Insight into the performance of VOx-WOx/TiO2 catalysts modified by various cerium precursors: A combined study on synergistic NOx and chlorobenzene removal.
Lai, Jianwen; Qi, Hongbo; Ma, Yunfenget al.
2025 • In Journal of Colloid and Interface Science, 687, p. 143 - 157
CVOC; Cerium modification; Denitrification; Reaction mechanism; Catalytic performance; Cerium precursors; NO x; TiO 2; ]+ catalyst; Colloid and Surface Chemistry
Abstract :
[en] Cerium is widely used as a modifier to enhance the catalytic performance of the selective catalytic reduction (SCR) catalysts due to its exceptional low-temperature properties. However, the effects of different cerium precursors on catalytic performance remains unclear. In this study, VOx-WOx/TiO2 catalysts are modified using Ce(NO3)3·6H2O (cata-N), CeO2 (cata-O), and Ce(OH)4 (cata-OH), and their synergistic removal of NOx and chlorobenzene (CB), as well as their resistance to water and sulfur poisoning, were systematically investigated. Among the tested catalysts, cata-N demonstrated superior CB (45.0-93.3 %) and NOx (31.9-90.37 %) removal efficiencies under synergistic conditions, along with excellent water resistance (T90 = 193 °C with 5 % H2O). In contrast, cata-OH exhibited the highest sulfur resistance, maintaining a denitrification efficiency of 20 % after 10 h of sulfur exposure, compared to 9 % for cata-N and 8 % for cata-O. Characterization revealed that Ce(NO3) 3·6H2O improved cerium dispersion, leading to enhanced the redox properties and acidity (especially Brønsted acid sites (BAS)) in cata-N. Density functional theory (DFT) calculations and In-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (In-situ DRIFTS) results revealed that the well-dispersed cerium atoms contributed additional BAS in the form of Ce-OH, while also forming Ti-O-Ce bonds. These Ti-O-Ce bonds facilitated the formation of Ti-OH on the TiO2 surface. Ti-OH significantly enhanced the adsorption of NH3 and CB, thereby promoting both the NH3-SCR and CB oxidation processes. This study offers new insights into the role of cerium precursors and provides a practical strategy for tuning BAS of catalysts in multiple pollutants removal.
Disciplines :
Chemistry
Author, co-author :
Lai, Jianwen; State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027 China
Qi, Hongbo; State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027 China
Ma, Yunfeng; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024 China. Electronic address: mayunfeng@ucas.ac.cn
Lin, Xiaoqing; State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027 China. Electronic address: linxiaoqing@zju.edu.cn
Wang, Xiaoying; Ningbo Mingzhou Environmental Energy Co., NingBo 315504 China
Han, Zhongkang; School of Materials Science and Engineering, Zhejiang University 310027 Hangzhou, China
Fiedler, Heidelore ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique ; State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027 China, Örebro University, School of Science and Technology 701 82 Örebro, Sweden
Li, Xiaodong; State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027 China
Language :
English
Title :
Insight into the performance of VOx-WOx/TiO2 catalysts modified by various cerium precursors: A combined study on synergistic NOx and chlorobenzene removal.
China Postdoctoral Science Foundation Ministry of Science and Technology of the People's Republic of China
Funding text :
This study was financially supported by The National Key Research and Development Program of China ( 2024YFC3907400 ), China Postdoctoral Science Foundation ( 2023M740877 ) and the Program of Introducing Talents of Discipline to University (No. BP0820002 ).
Joint Research Centre (European Commission), G. Cusano, S. Roudier, F. Neuwahl, S. Holbrook, J. Gómez Benavides, Best Available Techniques (BAT) reference document for waste incineration: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control), Publications Office of the European Union, 2019. https://data.europa.eu/doi/10.2760/761437 (accessed April 27, 2024).
Gan, L., Wang, Y., Chen, J., Yan, T., Li, J., Crittenden, J., Peng, Y., The synergistic mechanism of NOX and chlorobenzene degradation in municipal solid waste incinerators. Cat. Sci. Technol. 9:16 (2019), 4286–4292, 10.1039/c9cy01157a.
Quina, M.J., Bordado, J.C., Quinta-Ferreira, R.M., Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Manag. 28 (2008), 2097–2121, 10.1016/j.wasman.2007.08.030.
Finocchio, E., Busca, G., Notaro, M., A review of catalytic processes for the destruction of PCDD and PCDF from waste gases. Appl. Catal. B Environ. 62 (2006), 12–20, 10.1016/j.apcatb.2005.06.010.
Yoneda, K., Ikeguchi, T., Yagi, Y., Tamade, Y., Omori, K., A research on dioxin generation from the industrial waste incineration. Chemosphere 46 (2002), 1309–1319, 10.1016/S0045-6535(01)00246-6.
Abad, E., Adrados, M.A., Caixach, J., Rivera, J., Dioxin abatement strategies and mass balance at a municipal waste management plant. Environ. Sci. Tech. 36 (2002), 92–99, 10.1021/es010039j.
Hagenmaier, H., Horch, K., Fahlenkamp, H., Schetter, G., Destruction of PCDD and PCDF in refuse incineration plants by primary and secondary measures. Chemosphere 23 (1991), 1429–1437, 10.1016/0045-6535(91)90167-C.
Weber, R., Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5–WO3 catalysts. Appl. Catal. B Environ. 20 (1999), 249–256, 10.1016/S0926-3373(98)00115-5.
Yang, C.C., Chang, S.H., Hong, B.Z., Chi, K.H., Chang, M.B., Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5–WO3/TiO2-based catalysts. Chemosphere 73 (2008), 890–895, 10.1016/j.chemosphere.2008.07.027.
Ciambelli, P., Fortuna, M.E., Sannino, D., Baldacci, A., The influence of sulphate on the catalytic properties of V2O5-TiO2 and WO3-TiO2 in the reduction of nitric oxide with ammonia. Catal. Today 29 (1996), 161–164, 10.1016/0920-5861(95)00255-3.
Xiong, Z., Wang, W., Li, J., Huang, L., Lu, W., The synergistic promotional effect of W doping and sulfate modification on the NH3-SCR activity of CeO2 catalyst. Mol. Catal., 522, 2022, 112250, 10.1016/j.mcat.2022.112250.
Mukherjee, A., Debnath, B., Ghosh, S.K., A review on technologies of removal of dioxins and furans from incinerator flue gas. Proc. Environ. Sci. 35 (2016), 528–540, 10.1016/j.proenv.2016.07.037.
Xu, Z., Deng, S., Yang, Y., Zhang, T., Cao, Q., Huang, J., Yu, G., Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5–WO3/TiO2 catalyst. Chemosphere 87 (2012), 1032–1038, 10.1016/j.chemosphere.2012.01.004.
Miran, H.A., Altarawneh, M., Jiang, Z.-T., Oskierski, H., Almatarneh, M., Dlugogorski, B.Z., Decomposition of selected chlorinated volatile organic compounds by ceria (CeO2), Catal. Sci. Technol. 7 (2017), 3902–3919, 10.1039/C7CY01096F.
Montini, T., Melchionna, M., Monai, M., Fornasiero, P., Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116 (2016), 5987–6041, 10.1021/acs.chemrev.5b00603.
Yang, J., Lukashuk, L., Akbarzadeh, J., Stöger-Pollach, M., Peterlik, H., Föttinger, K., Rupprechter, G., Schubert, U., Different synthesis protocols for Co3O4–CeO2 catalysts—Part 1: Influence on the morphology on the nanoscale. Chem. – Eur. J. 21 (2015), 885–892, 10.1002/chem.201403636.
Hosono, Y., Saito, H., Higo, T., Watanabe, K., Ito, K., Tsuneki, H., Maeda, S., Hashimoto, K., Sekine, Y., Co–CeO2 interaction induces the Mars–van Krevelen mechanism in dehydrogenation of ethane. J. Phys. Chem. C 125 (2021), 11411–11418, 10.1021/acs.jpcc.1c02855.
Liang, Q., Li, J., Yue, T., Promotional effect of CeO2 on low-temperature selective catalytic reduction of NO by NH3 over V2O5-WO3/TiO2 catalysts. Environ. Technol. Innov., 21, 2021, 101209, 10.1016/j.eti.2020.101209.
Chen, L., Liao, Y., Chen, Y., Wu, J., Ma, X., Performance of Ce-modified V-W-Ti type catalyst on simultaneous control of NO and typical VOCS. Fuel Process. Technol., 207, 2020, 106483, 10.1016/j.fuproc.2020.106483.
Gao, C., Yang, G., Wang, D., Gong, Z., Zhang, X., Wang, B., Peng, Y., Li, J., Lu, C., Crittenden, J., Modified red mud catalyst for the selective catalytic reduction of nitrogen oxides: Impact mechanism of cerium precursors on surface physicochemical properties. Chemosphere, 257, 2020, 127215, 10.1016/j.chemosphere.2020.127215.
Guillén-Hurtado, N., Atribak, I., Bueno-López, A., García-García, A., Influence of the cerium precursor on the physico-chemical features and NO to NO2 oxidation activity of ceria and ceria–zirconia catalysts. J. Mol. Catal. Chem. 323 (2010), 52–58, 10.1016/j.molcata.2010.03.010.
Zhang, C., Chu, W., Chen, F., Li, L., Jiang, R., Yan, J., Effects of cerium precursors on surface properties of mesoporous CeMnO catalysts for toluene combustion. J. Rare Earths 38 (2020), 70–75, 10.1016/j.jre.2019.04.013.
Topsøe, N.-Y., Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science 265 (1994), 1217–1219, 10.1126/science.265.5176.1217.
Wang, Y., Zhao, R., Rappé, K.G., Wang, Y., Che, F., Gao, F., Mechanisms and site requirements for NO and NH3 oxidation on Cu/SSZ-13. Appl. Catal. B Environ., 346, 2024, 123726, 10.1016/j.apcatb.2024.123726.
Ma, Y., Lai, J., Wu, J., Lin, X., Yu, H., Zhang, H., Wu, A., Long, J., Li, X., Novel development of VOx–CeOx–WOx/TiO2 catalyst for low-temperature catalytic oxidation of chloroaromatic organics. Waste Dispos. Sustain Energy 4 (2022), 259–269, 10.1007/s42768-022-00108-0.
SAC, Testing Standard of SCR catalysts for the DeNOx of Flue Gas, 2019.
Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci 6 (1996), 15–50, 10.1016/0927-0256(96)00008-0.
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. PhysRevB 54 (1996), 11169–11186, 10.1103/PhysRevB.54.11169.
Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. PhysRevB 59 (1999), 1758–1775, 10.1103/PhysRevB.59.1758.
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. PhysRevLett. 77 (1996), 3865–3868, 10.1103/PhysRevLett.77.3865.
Momma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44 (2011), 1272–1276, 10.1107/S0021889811038970.
Henkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36 (2006), 354–360, 10.1016/j.commatsci.2005.04.010.
Zhang, C., Zhang, J., Shen, Y., He, J., Qu, W., Deng, J., Han, L., Chen, A., Zhang, D., Synergistic catalytic elimination of NOx and chlorinated organics: cooperation of acid sites. Environ. Sci. Tech. 56 (2022), 3719–3728, 10.1021/acs.est.1c08009.
Long, Y., Su, Y., Xue, Y., Wu, Z., Weng, X., V2O5–WO3/TiO2 catalyst for efficient synergistic control of NOx and chlorinated organics: insights into the arsenic effect. Environ. Sci. Tech. 55 (2021), 9317–9325, 10.1021/acs.est.1c02636.
Albonetti, S., Blasioli, S., Bonelli, R., Mengou, J.E., Scirè, S., Trifirò, F., The role of acidity in the decomposition of 1,2-dichlorobenzene over TiO2-based V2O5/WO3 catalysts. Appl. Catal. A 341 (2008), 18–25, 10.1016/j.apcata.2007.12.033.
Lichtenberger, J., Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J. Catal. 223 (2004), 296–308, 10.1016/j.jcat.2004.01.032.
Ma, Y., Lai, J., Wu, J., Zhang, H., Yan, J., Li, X., Lin, X., Efficient synergistic catalysis of chlorinated aromatic hydrocarbons and NOx over novel low-temperature catalysts: Nano-TiO2 modification and interaction mechanism. Chemosphere, 315, 2023, 137640, 10.1016/j.chemosphere.2022.137640.
Gutierrez, L., Boix, A., Petunchi, J., Effect of Pt on the water resistance of Co-zeolites upon the SCR of NOx with CH4. Catal. Today 54 (1999), 451–464, 10.1016/S0920-5861(99)00208-4.
Chen, L., Liao, Y., Xin, S., Song, X., Liu, G., Ma, X., Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas. Fuel, 262, 2020, 116485, 10.1016/j.fuel.2019.116485.
Besselmann, S., Freitag, C., Hinrichsen, O., Muhler, M., Temperature-programmed reduction and oxidation experiments with V2O5/TiO2 catalysts. PCCP 3 (2001), 4633–4638, 10.1039/B105466J.
Chen, L., Li, J., Ge, M., Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J. Phys. Chem. C 113 (2009), 21177–21184, 10.1021/jp907109e.
Chen, L., Weng, D., Si, Z., Wu, X., Synergistic effect between ceria and tungsten oxide on WO3–CeO2–TiO2 catalysts for NH3-SCR reaction. Prog. Nat. Sci.: Mater. Int. 22 (2012), 265–272, 10.1016/j.pnsc.2012.07.004.
Liu, X., Chen, H., Wu, X., Cao, L., Jiang, P., Yu, Q., Ma, Y., Effects of SiO2 modification on the hydrothermal stability of the V2O5/WO3–TiO2NH3-SCR catalyst: TiO2 structure and vanadia species. Catal. Sci. Technol. 9 (2019), 3711–3720, 10.1039/C9CY00385A.
Boningari, T., Ettireddy, P.R., Somogyvari, A., Liu, Y., Vorontsov, A., McDonald, C.A., Smirniotis, P.G., Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NO under oxygen-rich conditions. J. Catal. 325 (2015), 145–155, 10.1016/j.jcat.2015.03.002.
Li, Z., Li, J., Liu, S., Ren, X., Ma, J., Su, W., Peng, Y., Ultra hydrothermal stability of CeO2-WO3/TiO2 for NH3-SCR of NO compared to traditional V2O5-WO3/TiO2 catalyst. Catal. Today 258 (2015), 11–16, 10.1016/j.cattod.2015.07.002.
Dong, F., Meng, Y., Ling, W., Han, W., Han, W., Li, X., Tang, Z., Single atomic Pt confined into lattice defect sites for low-temperature catalytic oxidation of VOCs. Appl. Catal. B Environ. Energy, 346, 2024, 123779, 10.1016/j.apcatb.2024.123779.
Wang, B., Chi, C., Xu, M., Wang, C., Meng, D., Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge. Chem. Eng. J. 322 (2017), 679–692, 10.1016/j.cej.2017.03.153.
Du, H., Luo, H., Jiang, M., Yan, X., Jiang, F., Chen, H., A review of activating lattice oxygen of metal oxides for catalytic reactions: Reaction mechanisms, modulation strategies of activity and their practical applications. Appl. Catal. A, 2023, 119348, 10.1016/j.apcata.2023.119348.
Chen, J., Xiong, S., Liu, H., Shi, J., Mi, J., Liu, H., Gong, Z., Oliviero, L., Maugé, F., Li, J., Reverse oxygen spillover triggered by CO adsorption on Sn-doped Pt/TiO2 for low-temperature CO oxidation. Nat. Commun., 14, 2023, 3477, 10.1038/s41467-023-39226-6.
Liu, T., Yang, R., Zhang, G., Wu, W., Yang, Z., Lin, R., Wang, X., Jiang, Y., Mechanism of selective catalytic reduction of NOx with NH3 over CeO2-TiO2: Insight from in-situ DRIFTS and DFT calculations. Appl. Surf. Sci., 568, 2021, 150764, 10.1016/j.apsusc.2021.150764.
Kijlstra, W.S., Brands, D.S., Poels, E.K., Bliek, A., Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. J. Catal. 171 (1997), 208–218, 10.1006/jcat.1997.1788.
Zhao, X., Yan, Y., Mao, L., Fu, M., Zhao, H., Sun, L., Xiao, Y., Dong, G., A relationship between the V4+/V5+ ratio and the surface dispersion, surface acidity, and redox performance of V2O5–WO3/TiO2 SCR catalysts. RSC Adv. 8 (2018), 31081–31093, 10.1039/C8RA02857E.
Gallastegi-Villa, M., Aranzabal, A., González-Marcos, M.P., Markaide-Aiastui, B.A., González-Marcos, J.A., González-Velasco, J.R., Effect of vanadia loading on acidic and redox properties of VOx/TiO2 for the simultaneous abatement of PCDD/Fs and NOx. J. Ind. Eng. Chem. 81 (2020), 440–450, 10.1016/j.jiec.2019.09.034.
Liang, J., Xu, Q., Teng, X., Guan, W., Lu, C., Superoxide-triggered luminol electrochemiluminescence for detection of oxygen vacancy in oxides. Anal. Chem. 92 (2020), 1628–1634, 10.1021/acs.analchem.9b05156.
Liu, H., Fan, Z., Sun, C., Yu, S., Feng, S., Chen, W., Chen, D., Tang, C., Gao, F., Dong, L., Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Appl. Catal. B Environ. 244 (2019), 671–683, 10.1016/j.apcatb.2018.12.001.
Wang, J., Wang, X., Liu, X., Zeng, J., Guo, Y., Zhu, T., Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/TiO2 catalysts. J. Mol. Catal. Chem. 402 (2015), 1–9, 10.1016/j.molcata.2015.03.003.
Zhai, S., Su, Y., Weng, X., Li, R., Wang, H., Wu, Z., Synergistic elimination of NOx and chlorinated organics over VOx/TiO2 catalysts: a combined experimental and DFT study for exploring vanadate domain effect. Environ. Sci. Tech. 55 (2021), 12862–12870, 10.1021/acs.est.1c02997.
Isapour, G., Wang, A., Han, J., Feng, Y., Grönbeck, H., Creaser, D., Olsson, L., Skoglundh, M., Härelind, H., In situ DRIFT studies on N 2 O formation over Cu-functionalized zeolites during ammonia-SCR. Catal. Sci. Technol. 12 (2022), 3921–3936, 10.1039/D2CY00247G.
Marberger, A., Ferri, D., Elsener, M., Kröcher, O., The significance of lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts. Angew. Chem. 128 (2016), 12168–12173, 10.1002/ange.201605397.
Ma, C., Yang, C., Wang, B., Chen, C., Wang, F., Yao, X., Song, M., Effects of H2O on HCHO and CO oxidation at room-temperature catalyzed by MCo2O4 (M=Mn, Ce and Cu) materials. Appl. Catal. B Environ. 254 (2019), 76–85, 10.1016/j.apcatb.2019.04.085.
Pan, Y., Shen, B., Liu, L., Yao, Y., Gao, H., Liang, C., Xu, H., Develop high efficient of NH3-SCR catalysts with wide temperature range by ball-milled method. Fuel, 282, 2020, 118834, 10.1016/j.fuel.2020.118834.
Jiang, Y., Zhang, G., Liu, T., Yang, Z., Xu, Y., Lin, R., Wang, X., Complete catalytic reaction of mercury oxidation on CeO2/TiO2 (001) surface: A DFT study. J. Hazard. Mater., 430, 2022, 128434, 10.1016/j.jhazmat.2022.128434.
Weng, X., Sun, P., Long, Y., Meng, Q., Wu, Z., Catalytic oxidation of chlorobenzene over MnxCe1–xO2/HZSM-5 catalysts: a study with practical implications. Environ. Sci. Tech. 51 (2017), 8057–8066, 10.1021/acs.est.6b06585.
Röckert, A., Kullgren, J., Hermansson, K., Predicting frequency from the external chemical environment: OH vibrations on hydrated and hydroxylated surfaces. J. Chem. Theory Comput. 18 (2022), 7683–7694, 10.1021/acs.jctc.2c00135.
Zhang, S., Zhang, B., Liu, B., Sun, S., A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: reaction mechanism and catalyst deactivation. RSC Adv. 7 (2017), 26226–26242, 10.1039/C7RA03387G.
Bertinchamps, F., Treinen, M., Blangenois, N., Mariage, E., Gaigneaux, E.M., Positive effect of NOx on the performances of VOx/TiO2-based catalysts in the total oxidation abatement of chlorobenzene. J. Catal. 230 (2005), 493–498, 10.1016/j.jcat.2005.01.009.
Sun, Y., Xu, S., Bai, B., Li, L., Kang, Y., Hu, X., Liao, Z., He, C., Biotemplate fabrication of hollow tubular CexSr1–xTiO3 with regulable surface acidity and oxygen mobility for efficient destruction of chlorobenzene: intrinsic synergy effect and reaction mechanism. Environ. Sci. Tech. 56 (2022), 5796–5807, 10.1021/acs.est.2c00270.