & Kurttaş, T. (2009). Iaea standard operating procedure for the liquid-water stable isotope analyser. IAEA Yayınları/IAEA Publications.
Nusbaumer, J., Alexander, P. M., LeGrande, A. N., & Tedesco, M. (2019). Spatial shift of Greenland moisture sources related to enhanced arctic warming. Geophysical Research Letters, 46(24), 14723–14731. https://doi.org/10.1029/2019gl084633
Putman, A. L., Fiorella, R. P., Bowen, G. J., & Cai, Z. (2019). A global perspective on local meteoric water lines: Meta-analytic insight into fundamental controls and practical constraints. Water Resources Research, 55(8), 6896–6910. https://doi.org/10.1029/2019wr025181
Risi, C., Muller, C., & Blossey, P. (2020). What controls the water vapor isotopic composition near the surface of tropical oceans? Results from an analytical model constrained by large-eddy simulations. Journal of Advances in Modeling Earth Systems, 12(8), e2020MS002106. https://doi.org/10.1029/2020ms002106
Risi, C., Noone, D., Frankenberg, C., & Worden, J. (2013). Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements. Water Resources Research, 49(7), 4136–4156. https://doi.org/10.1002/wrcr.20312
Rozmiarek, K. S., Dietrich, L. J., Vaughn, B. H., Town, M. S., Markle, B. R., Morris, V., & Jones, T. R. (2025). Atmosphere to surface profiles of water vapor isotopes and meteorological conditions over the northeast Greenland ice sheet data product for 2022 field campaign [dataset]. Arctic Data Center. https://doi.org/10.18739/A2QR4NS5C
Rozmiarek, K. S., Vaughn, B. H., Jones, T. R., Morris, V., Skorski, W. B., Hughes, A. G., et al. (2021). An unmanned aerial vehicle sampling platform for atmospheric water vapor isotopes in polar environments. Atmospheric Measurement Techniques, 14(11), 7045–7067. https://doi.org/10.5194/amt-14-7045-2021
Salmon, O. E., Welp, L. R., Baldwin, M. E., Hajny, K. D., Stirm, B. H., & Shepson, P. B. (2019). Vertical profile observations of water vapor deuterium excess in the lower troposphere. Atmospheric Chemistry and Physics, 19(17), 11525–11543. https://doi.org/10.5194/acp-19-11525-2019
Schauer, A. J., Schoenemann, S. W., & Steig, E. J. (2016). Routine high-precision analysis of triple water-isotope ratios using cavity ring-down spectroscopy. Rapid Communications in Mass Spectrometry, 30(18), 2059–2069. https://doi.org/10.1002/rcm.7682
Schmidt, G. A., Hoffmann, G., Shindell, D. T., & Hu, Y. (2005). Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange. Journal of Geophysical Research, 110(D21). https://doi.org/10.1029/2005jd005790
Schwerdtfeger, W. (1972). The vertical variation of the wind through the friction-layer over the Greenland ice cap. Tellus, 24(1), 13–16. https://doi.org/10.1111/j.2153-3490.1972.tb01528.x
Schwerdtfeger, W. (1984). Weather and climate of the antarctic. Elsevier.
Sodemann, H., Aemisegger, F., Pfahl, S., Bitter, M., Corsmeier, U., Feuerle, T., et al. (2017). The stable isotopic composition of water vapour above corsica during the hymex sop1 campaign: Insight into vertical mixing processes from lower-tropospheric survey flights. Atmospheric Chemistry and Physics, 17(9), 6125–6151. https://doi.org/10.5194/acp-17-6125-2017
Steen-Larsen, H. C., Johnsen, S., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H., et al. (2013). Continuous monitoring of summer surface water vapor isotopic composition above the Greenland ice sheet. Atmospheric Chemistry and Physics, 13(9), 4815–4828. https://doi.org/10.5194/acp-13-4815-2013
Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prié, F., et al. (2014). What controls the isotopic composition of Greenland surface snow? Climate of the Past, 10(1), 377–392. https://doi.org/10.5194/cp-10-377-2014
Steen-Larsen, H. C., Sveinbjörnsdottir, A., Jonsson, T., Ritter, F., Bonne, J.-L., Masson-Delmotte, V., et al. (2015). Moisture sources and synoptic to seasonal variability of north atlantic water vapor isotopic composition. Journal of Geophysical Research: Atmospheres, 120(12), 5757–5774. https://doi.org/10.1002/2015jd023234
Town, M. S., Steen-Larsen, H. C., Wahl, S., Faber, A.-K., Behrens, M., Jones, T. R., & Sveinbjornsdottir, A. (2024). Post-depositional modification on seasonal-to-interannual timescales alters the deuterium-excess signals in summer snow layers in Greenland. The Cryosphere, 18(8), 3653–3683. https://doi.org/10.5194/tc-18-3653-2024
Town, M. S., Walden, V. P., & Warren, S. G. (2007). Cloud cover over the south pole from visual observations, satellite retrievals, and surface-based infrared radiation measurements. Journal of Climate, 20(3), 544–559. https://doi.org/10.1175/jcli4005.1
Town, M. S., Warren, S. G., Walden, V. P., & Waddington, E. D. (2008). Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets. Journal of Geophysical Research, 113(D24). https://doi.org/10.1029/2008jd009852
Vihma, T., Screen, J., Tjernström, M., Newton, B., Zhang, X., Popova, V., et al. (2016). The atmospheric role in the arctic water cycle: A review on processes, past and future changes, and their impacts. Journal of Geophysical Research: Biogeosciences, 121(3), 586–620. https://doi.org/10.1002/2015jg003132
Wahl, S., Steen-Larsen, H. C., Hughes, A., Dietrich, L. J., Zuhr, A., Behrens, M., et al. (2022). Atmosphere-snow exchange explains surface snow isotope variability. Geophysical Research Letters, 49(20), e2022GL099529. https://doi.org/10.1029/2022gl099529
Wahl, S., Steen-Larsen, H. C., Reuder, J., & Hörhold, M. (2021). Quantifying the stable water isotopologue exchange between the snow surface and lower atmosphere by direct flux measurements. Journal of Geophysical Research: Atmospheres, 126(13), e2020JD034400. https://doi.org/10.1029/2020jd034400
Worden, J., Noone, D., & Bowman, K. (2007). Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 445(7127), 528–532. https://doi.org/10.1038/nature05508
Worden, J. R., Kulawik, S. S., Fu, D., Payne, V. H., Lipton, A. E., Polonsky, I., et al. (2019). Characterization and evaluation of airs-based estimates of the deuterium content of water vapor. Atmospheric Measurement Techniques, 12(4), 2331–2339. https://doi.org/10.5194/amt-12-2331-2019
Zolles, T., & Born, A. (2022). How does a change in climate variability impact the Greenland ice-sheet surface mass balance? The Cryosphere Discussions, 2022, 1–18.
Zuhr, A. M., Münch, T., Steen-Larsen, H. C., Hörhold, M., & Laepple, T. (2021). Local-scale deposition of surface snow on the Greenland ice sheet. The Cryosphere, 15(10), 4873–4900. https://doi.org/10.5194/tc-15-4873-2021
Zuhr, A. M., Wahl, S., Steen-Larsen, H. C., Hörhold, M., Meyer, H., & Laepple, T. (2023). A snapshot on the buildup of the stable water isotopic signal in the upper snowpack at eastgrip on the Greenland ice sheet. Journal of Geophysical Research: Earth Surface, 128(2), e2022JF006767. https://doi.org/10.1029/2022jf006767