[en] Microorganisms play an important role in the remediation of cadmium pollution in the soil and their diversity can be affected by cadmium. In this study, the bacterial community in arable soil samples collected from two near geographical sites, with different degrees of cadmium pollution at three different seasons, were characterized using Illumina MiSeq sequencing. The result showed that cadmium is an important factor to affect the bacterial diversity and the microbial communities in the high cadmium polluted area (the site H) had significant differences compared with low cadmium polluted area (the site L). Especially, higher concentrations of Cd significantly increased the abundance of Proteobacteria and Gemmatimonas whereas decreased the abundance of Nitrospirae. Moreover, 42 Cd-resistant bacteria were isolated from six soil samples and evaluated for potential application in Cd bioremediation. Based on their Cd-MIC [minimum inhibitory concentration (MIC) of Cd2+], Cd2+ removal rate and 16S rDNA gene sequence analyses, three Burkholderia sp. strains (ha-1, hj-2, and ho-3) showed very high tolerance to Cd (5, 5, and 6 mM) and exhibited high Cd2+ removal rate (81.78, 79.37, and 63.05%), six Bacillus sp. strains (151-5,151-6,151-13, 151-20, and 151-21) showed moderate tolerance to Cd (0.8, 0.4, 0.8, 0.4, 0.6, and 0.4 mM) but high Cd2+ removal rate (84.78, 90.14, 82.82, 82.39, 81.79, and 84.17%). Those results indicated that Burkholderia sp. belonging to the phylum Proteobacteria and Bacillus sp. belonging to the phylum Firmicutes have developed a resistance for cadmium and may play an important role in Cd-contaminated soils. Our study provided baseline data for bacterial communities in cadmium polluted soils and concluded that Cd-resistant bacteria have potential for bioremediation of Cd-contaminated soils.
Disciplines :
Microbiology
Author, co-author :
Yu, Xiaoxia; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, China
Zhao, Jintong ; Université de Liège - ULiège > TERRA Research Centre ; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
Liu, Xiaoqing; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
Sun, LiXin; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, China
Tian, Jian; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
Wu, Ningfeng; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Cadmium Pollution Impact on the Bacterial Community Structure of Arable Soil and the Isolation of the Cadmium Resistant Bacteria.
This research was supported by the National Natural Science Foundation of China (NSFC, Grant No. 31770124) and the Natural Science Foundation of Jiangxi Province (20202BABL213039).
Abbas S., Rafatullah M., Hossain K., Ismail N., Tajarudin H., Khalil H. A., (2018). A review on mechanism and future perspectives of cadmium-resistant bacteria. Int. J. Environ. Sci. Technol. 15 243–262. 10.1007/s13762-017-1400-5
Awasthi A., Singh M., Soni S. K., Singh R., Kalra A., (2014). Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J. 8 2445–2452. 10.1038/ismej.2014.91 24926862
Bissett A., Brown M. V., Siciliano S. D., Thrall P. H., (2013). Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecol. Lett. 16 128–139. 10.1111/ele.12109 23679012
Burges A., Epelde L., Garbisu C., (2015). Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere 120 8–15. 10.1016/j.chemosphere.2014.05.037 25462295
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336.
Chellaiah E. R., (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl. Water Sci. 8:154.
Cheng C., Wang R., Sun L., He L., Sheng X., (2021). Cadmium-resistant and arginine decarboxylase-producing endophytic Sphingomonas sp. C40 decreases cadmium accumulation in host rice (Oryza sativa Cliangyou 513). Chemosphere 275:130109. 10.1016/j.chemosphere.2021.130109 33677267
Duan C., Liu Y., Zhang H., Chen G., Song J., (2020). Cadmium pollution impact on the bacterial community of haplic cambisols in Northeast China and inference of resistant genera. J. Soil Sci. Plant Nutr. 20 1156–1170. 10.1007/s42729-020-00201-5
Đukić-Ćosić D., Baralić K., Javorac D., Djordjevic A. B., Bulat Z., (2020). An overview of molecular mechanisms in cadmium toxicity. Curr. Opin. Toxicol. 19 56–62. 10.1016/j.cotox.2019.12.002
Edgar R. C., (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461. 10.1093/bioinformatics/btq461 20709691
Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R., (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 2194–2200. 10.1093/bioinformatics/btr381 21700674
Elshafie H. S., Camele I., (2021). An overview of metabolic activity, beneficial and pathogenic aspects of Burkholderia Spp. Metabolites 11:321. 10.3390/metabo11050321 34067834
Genchi G., Sinicropi M. S., Lauria G., Carocci A., Catalano A., (2020). The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 17:3782.
Gómez-Sagasti M. T., Alkorta I., Becerril J. M., Epelde L., Anza M., Garbisu C., (2012). Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut. 223 3249–3262. 10.1007/s11270-012-1106-8
Guo B., Chen X., Jing F., Zhang X., Yang Z., Liu W., et al. (2018). Effects of exogenous cadmium on microbial biomass and enzyme activity in red paddy soil. J. Agro Environ. Sci. 37 1850–1855.
Hamman S. T., Burke I. C., Stromberger M. E., (2007). Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol. Biochem. 39 1703–1711. 10.1016/j.soilbio.2007.01.018
Han J., Shi J., Zeng L., Xu J., Wu L., (2017). Impacts of continuous excessive fertilization on soil potential nitrification activity and nitrifying microbial community dynamics in greenhouse system. J. Soils Sediments 17 471–480. 10.1007/s11368-016-1525-z
Harichová J., Karelová E., Pangallo D., Ferianc P., (2012). Structure analysis of bacterial community and their heavy-metal resistance determinants in the heavy-metal-contaminated soil sample. Biologia 67 1038–1048. 10.2478/s11756-012-0123-9
Huang Y., Wang L., Wang W., Li T., He Z., Yang X., (2019). Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci. Total Environ. 651 3034–3042. 10.1016/j.scitotenv.2018.10.185 30463153
Jangir M., Pathak R., Sharma S., Sharma S., (2018). Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol. Control 123 60–70. 10.1016/j.biocontrol.2018.04.018
Jiang W., Yu X., Tian Y., Chai Y., Xiong Y., Zhong X., et al. (2018). Effects of cd stress on soil microorganism of Xanthoceras sorbifolium Bunge. Jiangsu Agri. Sci. 46 228–231.
Jin Y., Luan Y., Ning Y., Wang L., (2018). Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl. Sci. 8:1336. 10.3390/app8081336
Khan S., Hesham Ael L., Qiao M., Rehman S., He J. Z., (2010). Effects of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Pollut. Res. Int. 17 288–296. 10.1007/s11356-009-0134-4 19333640
Kolhe N., Zinjarde S., Acharya C., (2020). Impact of uranium exposure on marine yeast, Yarrowia lipolytica: insights into the yeast strategies to withstand uranium stress. J. Hazard. Mater. 381:121226. 10.1016/j.jhazmat.2019.121226 31557712
Kulakovskaya T., (2018). Inorganic polyphosphates and heavy metal resistance in microorganisms. World J. Microbiol. Biotechnol. 34:139.
Li G., Puyol D., Carvajal-Arroyo J. M., Sierra-Alvarez R., Field J. A., (2015). Inhibition of anaerobic ammonium oxidation by heavy metals. J. Chem. Technol. Biotechnol. 90 830–837. 10.1002/jctb.4377
Li Y., Yu X., Cui Y., Tu W., Shen T., Yan M., et al. (2019). The potential of cadmium ion-immobilized Rhizobium pusense KG 2 to prevent soybean root from absorbing cadmium in cadmium-contaminated soil. J. Appl. Microbiol. 126 919–930. 10.1111/jam.14165 30489679
Liao M., Zhang H., Yu S., Chen C., Huang C., (2010). “Effects of cadmium and mercury alone and in combination on the soil microbial community structural diversity,” in Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone, eds Xu J., Huang P. M., (Berlin: Springer), 337–341. 10.1007/978-3-642-05297-2_99
Liu Y., Zhang C., Zhao Y., Sun S., Liu Z., (2017). Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soil. Sci. Total Environ. 579 1282–1288. 10.1016/j.scitotenv.2016.11.115 27908623
Lozupone C. A., Hamady M., Kelley S. T., Knight R., (2007). Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73 1576–1585. 10.1128/aem.01996-06 17220268
Luo L., Xie L., Jin D., Mi B., Wang D., Li X., et al. (2019). Bacterial community response to cadmium contamination of agricultural paddy soil. Appl. Soil Ecol. 139 100–106. 10.1016/j.apsoil.2019.03.022
MEP (2014). The Ministry of Land and Resources Report on the National Soil Contamination Survey. China: MEP.
Rubin B. E., Gibbons S. M., Kennedy S., Hampton-Marcell J., Owens S., Gilbert J. A., (2013). Investigating the impact of storage conditions on microbial community composition in soil samples. PloS One 8:e70460. 10.1371/journal.pone.0070460 23936206
Satarug S., Vesey D. A., Gobe G. C., (2017). Kidney cadmium toxicity, diabetes and high blood pressure: the perfect storm. Tohoku J. Exp. Med. 241 65–87. 10.1620/tjem.241.65 28132967
Sathendra E. R., Kumar R. P., Baskar G., (2018). “Microbial transformation of heavy metals,” in Waste Bioremediation, eds Varjani S., Gnansounou E., Gurunathan B., Pant D., Zakaria Z., (Singapore: Springer), 249–263. 10.1007/978-981-10-7413-4_13
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/aem.01541-09 19801464
Stefanowicz A. M., Niklińska M., Kapusta P., Szarek-Łukaszewska G., (2010). Pine forest and grassland differently influence the response of soil microbial communities to metal contamination. Sci. Total Environ. 408 6134–6141. 10.1016/j.scitotenv.2010.08.056 20870268
Suksabye P., Pimthong A., Dhurakit P., Mekvichitsaeng P., Thiravetyan P., (2016). Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. Environ. Sci. Pollut. Res. 23 962–973. 10.1007/s11356-015-4590-8 25943511
Trilisenko L., Kulakovskaya E., Kulakovskaya T., (2017). The cadmium tolerance in Saccharomyces cerevisiae depends on inorganic polyphosphate. J. Basic Microbiol. 57 982–986. 10.1002/jobm.201700257 28809038
Vodyanitskii Y. N., Plekhanova I., (2014). Biogeochemistry of heavy metals in contaminated excessively moistened soils (analytical review). Eurasian Soil Sci. 47 153–161. 10.1134/s1064229314030090
Wang C., Huang Y., Yang X., Xue W., Zhang X., Zhang Y., et al. (2020). Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium. Chemosphere 252:126603. 10.1016/j.chemosphere.2020.126603 32240860
Wang H., Wang Y.-P., Lin Q., Shi J.-Y., Chen Y.-X., (2006). Analysis of rhizosphere microbial community structures in heavy metal-contaminated soils using PCR and denaturation gradient gel electrophoresis(DGGE). J. Agro Environ. Sci. 25 903–907.
Wang J., Lu Y., Shen G., (2007a). Combined effects of cadmium and butachlor on soil enzyme activities and microbial community structure. Environ. Geol. 51 1221–1228. 10.1007/s00254-006-0414-y
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R., (2007b). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 5261–5267. 10.1128/aem.00062-07 17586664
Wang Y., Ji M., Zhao Y., Zhai H., (2016). Recovery of nitrification in cadmium-inhibited activated sludge system by bio-accelerators. Bioresour. Technol. 200 812–819. 10.1016/j.biortech.2015.10.089 26587790
Yang F., An F., Ma H., Wang Z., Zhou X., Liu Z., (2016). Variations on soil salinity and sodicity and its driving factors analysis under microtopography in different hydrological conditions. Water 8:227. 10.3390/w8060227
Yu X., Ding Z., Ji Y., Zhao J., Liu X., Tian J., et al. (2020). An operon consisting of a P-type ATPase gene and a transcriptional regulator gene responsible for cadmium resistances in Bacillus vietamensis 151–6 and Bacillus marisflavi 151–25. BMC Microbiol. 20:18. 10.1186/s12866-020-1705-2 31964334
Zhang C., Nie S., Liang J., Zeng G., Wu H., Hua S., et al. (2016). Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total Environ. 557-558 785–790. 10.1016/j.scitotenv.2016.01.170 27046142
Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y., et al. (2003). Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Microbiol. 53(Pt 4) 1155–1163. 10.1099/ijs.0.02520-0 12892144
Zhang H. B., Yang M. X., Shi W., Zheng Y., Sha T., Zhao Z. W., (2007). Bacterial diversity in mine tailings compared by cultivation and cultivation-independent methods and their resistance to lead and cadmium. Microb. Ecol. 54 705–712. 10.1007/s00248-007-9229-y 17333426
Zhang Y., Zhang X., Zhang H., He Q., Zhou Q., Su Z., et al. (2009). Responses of soil bacteria to long-term and short-term cadmium stress as revealed by microbial community analysis. Bull. Environ. Contam. Toxicol. 82 367–372. 10.1007/s00128-008-9613-4 19066706
Zoghlami R. I., Hamdi H., Boudabbous K., Hechmi S., Khelil M. N., Jedidi N., (2018). Seasonal toxicity variation in light-textured soil amended with urban sewage sludge: interaction effect on cadmium, nickel, and phytotoxicity. Environ. Sci. Pollut. Res. 25 3608–3615. 10.1007/s11356-017-0637-3 29164461