DFT; PCDD/Fs removal; SO2 adsorption; Activated carbon adsorption; Competitive mechanisms; Municipal solid-waste incinerations; Polychlorinated dibenzo-p-dioxin and dibenzofuran; Polychlorinated dibenzo-p-dioxin and dibenzofuran removal; SO 2; Solid waste incineration plant; Chemical Engineering (miscellaneous); Pollution; Process Chemistry and Technology
Abstract :
[en] In municipal solid waste incineration (MSWI) plants, activated carbon (AC) adsorption is the key technique for eliminating Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from flue gases. This research thoroughly investigates the potential competitive adsorption between SO2 and PCDD/Fs and examines how adsorption at the center and the edge of the AC layer impacts the adsorption process. The findings show a decline in the removal efficiency of PCDD/Fs from 86.8 % to 84.2 % and further to 74.4 % when using SO2 pre-treated (AC-A3) and H2SO4-impregnated (AC-B2) activated carbon, respectively. Multiple characterization methods reveal that sulfur elements occupy active sites within the inner pores of the activated carbon, reducing the availability of its pore structure, particularly affecting microporous more than mesoporous structures. DFT calculations suggest that the π-π EDA effect facilitates the adsorption of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), whereas dispersion force drive SO2 adsorption. Comparisons among various oxygenated functional groups show that the organic acid anhydride (C[dbnd]O-C[dbnd]O) has better adsorption selectivity toward TCDD and less adsorption to SO2. This study provides a novel perspective on the adsorption mechanisms of PCDD/Fs on AC and the competitive dynamics of sulfur in the flue gas.
Disciplines :
Chemistry
Author, co-author :
Lai, Jianwen; State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, China
Wang, Peiyue; State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, China
Ma, Yunfeng; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
Han, Zhongkang; School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
Fiedler, Heidelore ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique ; Örebro University, School of Science and Technology, Örebro, Sweden
Lin, Xiaoqing; State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, China
Li, Xiaodong; State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, China
Language :
English
Title :
Unveiling the competitive mechanism between SO2 and PCDD/Fs on activated carbon adsorption
NSCF - National Natural Science Foundation of China
Funding text :
This study was financially supported by the National Natural Science Foundation of China (52076192), the Program of Introducing Talents of Discipline to University (No. BP0820002).
Sondh, S., Upadhyay, D.S., Patel, S., Patel, R.N., A strategic review on Municipal Solid Waste (living solid waste) management system focusing on policies, selection criteria and techniques for waste-to-value. J. Clean. Prod., 356, 2022, 131908, 10.1016/j.jclepro.2022.131908.
Chang, M.B., Lin, J.-J., Chang, S.-H., Characterization of dioxin emissions from two municipal solid waste incinerators in Taiwan. Atmos. Environ. 36 (2002), 279–286, 10.1016/S1352-2310(01)00267-9.
Liao, W., Zhang, X., Fu, Z., Zhang, S., Shao, J., Yang, H., Wang, X., Chen, H., Emission characteristics of typical gas pollutants during oxygen-enriched waste incineration process. Environ. Technol. Innov., 32, 2023, 103358, 10.1016/j.eti.2023.103358.
Ying, Y., Ma, Y., Li, X., Lin, X., Emission characteristics and formation pathways of PCDD/Fs from cocombustion of municipal solid waste in a large-scale coal-fired power plant. Energy Fuels 35 (2021), 8221–8233, 10.1021/acs.energyfuels.1c00714.
Zu, L., Wu, D., Lyu, S., How to move from conflict to opportunity in the not-in-my-backyard dilemma: a case study of the Asuwei waste incineration plant in Beijing. Environ. Impact Assess. Rev., 104, 2024, 107326, 10.1016/j.eiar.2023.107326.
Zhou, H., Su, W., Xing, Y., Wang, J., Zhang, W., Jia, H., Su, W., Yue, T., Progress of catalytic oxidation of VOCs by manganese-based catalysts. Fuel, 366, 2024, 131305, 10.1016/j.fuel.2024.131305.
Liu, H., Kong, S., Liu, Y., Zeng, H., Pollution control technologies of dioxins in municipal solid waste incinerator. Procedia Environ. Sci. 16 (2012), 661–668, 10.1016/j.proenv.2012.10.091.
Lin, X., Ma, Y., Chen, Z., Li, X., Lu, S., Yan, J., Effect of different air pollution control devices on the gas/solid-phase distribution of PCDD/F in a full-scale municipal solid waste incinerator. Environ. Pollut., 265, 2020, 114888, 10.1016/j.envpol.2020.114888.
Wang, P., Yan, F., Xie, F., Shen, X., Wei, X., Qu, F., Su, Y., Yang, G., Zhong, R., Li, Z., Song, L., Zhang, Z., Field study on variation characteristics of PCDD/Fs and flue gas particles along MSW incinerator. Process Saf. Environ. Prot. 179 (2023), 439–448, 10.1016/j.psep.2023.09.018.
Karademir, A., Bakoglu, M., Taspinar, F., Ayberk, S., Removal of PCDD/Fs from flue gas by a fixed-bed activated carbon filter in a hazardous waste incinerator. Environ. Sci. Technol. 38 (2004), 1201–1207, 10.1021/es034681k.
Wang, P., Lin, X., Xu, S., Li, X., Ma, Y., Liu, W., Wu, J., Ding, J., Simultaneous removal of PCDD/Fs and mercury by activated carbon from a full-scale MSW incinerator in southeast China. Environ. Sci. Pollut. Res. Int. 30 (2023), 2440–2449, 10.1007/s11356-022-22425-x.
Cheng, S., Cheng, X., Tahir, M.H., Wang, Z., Zhang, J., Synthesis of rice husk activated carbon by fermentation osmotic activation method for hydrogen storage at room temperature. Int. J. Hydrog. Energy 62 (2024), 443–450, 10.1016/j.ijhydene.2024.03.092.
Fell, H.J., Tuczek, M., Removal of dioxins and furans from flue gases by non-flammable adsorbents in a fixed bed. Chemosphere 37 (1998), 2327–2334, 10.1016/S0045-6535(98)00291-4.
Li, X., Ma, Y., Zhang, M., Zhan, M., Wang, P., Lin, X., Chen, T., Lu, S., Yan, J., Study on the relationship between waste classification, combustion condition and dioxin emission from waste incineration. Waste Dispos. Sustain. Energy 1 (2019), 91–98, 10.1007/s42768-019-00009-9.
Ma, X., Hou, Y., Yang, L., Lv, H., Adsorption behaviors of VOCs under coal-combustion flue gas environment using activated carbon injection coupled with bag filtering system. Colloids Surf. Physicochem. Eng. Asp., 627, 2021, 127158, 10.1016/j.colsurfa.2021.127158.
Guo, Y., Li, Y., Zhu, T., Ye, M., Wang, X., Adsorption of SO2 and chlorobenzene on activated carbon. Adsorption 19 (2013), 1109–1116, 10.1007/s10450-013-9539-y.
Ding, X., Chang, K., Tian, J., Yang, Y., Jiao, W., Hou, Y., Zeng, Z., Huang, Z., Effects of pore structures and multiple components in flue gas on the adsorption behaviors of dioxins by activated carbon. Colloids Surf. Physicochem. Eng. Asp., 661, 2023, 130868, 10.1016/j.colsurfa.2022.130868.
Wang, M., Li, Q., Liu, W., Fang, M., Han, Y., Monochlorinated to octachlorinated polychlorinated Dibenzo-p-dioxin and dibenzofuran emissions in sintering fly ash from multiple-field electrostatic precipitators. Environ. Sci. Technol. 52 (2018), 1871–1879, 10.1021/acs.est.7b04848.
Suhas, P.J.M., Carrott, M.M.L., Ribeiro Carrott, Lignin – from natural adsorbent to activated carbon: a review. Bioresour. Technol. 98 (2007), 2301–2312, 10.1016/j.biortech.2006.08.008.
Shin, S., Jang, J., Yoon, S.-H., Mochida, I., A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon 35 (1997), 1739–1743, 10.1016/S0008-6223(97)00132-2.
Ding, X., Jiao, W., Yang, Y., Zeng, Z., Huang, Z., Effects of oxygenated groups on the adsorption removal of dibenzofuran by activated coke: experimental and DFT studies. J. Environ. Chem. Eng., 9, 2021, 106775, 10.1016/j.jece.2021.106775.
Yang, X., Zhao, H., Qu, Z., He, M., Tang, Z., Lai, S., Wang, Z., The effect of oxygen-containing functional groups on formaldehyde adsorption in solution on carbon surface: a density functional theory study. J. Environ. Chem. Eng., 9, 2021, 105987, 10.1016/j.jece.2021.105987.
Zhou, X.-J., Li, X.-D., Ni, M.-J., Cen, K.-F., Removal efficiencies for 136 tetra- through octa-chlorinated dibenzo-p-dioxins and dibenzofuran congeners with activated carbons. Environ. Sci. Pollut. Res. 22 (2015), 17691–17696, 10.1007/s11356-015-4940-6.
Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6 (1996), 15–50, 10.1016/0927-0256(96)00008-0.
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 (1996), 11169–11186, 10.1103/PhysRevB.54.11169.
Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59 (1999), 1758–1775, 10.1103/PhysRevB.59.1758.
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), 3865–3868, 10.1103/PhysRevLett.77.3865.
Momma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44 (2011), 1272–1276, 10.1107/S0021889811038970.
Henkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36 (2006), 354–360, 10.1016/j.commatsci.2005.04.010.
Rodriguez Correa, C., Otto, T., Kruse, A., Influence of the biomass components on the pore formation of activated carbon. Biomass-.-. Bioenergy 97 (2017), 53–64, 10.1016/j.biombioe.2016.12.017.
Jeon, Y.P., Lee, S., Song, J.Y., Park, Y.Y., Lee, E.J., Jeon, O.S., Kang, S.H., Byun, C.W., Kim, J., Park, S.Y., Yoo, Y.J., Yang, K., Reinforced nitrogen oxide gas adsorption by sulfur ionic treatment. J. Korean Phys. Soc. 79 (2021), 1051–1056, 10.1007/s40042-021-00317-6.
Largitte, L., Pasquier, R., A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 109 (2016), 495–504, 10.1016/j.cherd.2016.02.006.
Groen, J.C., Peffer, L.A.A., Pérez-Ramı́rez, J., Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60 (2003), 1–17, 10.1016/S1387-1811(03)00339-1.
Zhan, M.-X., Liu, Y.-W., Ye, W.-W., Chen, T., Jiao, W.-T., Modification of activated carbon using urea to enhance the adsorption of dioxins. Environ. Res., 204, 2022, 112035, 10.1016/j.envres.2021.112035.
Chi, K.H., Chang, S.H., Huang, C.H., Huang, H.C., Chang, M.B., Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption. Chemosphere 64 (2006), 1489–1498, 10.1016/j.chemosphere.2005.12.072.
Bell, J.G., Zhao, X., Uygur, Y., Thomas, K.M., Adsorption of chloroaromatic models for dioxins on porous carbons: the influence of adsorbate structure and surface functional groups on surface interactions and adsorption kinetics. J. Phys. Chem. C. 115 (2011), 2776–2789, 10.1021/jp1099893.
Ding, X., Jiao, W., Yang, Y., Zeng, Z., Huang, Z., Effects of oxygenated groups on the adsorption removal of dibenzofuran by activated coke: experimental and DFT studies. J. Environ. Chem. Eng., 9, 2021, 106775, 10.1016/j.jece.2021.106775.
Zhou, J.-H., Sui, Z.-J., Zhu, J., Li, P., Chen, D., Dai, Y.-C., Yuan, W.-K., Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45 (2007), 785–796, 10.1016/j.carbon.2006.11.019.
Biesinger, M.C., Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: insights from a multi-user facility data review. Appl. Surf. Sci., 597, 2022, 153681, 10.1016/j.apsusc.2022.153681.
Guo, Q., Jing, W., Hou, Y., Huang, Z., Ma, G., Han, X., Sun, D., On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures. Chem. Eng. J. 270 (2015), 41–49, 10.1016/j.cej.2015.01.086.
Kawashima, A., Katayama, M., Matsumoto, N., Honda, K., Physicochemical characteristics of carbonaceous adsorbent for dioxin-like polychlorinated biphenyl adsorption. Chemosphere 83 (2011), 823–830, 10.1016/j.chemosphere.2011.02.074.
Ding, X., Jiao, W., Yang, Y., Zeng, Z., Huang, Z., Effects of oxygenated groups on the adsorption removal of dibenzofuran by activated coke: experimental and DFT studies. J. Environ. Chem. Eng., 9, 2021, 106775, 10.1016/j.jece.2021.106775.
Elmouwahidi, A., Castelo-Quibén, J., Vivo-Vilches, J.F., Pérez-Cadenas, A.F., Maldonado-Hódar, F.J., Carrasco-Marín, F., Activated carbons from agricultural waste solvothermally doped with sulphur as electrodes for supercapacitors. Chem. Eng. J. 334 (2018), 1835–1841, 10.1016/j.cej.2017.11.141.
Liu, Z.-S., Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers. Waste Manag 28 (2008), 2329–2335, 10.1016/j.wasman.2007.10.013.
Darvish Ganji, M., Alinezhad, H., Soleymani, E., Tajbakhsh, M., Adsorption of TCDD molecule onto CNTs and BNNTs: Ab initio van der Waals density-functional study. Phys. E Low. -Dimens. Syst. Nanostruct. 67 (2015), 105–111, 10.1016/j.physe.2014.11.017.
Chen, M., Yan, Z., Luan, J., Sun, X., Liu, W., Ke, X., π-π electron-donor-acceptor (EDA) interaction enhancing adsorption of tetracycline on 3D PPY/CMC aerogels. Chem. Eng. J., 454, 2023, 140300, 10.1016/j.cej.2022.140300.
Xiong, S., Tang, M., Jiang, W., Ding, J., Qiu, J., Lu, S., Yan, J., PCDD/F adsorption enhancement over nitrogen-doped biochar: a DFT-D study. J. Environ. Manag., 344, 2023, 118611, 10.1016/j.jenvman.2023.118611.
De Moraes, E.E., Tonel, M.Z., Fagan, S.B., Barbosa, M.C., Density functional theory study of π-aromatic interaction of benzene, phenol, catechol, dopamine isolated dimers and adsorbed on graphene surface. J. Mol. Model., 25, 2019, 302, 10.1007/s00894-019-4185-2.
Battocchio, C., Russo, M.V., Carravetta, V., Goldoni, A., Parent, Ph, Laffon, C., Polzonetti, G., Diethynyl-thiophene adsorbed on Cu(100) investigated by NEXAFS and XPS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 246 (2006), 136–141, 10.1016/j.nimb.2005.12.035.
Zhang, S., Wang, L., Zhang, Y., Cao, F., Sun, Q., Ren, X., Wennersten, R., Effect of hydroxyl functional groups on SO2 adsorption by activated carbon. J. Environ. Chem. Eng., 10, 2022, 108727, 10.1016/j.jece.2022.108727.
Margarella, A.M., Perrine, K.A., Lewis, T., Faubel, M., Winter, B., Hemminger, J.C., Dissociation of sulfuric acid in aqueous solution: determination of the photoelectron spectral fingerprints of H2SO4, HSO4–, and SO42– in water. J. Phys. Chem. C. 117 (2013), 8131–8137, 10.1021/jp308090k.
Mahdavian, L., Computational Investigation of 2,3,7,8-Tetrachlorodibenzo-Para-Dioxin (TCDD) Adsorption on Boron Nitride-Nanotube (BNNT). Polycycl. Aromat. Compd. 40 (2020), 824–831, 10.1080/10406638.2018.1484777.
Shen, F., Liu, J., Zhang, Z., Dong, Y., Gu, C., Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Process. Technol. 171 (2018), 258–264, 10.1016/j.fuproc.2017.11.026.
Zhang, H., Hou, J., Wang, Y., Tang, P., Zhang, Y., Lin, X., Liu, C., Tang, Y., Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: a DFT study. Chemosphere 185 (2017), 509–517, 10.1016/j.chemosphere.2017.06.120.
Zhang, L., Jiang, S., Jia, Y., Zhang, M., Guo, J., Effects of Na+/H2O2 on nitrogen removal and sludge activity: Performance and mechanism. J. Environ. Chem. Eng., 12, 2024, 113194, 10.1016/j.jece.2024.113194.
Hurt, R., Krammer, G., Crawford, G., Jian, K., Rulison, C., Polyaromatic assembly mechanisms and structure selection in carbon materials. Chem. Mater. 14 (2002), 4558–4565, 10.1021/cm020310b.